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Abstract: A series of Ni-MOF materials were synthesized via a simple hydrothermal method and
can be employed as electrodes for supercapacitors (SCs). Different temperatures were selected to
unveil the effect of temperature on the formation, structure, and electrochemical performance of
Ni-MOF-x (x = 60, 80, 100, and 120). Ni-MOF-80 possessed a larger specific surface area with a
cross-network structure formed on its surface. The synthesized Ni-MOF electrode delivered a specific
capacity of 30.89 mA h g−1 when the current density reached 1 A g−1 in a three-electrode system. The
as-fabricated Ni-MOF materials could be further designed and are expected to deliver satisfactory
performance in practice.

Keywords: MOF; temperature; supercapacitor

1. Introduction

Metal–organic frameworks (MOFs) are material formed by strong bonds connecting
transition metal ions and organic ligands with periodic network construction. Therefore,
MOFs can be fabricated into a variety of products, with different geometry and dimensions,
by changing the collocation of the metal ions and linkers This material has excellent
strength because of its structure porosity and large specific area [1–3]. MOF materials have
been applied in various fields dealing with gas adsorption, seawater desalination, and
biomedicine [4–7]. Furthermore, MOF materials have revealed great potential in electric
energy storage applications, including batteries and SCs [8].

Supercapacitors (SCs) have attracted wide attention as a type of electrochemical
energy storing device since the 1990s [9–12]. Combining the advantages of batteries and
conventional capacitors, SCs could fill the gap between the above two energy storage
devices. In addition to energy and power density, the service life is also an important
criterion to determine the performance of an energy storage system. SCs have higher
charge and discharge rates and a longer cycling life because of the non-Faraday mechanism.
Therefore, materials with a larger specific surface area have the potential to be made into
electrode sheets. Conventional electrode raw materials contain transition metal oxides,
conducting polymers, and carbon-based materials [13–16]. The mentioned materials have
both advantages and disadvantages. Carbon materials are faced with the problem of low
energy density, and conductive polymers often suffer from expanding and disintegrating
during the charge–discharge reaction, and metal oxides have poor conductivity and a
relatively expensive price [17]. As a multifunctional energy storage material, MOFs can be
applied to the application of SCs [18–20], and they are an attractive material for pseudo-
capacity because of their large number of available metal redox sites, large surface area,
adjustable aperture, and scaffold structure [21,22].

There are many choices of metal sources for MOF materials, such as Mo, Fe, Co, Ni,
and Cu [23–27]. Among them, Ni-MOF has attracted much attention in electrochemical
energy storage applications containing lithium-ion batteries (LIBs) and SCs due to its great
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redox ability. As a member of the transition metals, nickel can offer redox-active sites and
own different oxidation states. When participating in redox reactions, Ni-MOFs can be more
active than other MOFs and show excellent electrochemical properties. Therefore, Ni-MOFs
as supercapacitor electrodes have shown considerable prospects [28–30]. Two-dimensional
(2D) and three-dimensional (3D) micro-/nanosized MOFs have received much attention for
supercapacitor applications because of their large specific surface areas and low electrical
resistance [31–35]. Cuboid Ni-MOF [36], nanoflower-like Ni-MOF [37], accordion-like
Ni-MOF [38], and nanosheet-assembled Ni-MOF micro flowers [32] have been prepared
through a facile hydrothermal method. For example, Wang et al. synthesized a novel moss-
like 3D Ni-MOF self-assembled by numerous nanorods with different thicknesses and
lengths. The 3D Ni-MOF had a maximum specific capacity of 638 C g−1 at 0.5 A g−1 [39].
Kale obtained a nanoflower-like Ni-MOF with a high specific capacity of 467 C g−1 at
1 A g−1 in an aqueous 6 M KOH electrolyte [37]. The hydrothermal reaction time played a
critical role in the morphology and structure of Ni-MOF [40]. Manikandan et al. fabricated
Ni-MOF by a hydrothermal method with a reaction time of 30 h. The obtained product
exhibited a high specific capacitance of 1498.6 F g−1 at 1 A g−1 [41].

