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Abstract: The decomposition of ammonia borane (NH3BH3) to produce hydrogen has developed a
promising technology to alleviate the energy crisis. In this paper, metal and non-metal diatom-doped
CoP as catalyst was applied to study hydrogen evolution from NH3BH3 by density functional theory
(DFT) calculations. Herein, five catalysts were investigated in detail: pristine CoP, Ni- and N-doped
CoP (CoPNi-N), Ga- and N-doped CoP (CoPGa-N), Ni- and S-doped CoP (CoPNi-S), and Zn- and
S-doped CoP (CoPZn-S). Firstly, the stable adsorption structure and adsorption energy of NH3BH3

on each catalytic slab were obtained. Additionally, the charge density differences (CDD) between
NH3BH3 and the five different catalysts were calculated, which revealed the interaction between
the NH3BH3 and the catalytic slab. Then, four different reaction pathways were designed for the
five catalysts to discuss the catalytic mechanism of hydrogen evolution. By calculating the activation
energies of the control steps of the four reaction pathways, the optimal reaction pathways of each
catalyst were found. For the five catalysts, the optimal reaction pathways and activation energies
are different from each other. Compared with undoped CoP, it can be seen that CoPGa-N, CoPNi-S,
and CoPZn-S can better contribute hydrogen evolution from NH3BH3. Finally, the band structures
and density of states of the five catalysts were obtained, which manifests that CoPGa-N, CoPNi-S, and
CoPZn-S have high-achieving catalytic activity and further verifies our conclusions. These results can
provide theoretical references for the future study of highly active CoP catalytic materials.

Keywords: ammonia borane; hydrogen evolution reaction; CoP; diatom-doped; density func-
tional theory

1. Introduction

The energy crisis and environmental pollution are two major problems humans are
faced with in society today. To deal with these severe problems, taking advantage of
renewable energy to replace fossil energy is an important strategy for the international
community.

As a renewable energy source, hydrogen energy is light in weight, high in heat, non-
toxic, harmless, excellent in thermal conductivity, clean, and pollution-free, which makes
it a representative of green energy [1–4]. To date, there are many common industrial
hydrogen production methods [5–8], such as the methods of NH3BH3 decomposition,
water cracking, water and ethanol mixture pulse discharge, etc. However, how to release
hydrogen safely and efficiently remains the main obstacle to the spread of hydrogen energy.
NH3BH3 is considered as one of the most ideal hydrogen storage materials because of its
non-toxic, easy storage and transportation and reversible dehydrogenation reaction [9–12].
Catalytic decomposition of NH3BH3 is accepted as a promising method for hydrogen
production. Although traditional catalysts such as platinum-based or rhodium-based noble
metal catalysts have high activity for NH3BH3 decomposition, their application is limited
due to high cost and short time [13–15]. Therefore, there is an upsurge in research to look
for non-noble metal catalysts with high catalytic activity and service life [16–19]. At present,
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quantities of composite materials with high catalytic activity and high stability which can
catalyze the evolution of hydrogen from ammonia borane have been synthesized [20–24].

Cobalt phosphide (CoP) has become a typical representative of inexpensive transition
metal phosphides due to its advantages of low production cost, good stability, and catalytic
activity [25–27]. CoP materials include CoP nanowire arrays [28–30], non-metallic-doped
CoP materials [31,32], metal-doped CoP materials, etc. [33,34]. Various doped catalytic
materials based on cobalt phosphide have been widely studied as excellent catalysts for
NH3BH3 decomposition to produce hydrogen [35–37], such as non-noble metal cobalt phos-
phide nanometer materials supported by layered porous carbon (CoPNPs), which were
synthesized by step-by-step calcination and phosphating, using a cobalt-based organic
framework (CO-MOF-74) as template [38], carbon-point-constrained CoP-CoO nanos-
tructured materials with strong interfacial synergies, which trigger the strong hydrogen
evolution performance of NH3BH3 [39], nickel-loaded cobalt phosphide (Ni@CoP) mate-
rials, etc. [40,41]. These CoP-based modified catalysts improve the hydrogen evolution
performance of NH3BH3. It was found that different types of doping have an important
effect on the catalytic activity of the materials [42,43]. For example, silver and nitrogen
diatom-doped zinc oxide has become a salient way to obtain high quality P-type zinc
oxide [44]. The dehydrogenation of NH3BH3 catalyzed by Co and Cu diatom-doped mag-
nesium oxide is better than that of Co- and Cu-doped magnesium oxide alone [45]. The
catalytic performance and efficiency of O and Mo diatom-doped cobalt phosphide lamellar
nanomaterials as catalysts for water cracking has been significantly improved [46].