The electrochemical performance of SC is related to the morphology or structure and
composition of the electrode materials [42,43]. Synthetic conditions containing elemental
metals, organic linkers, molar ratios, solvents, and technological parameters can control the
morphology and porosity of the MOF [44,45]. The solvothermal method is a synthetic way
that the powder of reactants is dissolved in a solvent and recrystallized in a sealed pressure
vessel. The phase, size, and shape of the product can be well controlled by this method.
In the synthesis process of MOF, in addition to the above conditions, the temperature in
the solvothermal method plays an important role. Supramolecular isomerism is quite
easy to be formed for central metal ions with flexible and diverse coordination patterns
and organic ligands with multiple coordination sites. Any reaction requires a certain
temperature to obtain energy and overcome the energy barrier, and fabricating MOF is no
exception. Secondly, the properties of the solvent will change at different temperatures;
for example, the solubility of the reactants varies at different temperatures [46–49]. The
reaction temperature was adjusted quite often when synthesizing the MOF compounds by
the hydrothermal or solvothermal synthesis methods.

In this work, we systematically studied the influence of temperature on the synthesis
process of Ni-MOF. The experiment results indicate that solvothermal temperature can
significantly influence the structure and properties of the produced MOF. The product
synthesized at 60 ◦C exhibited a hexahedral morphology, and fragments were formed
on the surface. When the solvothermal temperature was 80 ◦C, the cross-linked network
construction appeared on the surface of hexahedral Ni-MOF clearly. The surface of Ni-MOF
obtained at 100 ◦C became smooth and formed a compact structure. According to the
three-electrode test system, the Ni-MOF-80 showed the best performance, which could
be attributed to the excellent morphology and structure. The Ni-MOF-80 with a unique
cross-linked morphology structure had an abundant hierarchical interspace and a high
specific surface area, which were beneficial to the transport of electrons and ions and
provided more exposed active sites to achieve an enhanced electrochemical performance as
electrode material. In addition, this novel porous structure also had considerable potential
in catalysis and gas adsorption.

2. Results and Discussion

A series of Ni-MOF materials were synthesized at different temperatures by a facile
hydrothermal method. Correspondingly, the samples Ni-MOF-x (x represents a hydrother-
mal temperature) were named as Ni-MOF-60, Ni-MOF-80, Ni-MOF-100, and Ni-MOF-120
due to the reaction temperature. The microstructure of the products was amplified under
scanning electron microscope (SEM). In Figure 1, the fabricated Ni-MOF is a hexagonal con-
struction with an average thickness of about 500 nm. After further magnification, it could
be clearly seen that the surface of Ni-MOF appears as a cross-linked network construction.
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According to Figure S1, the whole growth process of hexagonal Ni-MOF was formed by a
gradual stacking of sheets by controlling the dosages of reactants.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 10 
 

 

amplified under scanning electron microscope (SEM). In Figure 1, the fabricated Ni-MOF 
is a hexagonal construction with an average thickness of about 500 nm. After further mag-
nification, it could be clearly seen that the surface of Ni-MOF appears as a cross-linked 
network construction. According to Figure S1, the whole growth process of hexagonal Ni-
MOF was formed by a gradual stacking of sheets by controlling the dosages of reactants. 

 
Figure 1. SEM images of Ni-MOF produced at different reaction temperatures, (a1–a3) Ni-MOF-60; 
(b1–b3) Ni-MOF-80; (c1–c3) Ni-MOF-100, and (d1–d3) Ni-MOF-120. 

After comparing the XRD spectrums of Ni-MOFs in Figure 2a, the patterns of as-
synthesized samples and reference samples were consistent, indicating that the crystal 
structures of the samples were the same [50]. The synthesized hexagonal Ni-MOF presents 
a 3D-layered structure in Figure 2b. The 2D planar layer is composed of divalent nickel 
ion and partially deprotonated H3BTC. 4,4′-bipyridine acts as the ligand to connect the 2D 
layer to form a 3D porous skeleton construction. The specific morphology of Ni-MOF can 
be observed from Figures 2c and S2. The top and bottom hexagonal planes were the (001) 
crystal plane, and the other planes were the (010), (1ത10), and (100) crystal planes. The (001) 
crystal plane was the largest revealed surface, which helped to speed up the electron 
transport and diffusion of the electrolyte solution, so that the 4,4′-bipyridine–nickel chain 
connected to each 3D plane created conductive paths for the electrons perpendicular to 
the (001) crystal plane. According to Figure 1b, the cross-linked porous network structures 
were also formed on the crystal planes. These structures optimized the diffusion and stor-
age of the electrolyte solution, which improved the performance of the electrode materials 
in the SC systems. The N2 adsorption/desorption isotherms and the pore size distribution 
curves of a series of Ni-MOFs are shown in Figure S6. The obtained materials showed an 

Figure 1. SEM images of Ni-MOF produced at different reaction temperatures, (a1–a3) Ni-MOF-60;
(b1–b3) Ni-MOF-80; (c1–c3) Ni-MOF-100, and (d1–d3) Ni-MOF-120.

After comparing the XRD spectrums of Ni-MOFs in Figure 2a, the patterns of as-
synthesized samples and reference samples were consistent, indicating that the crystal
structures of the samples were the same [50]. The synthesized hexagonal Ni-MOF presents
a 3D-layered structure in Figure 2b. The 2D planar layer is composed of divalent nickel
ion and partially deprotonated H3BTC. 4,4′-bipyridine acts as the ligand to connect the
2D layer to form a 3D porous skeleton construction. The specific morphology of Ni-MOF
can be observed from Figures 2c and S2. The top and bottom hexagonal planes were the
(001) crystal plane, and the other planes were the (010), (110), and (100) crystal planes. The
(001) crystal plane was the largest revealed surface, which helped to speed up the electron
transport and diffusion of the electrolyte solution, so that the 4,4′-bipyridine–nickel chain
connected to each 3D plane created conductive paths for the electrons perpendicular to the
(001) crystal plane. According to Figure 1b, the cross-linked porous network structures were
also formed on the crystal planes. These structures optimized the diffusion and storage
of the electrolyte solution, which improved the performance of the electrode materials in
the SC systems. The N2 adsorption/desorption isotherms and the pore size distribution
curves of a series of Ni-MOFs are shown in Figure S6. The obtained materials showed
an obvious combination of Type I and Type IV isotherms. The curves increased sharply
at low pressures, almost reaching the horizontal plateau, which verified the presence of
micropores (Type I). The presence of a hysteresis loop at higher pressures confirmed the
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presence of mesopores. Such an isotherm shape was designated as Type IV, corresponding
to the presence of some mesopores in the microporous solids. The specific surface areas of
Ni-MOFs are summarized in Table S1; Ni-MOF-80 showed the largest specific surface area
up to 612 m2/g.
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Figure 2. (a) X-ray diffraction patterns of Ni-MOF-60, Ni-MOF-80, Ni-MOF-100, and Ni-MOF-120;
(b) Schematic diagram of Ni-MOF, Ni: green, C: gray, O: orange, and N: blue; (c) Diagram of MOF
single-crystal figure.