In view of CoP as an excellent catalyst for the dehydrogenation of NH3BH3 and the
significant improvement of catalyst performance by diatom-doped metal and non-metal
co-doped CoP as a catalyst for hydrogen production from NH3BH3 was studied in this
paper, and the mechanism of its catalytic dehydrogenation is discussed. At the same time,
the catalytic activity of different doped catalysts was studied. The study of the physical
properties of doped CoP variants is expected to explain the correlation between the physical
properties of the catalysts and the catalytic activity of NH3BH3 dehydrogenation, which
provides some theoretical references for the optimization and design of the catalysts for
hydrogen production from NH3BH3.

2. Calculation Methods

In this study, all the structure optimization, band structures, and density of states (DOS)
were calculated using Dmol3 in the Material Studio 8.0 program developed by Accelrys,
Inc. The generalized gradient approximation Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional was adopted and the nuclear electron was described by effective
core potential (ECP) [47]. To expand the electronic wave function, the double numerical
plus polarization (DNP) basis set was used [48]. A 2 × 2 × 1 k-points was sampled using
the Monkhorst–Pack method. On this basis, the energy convergence criterion of the self-
consistent iterative process was set to 2 × 10 −5 Ha, the force convergence accuracy was
set to 0.004 Ha/Å, and the maximum displacement was set to 0.005 Å. Meanwhile, The
LST/QST method was used to search for reaction transition states whose structures were
further confirmed by frequency analysis [49].

A 2 × 3 CoP (101) slab model with six-layer-atom was built to represent CoP catalysts,
which was consistent with that of Deniel et al. [50] and Cao et al. [51,52]. This model
contained 72 Co and 72 P atoms. In order to prevent the interactions between periodic
images of the slabs, a 15 Å vacuum layer is added in Z direction. In doped CoP, one of the
P atoms on pristine CoP (101) surface were replaced by non-metallic N or S atom, and one
of the Co atoms on the pristine CoP (101) surface was replaced by Ni, Ga, or Zn atoms,
respectively, as shown in Figure 1. Then, metal and non-metal diatom-doped CoP catalyst
models were obtained. Herein, we focus on four different types of doped CoP: Ni and N
diatom-doped CoP, as denoted CoPNi-N; Ga and N diatom-doped CoP, denoted CoPGa-N;
Ni and S diatom-doped CoP, denoted CoPNi-S; and Zn and S diatom-doped CoP, denoted
CoPZn-S.
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occurs between H(1) atom of NH3BH3 and Co(3) atom of CoP(101) surface, indicating that 
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CoP(101) surface. In the process of adsorption, a part of the energy is released due to the 
reduction of molecular motion velocity, and this part of the energy is called adsorption 
energy (Eads), which can be calculated as: 
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Figure 1. Front view (a) and top view (b) of metal- and non-metal-doped CoP catalyst.

3. Results and Discussions
3.1. Adsorption of NH3BH3 on the Surface of CoP and Its Doped Catalysts

The stable adsorption structure of NH3BH3 on CoP(101) slabs was obtained by opti-
mizing the model of CoP, as shown in Figure 2. In the optimized adsorption configuration,
the H(1) atom on the NH3BH3 was adsorbed on the Co(3) atom on the CoP(101) surface,
and the distance between the H(1) atom and the Co(3) atom was shortened from 1.79 Å to
1.65 Å. However, the bond length of B-H(1) in NH3BH3 increased from 1.26 Å to 1.28 Å.
The electron density map of the adsorption configuration of NH3BH3 on CoP(101) surface
is also shown in Figure 2. It can be seen from Figure 2 that the overlap of electron cloud
occurs between H(1) atom of NH3BH3 and Co(3) atom of CoP(101) surface, indicating
that electron interaction occurs between the H(1) atom of NH3BH3 and Co(3) atom on the
CoP(101) surface. In the process of adsorption, a part of the energy is released due to the
reduction of molecular motion velocity, and this part of the energy is called adsorption
energy (Eads), which can be calculated as:

Eads = −(Etotal − Eslab − EAB) (1)