According to Figure 3a, the products consisted of Ni, O, N, and C elements by analyz-
ing the XPS spectrum of these samples. In the case of Ni-MOF-60, four peaks can be seen in
the Ni 2p spectrum in Figure 3b, and the principal spin orbital peaks are at binding energies
of 872.8 and 855.2 eV, and the locations of the satellite peaks are at binding energies of
879.2 and 860.5 eV. The XPS spectrum indicates that the nickel element mainly existed in
the form of a bivalent in the produced Ni-MOF. The valence of Ni of the Ni-MOFs formed
at different temperatures did not shift significantly. The fitted C 1s, N 1s, and O 1s spectra
are shown in Figures S3–S5. For Ni-MOF, the peaks located at 288.2, 285.3, and 284.5 eV are
related to the O–C=O, C–O, and C=C–C bonds resulting from the organic ligands (4,4′-Bipy
and H3BTC) [51]. The fitted N 1s are shown in Figure S4. The binding energies of the peaks
are 399.4 and 398.8 eV arising from N-Ni and bipyridine-N [52].
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Then, the properties of the product as a working electrode were studied. The CV
curves of all samples in Figure S7 clearly showed a pair of redox peaks, which revealed
that the Faraday behavior of the electrode appeared in the reaction. As the scanning speed
accelerated, the peak current and curve area both increased. The above phenomenon
indicated that the electrode showed excellent electrochemical reversibility and charge
storage performance. It was the redox reaction of nickel in different valence states in the SC
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system that led to the appearance of this Faraday feature. In addition, the redox reaction of
the following equation could be used to describe the charge storage mechanism:

Ni(II)s + OH− ↔ Ni(II)(OH)ad + e− (1)

Ni(II)(OH)ad ↔ Ni(III)(OH)s + e− (2)

Figure S8 shows the GCD curves of the four samples from 1.0 A g−1 to 5.0 A g−1.
The charge–discharge voltage recorded during the electrode reaction showed a similar
linear relationship with the increase in time, which all showed pseudo-capacity behavior.
As the current density gradually increased, the observed charge–discharge curves still
revealed a symmetrical curve pattern, and each curve had a typical discharge platform
because of the redox reaction in the test process. When the current applied to the electrodes
increased, the surrounding active substances attracted abundant ions. Therefore, the ion
concentration at the interface between the active substance and the electrolyte decreased.
Then, the diffusion velocity of the ions in the electrolyte was lower than the charging and
discharging speeds. As a result, the electrode liquid diffused through the electrode interface
resulting in a polarization effect. The capacity of the electrodes obviously decayed at a high
current density.

The performance of Ni-MOFs can be observed in Figure 4a. Compared with other
samples, Ni-MOF-80 had the highest surface area and could be used more efficiently to
accommodate large amounts of electric charge to obtain a higher capacity. Then, the specific
capacity (Cs, mA h g−1) of the electrode can be calculated in terms of the following equation:

CS =
2I×

∫
V dt

m×∆V
(3)

I (mA) represents the current density;
∫

V dt is on behalf of the integrated area under
the discharge curve; m (g) represents the load mass of the sample coated on the electrode,
and ∆V (V) displays the value of the voltage window [53,54]. The specific rate performance
of the electrode itself can be observed and analyzed through the obtained results. The
electrochemical properties of the Ni-MOF electrodes at the current density in the range
of 1.0–10.0 A g−1 are shown Figure 4b. The charge storage capacities of Ni-MOF-80 were
30.89, 27.83, 27.09, 25.83, and 24.17 mA h g−1 at different current densities. The specific
capacity of the electrode was inversely proportional to the current density. When the current
intensity increased, the specific capacity of the electrode decreased. The cycling stable
ability of the prepared samples was revealed by the GCD endurance test; when the current
density was 5 A g−1 (Figure 4c), the capacity of all Ni-MOF electrodes remained above
75% after 2000 cycles, indicating that the electrodes had good electrochemical reversibility
in the charging and discharging processes. Among them, Ni-MOF-80 still had the best
performance and maintained the highest capacity. Electrochemical impedance spectroscopy
(EIS) was carried out to further investigate the electron transfer and ion diffusion at the
electrode/electrolyte interface, and the Nyquist plot is shown in Figure S9. The Ni-MOF-80
nanocomposites had preferably steep slopes in the low-frequency region of the Nyquist
plots, which indicated that Ni-MOF-80 showed faster ion transportation and electrolyte
diffusion. Comparing various MOF-based electrode materials for the SC applications
(Table S2), it was noted that the supercapacitor performance of the Ni-MOF-80 needed to be
improved in future. The as-obtained material had great potential with its excellent structure.
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3. Materials and Methods