In this formula, Etotal, Eslab, and EAB are potential energies of AB adsorbed on the
slab model, the slab model, and AB molecule. The adsorption process of NH3BH3 on
CoP (101) surface is an activation process, and its adsorption energy is −1.19 eV. The
other stable adsorption structures of NH3BH3 absorbed on the surface of four different
kinds of diatom-doped CoP catalysts (CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S) are shown
in Figure S1. The electron density maps of the adsorption structure are also shown in
Figure S1. The adsorption energies of NH3BH3 on the four types of doped catalysts
are −1.22 (CoPNi-N), −1.29 (CoPGa-N), −1.21 (CoPNi-S), and −1.25 eV (CoPZn-S), which
indicates that NH3BH3 can be stably adsorbed on the surface of the four kinds of doped
catalysts, and the adsorption process of NH3BH3 on the surface of the four kinds of diatom-
doped catalysts is also an activation process.
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3.2. Hydrogen Evolution Mechanism of NH3BH3 on the Surface of the Catalyst

According to our investigation, there are four potential pathways available for the
hydrogen evolution reaction of NH3BH3 on the catalyst surfaces, as shown in Figure 3.
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Figure 3. Mechanism of hydrogen evolution reaction of NH3BH3.

Firstly, NH3BH3 is adsorbed on the surface of the catalyst to form a stable adsorption
reactant denoted as M1. Then, NH3BH3 is dehydrogenated through four different reaction
pathways to obtain the product P1. In the reaction pathway I, the reactant M1 generates
the intermediate M2 via the transition state TS1, and then M2 through the transition state
TS2 generates the product P1. In this process, one of the B-H bonds of the NH3BH3 in M1
is broken to become the intermediate M2 via the transition state TS1. Afterwards, another
H atom leaves the N atom of the NH3BH2 intermediate, forming bond with the previously
generated H atom, generating the final product H2 and finally completing the hydrogen
evolution reaction. In reaction pathway II, the first step of reactant M1 to intermediate M2
is the same as pathway I. After that, one of the N-H bonds of the NH3BH3 in M2 is broken
to form the intermediate M3 via the transition state TS3. The configuration of intermediate
M3 is that two H atoms are independently adsorbed on the surface of the catalyst. Finally,
the two H atoms adsorbed on the surface of the catalyst are combined together to form the
final product P1 via transition state TS4. In the reaction pathway III, the first step is the
reactant M1 generates the intermediate M3 via the transition state TS5, in which, different
from reaction pathway II, the N-H and B-H of NH3BH3 are broken simultaneously. The
following step is that M3 generates the final product P1 via transition state TS4, which is
the same as path II. In reaction pathway IV, the M1 directly generates the H2 via transition
state TS6.

The structural changes involved in the process of NH3BH3 dehydrogenation catalyzed
by the five catalysts are shown in Figure 4 (CoPZn-S), Supplementary Materials Figure S2
(CoP), Figure S3 (CoPNi-N), Figure S4 (CoPGa-N), and Figure S5 (CoPNi-S). Since each
reaction pathway is similar for different catalysts, herein only CoPZn-S is discussed. The
relevant structural parameters of the hydrogen evolution reaction catalyzed by CoPZn-S are
listed in Table 1, and the relative energies and activation energies in each step are listed in
Table 2 and as shown in Figure 4.
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For reaction path I, NH3BH3 is adsorbed on the catalyst surface to form M1Zn-S, and
the adsorption site of NH3BH3 is above the Co(3) atom on the CoPZn-S surface. Then in
M1Zn-S, the B-H(1) bond is broken, and the H(1) atom escapes from NH3BH3 and migrates
between the Co(3) and Zn atoms on the surface of CoPZn-S, forming intermediate M2Zn-S
via transition state TS1Zn-S with activation energy of 22.71 kcal/mol. In this process, the
distance between the B atom and H(1) atom increases from 1.28 Å to 1.81 Å and finally to
2.50 Å from M1Zn-S to TS1Zn-S, forming M2Zn-S. The distance between H(1) and Co(3) is
shortened from 1.65 Å in M1Zn-S to 1.47 Å in TS1Zn-S and then to 1.58 Å in M2Zn-S. In the
intermediate M2Zn-S, the H(1) atom on the surface of the catalyst and the H(2) atom on the
N atom of NH3BH3 converge to form H2 via transition state TS2Zn-S. The activation energy
of TS2Zn-S is 39.56 kcal/mol. The distance between the H(1) atom and Co(3) changes from
1.58 Å to 1.52 Å, and the distance between the H(1) atom and H(2) decreases from 2.41 Å
to 1.72 Å,. In the process of M2Zn-S→TS2Zn-S→P1Zn-S, the distance between H(2) and N
atoms changes from 1.05 Å to 1.92 Å and finally to 3.66 Å.

For reaction pathway II, firstly, the reactant NH3BH3 is adsorbed on the surface of
the catalyst to form M1Zn-S, and the M1Zn-S, through the transition state TS1Zn-S, forms
the intermediate M2Zn-S, which is the same as the process of M1Zn-S→M2Zn-S in pathway
I. Subsequently, in the intermediate M2Zn-S, the H(2) atom on the N atom of NH3BH3 is
gradually detached from the NH3BH3 and adsorbed between the Co(3) and Zn on the
CoP(101) surface of the catalyst. With the movement of the H(2) atom, the H(1) atom is
adsorbed to the upper left of the Co(3) atom to form the intermediate M3Zn-S, which is the
transition state TS3Zn-S with an activation energy of 42.04 kcal/mol. In this process, the
distance between the H(2) atom and the N atom of NH3BH3 increases from 1.05 Å to 1.51
Å and finally to 2.55 Å in M3Zn-S. The distance between the H(1) and Co(3) atoms varies
from 1.58 Å for M2Zn-S to 1.54 Å for TS3Zn-S and finally to 1.65 Å for M3Zn-S. The distances
between H(2) and Co(3), H(2), and Zn vary from 3.31 Å and 2.96 Å in M2Zn-S to 3.15 Å and
2.52 Å in TS3Zn-S and finally to 1.59 Å and 3.05 Å in M3Zn-S. In the intermediate M3Zn-S,
the two H atoms adsorbed on the surface of the catalyst are close to each other via the
transition state TS4Zn-S to form product P1. The activation energy of the transition state
TS4Zn-S is 9.73 kcal/mol.

For reaction path III, the reactant NH3BH3 is first adsorbed on the catalyst surface
to form M1Zn-S. Then, the H(1) and H(2) atoms, respectively cleaved from the B and N
atoms of NH3BH3, were adsorbed on the surface of the catalyst above the Zn atom of
Co(3) atom to form the intermediate M3Zn-S through the transition state TS5Zn-S with an
activation energy of 28.80 kcal/mol. In this process, the distance between the B atom and
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H(1) atom increases from 1.28 Å to 0.178 Å, and the distance between the H(2) atom and N
atom increases from 1.03 Å to 1.50 Å. The intermediate M3Zn-S through the transition state
TS4Zn-S forms the product P1Zn-S, which is consistent with the process of M3Zn-S→P1Zn-S
in path II.

For reaction path IV, in M1Zn-S, the H atom on the B atom of NH3BH3 and the H atom
on the N atom of NH3BH3 directly generated the H2 via the transition state TS6Zn-S with
the activation energy of 22.15 kcal/mol, in which the distance between the H(1) and H(2)
atoms decreases from 2.53 Å to 1.99 Å in TS6Zn-S.

Table 1. The bond length (Å) parameters of reaction sites in CoPZn-S-catalyzed NH3BH3 hydrogen
evolution process. (Å).

Pathway B-H(1) Co(3)-H(1) N-H(2) Co(3)-H(2) Zn-H(2) H(1)-H(2)

I

M1Zn-S 1.28 1.65 1.03 – – 2.53
TS1Zn-S 1.81 1.47 1.02 – – 2.19
M2Zn-S 2.50 1.58 1.05 – – 2.41
TS2Zn-S 2.61 1.52 1.92 – – 1.72
P1Zn-S 3.77 1.62 3.66 – – 0.88

II

M1Zn-S – 1.65 1.03 3.45 3.03 2.53
TS1Zn-S – 1.47 1.02 3.29 2.66 2.19
M2Zn-S – 1.58 1.05 3.31 2.96 2.41
TS3Zn-S – 1.54 1.51 3.15 2.52 2.27
M3Zn-S – 1.65 2.55 1.60 1.86 2.35
TS4Zn-S – 1.63 3.58 1.59 3.05 1.49
P1Zn-S – 1.62 3.66 1.61 3.86 0.09