Nickel (II) nitrate hexahydrate (Ni(NO3)2·6H2O, 0.1455 g, 0.5 mmol), trimesic acid
(H3BTC, 0.105 g, 0.5 mmol), and 4,4-Bipyridine (4,4′-bipy, 0.0780 g, 0.5 mmol) were dis-
solved in 10 mL N, N-Dimethylformamide (DMF) and then thoroughly stirred at room
temperature until the solution became clarified. Then, the products were synthesized by a
solvothermal method at 60 ◦C, 80 ◦C, 100 ◦C, and 120 ◦C for 24 h in drying oven. After the
metal shells had cooled to room temperature, the obtained green products in Teflon liners
were absterged by DMF, ethanol, and deionized water. In the end, the obtained samples
were put in vacuum oven at 50 ◦C and kept for 24 h. The products were marked according
to the reaction temperature.

A CHI760E electrochemical workstation was utilized for recording electrochemical
performance, via cyclic voltammetry, galvanostatic charge–discharge, and electrochemical
impedance spectroscopy of fabricated Ni-MOF in conventional three-electrode system at
3 M KOH electrolyte. The three-electrode system consisted of as-synthesized Ni-MOF-
coated Ni foam, Hg/HgO electrode and platinum wire as working electrode, reference
electrode, and auxiliary electrode, respectively. The loading mass of Ni-MOF on nickel
foam was around 2 mg, and efficient surface area was around 1 × 1 cm2. CV curves at
different scanning rates (5–100 mV s−1) were obtained at a constant voltage. GCD curves
were measured by changing the current density from 1.0 to 5.0 A g−1 at a constant voltage.
EIS spectra were measured at frequencies ranging from 0.1 Hz to 100 kHz.

4. Conclusions

In this work, we adopted an easy solvothermal method to fabricate a series of Ni-MOF
materials by controlling the reaction temperatures. The morphologies of the Ni-MOF
materials synthesized under different solvothermal temperatures were closely related with
the electrochemical property. The cross-linked networking structure was generated on
the surface at 80 ◦C. The Ni-MOF-80 with a larger specific surface area showed a better
supercapacitor performance than other samples. When worked in the three-electrode
system at the current density of 1 A g−1, Ni-MOF-80 delivered a specific capacity of
30.89 mA h g−1. Further, the cross-linked hexagonal Ni-MOF-based materials can be
expected to be used in other applications, such as efficient gas separation, water treatment,
hydrogen evolution reaction, etc.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238226/s1. Figure S1: SEM images of samples
fabricated at different dosages of reagents; Figure S2: The related plane images of the Ni-MOF;
Figure S3: C 1s spectra of Ni-MOF-60, Ni-MOF-80, Ni-MOF-100, and Ni-MOF-120; Figure S4: N 1s
spectra of Ni-MOF-60, Ni-MOF-80, Ni-MOF-100, and Ni-MOF-120; Figure S5: O 1s spectra of Ni-MOF-
60, Ni-MOF-80, Ni-MOF-100, and Ni-MOF-120; Figure S6: BET curves and the pore size distribution
curves of a series of Ni-MOF, (a) Ni-MOF-60, (b) Ni-MOF-80, (c) Ni-MOF-100, and (d) Ni-MOF-120;
Figure S7: CV curves of a series of Ni-MOF in three-electrode system, (a) Ni-MOF-60, (b) Ni-MOF-80,
(c) Ni-MOF-100, and (d) Ni-MOF-120; Figure S8: GCD curves of a series of Ni-MOF in three-electrode
system, (a) Ni-MOF-60, (b) Ni-MOF-80, (c) Ni-MOF-100, and (d) Ni-MOF-120; Figure S9: Comparative
EIS images of Ni-MOF-60, Ni-MOF-80, Ni-MOF-100, and Ni-MOF-120; Table S1: BET surface of
Ni-MOF-60, Ni-MOF-80, Ni-MOF-100, and Ni-MOF-120,; Table S2: Various MOF materials for
supercapacitor application reported in previous work. Notably, the references [55–63] are available
for Table S2 in the Supplementary Materials.
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