III

M1Zn-S 1.28 1.65 1.03 3.45 3.03 2.53
TS5Zn-S 1.78 1.62 1.50 2.78 2.37 2.75
M3Zn-S 3.33 1.63 2.55 1.59 3.05 2.35
TS4Zn-S 3.83 1.63 3.58 1.59 3.05 1.49
P1Zn-S 3.77 1.62 3.66 1.61 3.86 0.88

IV
M1Zn-S 1.28 – 1.03 – – 2.53
TS6Zn-S 2.30 – 1.91 – – 1.99
P1Zn-S 3.77 – 3.66 – – 0.88

The reaction mechanisms of pristine CoP, CoPNi-N, CoPGa-N, or CoPNi-S catalyzed
NH3BH3 are similar to the CoPZn-S catalyst. The details of the configuration changes and
configuration parameters of the reaction process are shown in Supplementary Materials
Figure S2 (CoP), Figure S3 (CoPNi-N), Figure S4 (CoPGa-N), and Figure S5 (CoPNi-S). The
changes in structural parameters are shown in Supplementary Materials Table S1 (CoP),
Table S2 (CoPNi-N), Table S3 (CoPGa-N), and Table S4 (CoPNi-S). The results from the
configuration changes in the reaction process of Figures S2 and S3–S5, can also indicate
that the reaction mechanism of CoP and the other diatom-doped CoP catalysts has small
differences.

The conclusion can be draw from Table 2 that in the reaction of NH3BH3 dehydrogena-
tion catalyzed by CoPZn-S, the control steps of each reaction pathway are different, (CoP,
CoPNi-N, CoPGa-N, CoPNi-S, as shown in Tables S5–S8) which are M2Zn-S→TS2Zn-S (path-
way I), M2Zn-S→TS3Zn-S (pathway II), M1Zn-S→TS5Zn-S (pathway III), and M1Zn-S→TS6Zn-S
(pathway IV), respectively. The energy barrier values of each control step are 39.56 kcal/mol
(pathway I), 42.04 kcal/mol (pathway II), 28.08 (pathway III) kcal/mol and 22.15 kcal/mol
(pathway IV), respectively. According to the comparison of activation energy of each
reaction path control step, the optimal pathway of the NH3BH3 dehydrogenation reaction
is reaction pathway IV, and the energy barrier of the control step is 22.15 kcal/mol.
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Table 2. The each position energies (E), relative energies (Erel) and activation energies (Ea) of
ammoborane reaction catalyzed by CoPZn-S.

Pathway Compound
Erel Ea

kcal/mol kcal/mol

pathway I

M1Zn-S 0.00
TS1Zn-S 22.71 22.71
M2Zn-S −4.83
TS2Zn-S 37.21 39.56
P1Zn-S −29.93

pathway II

M1Zn-S 0.00
TS1Zn-S 22.71 22.71
M2Zn-S −4.83
TS3Zn-S 37.21 42.04
M3Zn-S −29.93
TS4Zn-S −20.20 9.73
P1Zn-S −26.62

pathway III

M1Zn-S 0.00
TS5Zn-S 28.80 28.80
M3Zn-S −29.93
TS4Zn-S −20.20 9.73
P1Zn-S −26.62

pathway IV
M1Zn-S 0.00
TS6Zn-S 22.15 22.15
P1Zn-S −26.62

Considering the energy changes in the five catalysts, the activation energies of CoP,
CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S catalyzing the decomposition of NH3BH3 to
hydrogen at each step are listed in Table 3. In CoP-catalyzed NH3BH3 dehydrogenation,
as shown in Table S5, the activation energy of the optimal control step of the four reaction
pathways is 31.35 kcal/mol. The activation energies of CoPNi-N, CoPGa-N, and CoPNi-S are
27.11 kcal/mol, 23.18 kcal/mol, and 20.67 kcal/mol, respectively. The energy level changes
of the five catalysts in the reaction process are shown in Figure S6 (CoP), Figure S7 (CoPNi-N),
Figure S8 (CoPGa-N), Figure S9 (CoPNi-S), and Figure S10 (CoPZn-S). By comparing the
catalytic activities of CoP, CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S, it is found that the
simultaneous doping of metal and non-metal with CoP is beneficial to the improvement
of NH3BH3 hydrogen evolution activity. A large number of studies on cobalt-phosphide-
modified materials can prove that the dopant of N, S, Ni, Zn, and Ga can improve the
catalytic performance of CoP, which is consistent with our theoretical calculation results.
For instance, Chen et al. [53] reported that Ni-doped CoP could accelerate the process of
hydrogen evolution both in acid and alkaline media, showing excellent electrochemical
stability and durability. Li et al. [54] found N and Mo co-doped heteroatoms can optimize
the morphology and surface structure of CoP. Anjum et al. [55] studied sulfur-doped cobalt
phosphide electrocatalysts and concluded that their performance is better than all-noble-
metal electrocatalysts in alkaline electrolyzers for overall water splitting. Yang et al. [56]
synthesized Zn-doped CoP nanowire arrays for boosting hydrogen generation, and they
found the overpotential of Zn-doped CoP was two times lower than undoped CoP. Zhang
et al. [57] also reported that Ga dopant could enhance the activity of CoP.
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Table 3. The reaction pathway activation energies of five catalysts in pathway I–IV (kcal/mol).

Pathway Compound CoP CoPNi-N CoPGa-N CoPNi-S CoPZn-S

pathway I TS1 21.88 29.15 22.48 20.67 22.71
TS2 51.65 44.87 65.63 45.16 39.56

pathway II
TS1 21.88 29.15 22.48 20.67 22.71
TS3 31.35 35.81 23.18 19.14 42.04
TS4 0.57 5.27 6.67 7.40 9.73

pathway III TS5 36.68 33.45 47.29 47.94 28.80
TS4 0.57 5.27 6.67 7.40 9.73

pathway IV TS6 52.02 27.11 44.19 48.48 22.15

3.3. Performance Calculation of Catalysts

The stable catalyst models of CoP, CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S were
optimized and obtained. The band structure and density of states (DOS) of the stable
catalyst were calculated, as shown in Figure S11. The diagram of band structure is marked
by 1 on the left, and the map of density of states is marked by 2 on the right, in which a1,
b1, c1, d, and e1 represent the band structure diagram of CoP, CoPNi-N, CoPGa-N, CoPNi-S,
and CoPZn-S, respectively. Meanwhile, a2, b2, c2, d2, and e2 represent the map of density of
states of CoP, CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S. The red dashed line in the figure
represents the Fermi level.

The DOS map, which refers to the number of states in a unit frequency interval, is
used to characterize the distribution of electron cloud density near the Fermi level. The
Fermi level is a parameter used to measure the catalytic activity, and its value is the
average of the sum of the highest energy occupied orbital and the lowest energy occupied
orbital. The greater the density of the electron cloud near the Fermi level, the stronger
the catalytic activity of the material. We calculated the total DOS of the five catalysts at
the Fermi level as follows: 37.4 (CoP), 41.9 (CoPNi-N), 42.8 (CoPGa-N), 43.8 (CoPNi-S), and
42.1 (CoPZn-S), indicating that the electron cloud density near the Fermi level of CoPNi-N,
CoPGa-N, CoPNi-S, and CoPZn-S increases compared with pristine CoP. This may be the
reason why CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S are able to improve the activity of
NH3BH3 hydrogen evolution. Sun et al. reported similar studies on polysulfur confinement
and the electrochemical kinetics of amorphous cobalt phosphide-enhanced lithium-sulfur
batteries [58].

In the end, to research the effect of interfacial adsorption on catalytic activity for
the five doped catalysts, the charge density difference (CDD) between NH3BH3 and the
five different catalysts were calculated. CDD is one of the important methods to study
electronic structure. The electron flow direction after the interaction of each segment can be
intuitively obtained, or the change of electron density during the formation of atoms into
molecules, and the nature of chemical bonds can be explored. As shown in Figure 5, blue is
the electron accumulation, while red represents the electron depletion. From Figure 5, we
can realize the charge transfer characteristics of NH3BH3 and the five catalytic adsorption
processes. Compared with undoped CoP, the electronic interaction between doped catalysts
and NH3BH3 is enhanced, which indicates the strong electronic interaction between the
catalyst and NH3BH3, determining the catalytic activity in the adsorption process.
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4. Conclusions

In this paper, metal and non-metal diatom-doped CoP as catalyst was applied to study
hydrogen evolution from NH3BH3 by DFT calculations. The doped catalysts involved in
CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S were formed by replacing Co atoms with Ni, Ga,
or Zn, and P atoms with S or N on the surface of the CoP(101), respectively. First of all, the
adsorption process of NH3BH3 on each catalyst was explored, and the adsorption energy
and electron density maps were obtained. From the values of adsorption energies and
electron density maps, the conclusion can be drawn that each doped type of catalyst has
a strong adsorption effect on NH3BH3, which is activated on the surface of the catalyst.
Then, we further studied the reaction mechanism of the decomposition of NH3BH3 into H2
and NH2BH2 catalyzed by five catalysts (CoP, CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S). In
this investigation, four pathways were designed, and the best reaction pathways for each
catalyst were found. By analyzing the activation energy of the control step, it can be seen
clearly that the energy barrier values of the control step for the five catalysts are Ea (CoP)
> Ea (CoPNi-N) > Ea (CoPGa-N) > Ea (CoPZn-S) > Ea (CoPNi-S). According to the energy
barrier results, the activity of the five catalysts should be CoPNi-S > CoPZn-S > CoPGa-N >
CoPNi-N. Finally, the structural performance of the catalyst was investigated, and the band
structure and DOS of the CoPNi-N, CoPGa-N, CoPNi-S, and CoPZn-S catalysts were calculated.
The total DOS of the five catalysts at the Fermi level are 37.4 (CoP), 41.1 (CoPNi-N), 42.8
(CoPGa-N), 43.8 (CoPNi-S), and 42.1 (CoPZn-S). The study results we obtained have revealed
the relationship between the physical properties of doped CoP materials and their catalytic
activities, which provides theoretical support for a large number of high-activity cobalt
phosphide materials doped with non-metals (N, S) and metals (Ni, Ga, Zn) and references
for the future study of highly active CoP catalytic materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238206/s1, Figure S1: Stable structures and electron
density maps of NH3BH3 absorbed on the surface of four different kinds of diatom-doped CoP
catalysts (CoPNi-N, CoPGa-N, CoPNi-S and CoPZn-S); Figure S2: General flow chart of NH3BH3 hydro-
gen production reaction on CoP (101) surface; Figure S3: General flow chart of NH3BH3 hydrogen
production reaction on CoPNi-N (101) surface; Figure S4: General flow chart of NH3BH3 hydrogen
production reaction on CoPGa-N (101) surface; Figure S5: General flow chart of NH3BH3 hydrogen
production reaction on CoPGa-N (101) surface; Figure S6: The energy profiles of NH3BH3 dehydro-
genation reaction catalyzed by CoP; Figure S7: The energy profiles of NH3BH3 dehydrogenation
reaction catalyzed by CoPNi-N; Figure S8: The energy profiles of NH3BH3 dehydrogenation reaction
catalyzed by CoPGa-N; Figure S9: The energy profiles of NH3BH3 dehydrogenation reaction catalyzed

https://www.mdpi.com/article/10.3390/molecules27238206/s1
https://www.mdpi.com/article/10.3390/molecules27238206/s1
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by CoPGa-N; Figure S10: The energy profiles of NH3BH3 dehydrogenation reaction catalyzed by
CoPGa-N; Figure S11: Schematic diagram of energy band structure(EBS) and density of states(DOS).
(subscript 1 is EBS, subscript 2 is DOS, (a), (b), (c), (d), (e) refer to CoP, CoPNi-N, CoPGa-N, CoPNi-S,
CoPZn-S respectively); Table S1: Bond lengths (nm) of various sites in the reaction of NH3BH3 cat-
alyzed by CoP; Table S2: Bond lengths (nm) of various sites in the reaction of NH3BH3 catalyzed
by CoPNi-N; Table S3: Bond lengths (nm) of various sites in the reaction of NH3BH3 catalyzed by
CoPGa-N; Table S4: Bond lengths (nm) of various sites in the reaction of NH3BH3 catalyzed by
CoPNi-S; Table S5: The each position energies (E), relative energies (Erel) and activation energies (Ea)
of ammoborane reaction catalyzed by CoP; Table S6: The each position energies (E), relative energies
(Erel) and activation energies (Ea) of ammoborane reaction catalyzed by CoPNi-N; Table S7: The each
position energies (E), relative energies (Erel) and activation energies (Ea) of ammoborane reaction
catalyzed by CoPGa-N; Table S8: The each position energies (E), relative energies (Erel) and activation
energies (Ea) of ammoborane reaction catalyzed by CoPNi-S.
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