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Abstract: Tannins are polyphenols characterized by different molecular weights that plants are able
to synthetize during their secondary metabolism. Macromolecules (proteins, structural carbohydrates
and starch) can link tannins and their digestion can decrease. Tannins can be classified into two
groups: hydrolysable tannins and condensed tannins. Tannins are polyphenols, which can directly or
indirectly affect intake and digestion. Their ability to bind molecules and form complexes depends
on the structure of polyphenols and on the macromolecule involved. Tannins have long been known
to be an “anti-nutritional agent” in monogastric and poultry animals. Using good tannins’ proper
application protocols helped the researchers observe positive effects on the intestinal microbial
ecosystem, gut health, and animal production. Plant tannins are used as an alternative to in-feed
antibiotics, and many factors have been described by researchers which contribute to the variability
in their efficiencies. The objective of this study was to review the literature about tannins, their effects
and use in ruminant nutrition.

Keywords: tannins; ruminants

1. Introduction

Tannins are polyphenolic compounds and the secondary metabolites of higher plants [1,2].
They are found naturally in the structures of plants and their molecular weight can vary
between 300 and 5000 daltons. Higher-plant secondary metabolites have a significant
polyphenolic structure which does not justify the specifications for placement in the tannin
classification. Plant tannins have a phenolic effect (e.g., blue color, iron (III) chloride)
and as a result of water-soluble polyphenols with molarities ranging from 300 to 3000,
catalyzing alkaloids, gelatins, and other proteins [3]. Tannins are a diverse group of
secondary plant metabolites that can be dissolved in polar solutions and are differentiated
from polyphenols by their ability to dissolve in polarized solutions [4]. These compounds
appear to have no function in plant metabolisms such as biosynthesis and energy exchange.
Still, they are responsible for various biological activities. Tannins can prevent ruminal
nitrogen metabolism by decreasing proteolytic bacteria [5,6]. Moreover, they can reduce the
ruminal bio-hydrogenation process and increase the flow of unsaturated fatty acids to the
duodenum [7]. Additionally, phenolic compounds and tannins, through selective activity
on ruminal bacteria, can alter the process of ruminal bio-hydrogenation and increase the
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amount of conjugated linoleic acid in meat and milk production [8], but this effect is dosage-
dependent. As a result, tannins improve the efficiency of nitrogen use by retaining more
nitrogen in the body [6,9,10].

Ruminants, both intended for meat and milk production, are of significant economic
interest in the world, with different production systems. Moreover, their production has
been based on tannin-rich feed (Table 1) since ancient times, and actually, whether an
extensive or intensive technique is applied, forages rich in tannins (Table 2) or rations with
the addition of vegetable co-products rich in tannins (Table 3) are used in order to obtain
positive effects on production, quality and animal welfare [11]. As it is clear, the potential
sources of tannins for ruminants are plentiful.

Table 1. Potential tannins’ source for animal feeding reported with their scientific name, common
name, part of the plant richest in tannins and tannins’ chemical profile. Traditional and ancient
vegetable tannins source used for ruminants [12–15].

Scientific Name Common Name Part of the Plant Main Tannins

Acacia mearnsii mimosa, wattle barks condensed
Betula spp birch barks condensed

Caesalpinia coriaria divi-divi Pods hydrolizable

Castanea sativa chestnut,
sweet chestnut wood hydrolizable

Coriaria myrtifolia
mediterrenean coriaria

(emborrachacabras, redoul,
roldor, rodor)

leaves condensed/hydrolizable

Cotinus coggygria (syn Rhus cotinus) smoke tree leaves hydrolizable
Larix larch barks condensed

Mirtus communis myrtle leaves hydrolizable
Picea abies norway spruce barks condensed

Pinus halepensis Aleppo pine barks condensed
Quercus aegilops valonea oak, Turkish oak acorn cups hydrolizable
Quercus coccifera garouille husk of root hydrolizable
Quercus infectoria Aleppo oak galls hydrolizable

Quercus ilex holm oak barks condensed/hydrolizable
Quercus spp. (Q. ilex, Q. robur,

Q. petraea, Q. pyrenaica) oak barks condensed/hydrolizable

Quercus suber cork oak inner bark condensed/hydrolizable
Rhus coriaria sumac leaves hydrolizable

Salix spp. willow narks condensed
Schinopsis balansae, S. lorentzii quebracho wood condensed

Terminalia chebula myrabolans fruits hydrolizable

Table 2. Potential tannins’ source for animal feeding reported with their scientific name, common
name, part of the plant richest in tannins and tannins’ chemical profile. Fodder and plants tannins
source used for ruminants [15–50].

Scientific Name Common Name Part of the Plant Main Tannins

A. mearnsii black wattle leaves condensed
A. nilotica gum Arabic tree leaves condensed
C. sativa hemp leaves/flowers hydrolizable
J. regia common walnut leaves/flowers hydrolizable
L. corniculatus bird’s-foot trefoil leaves/flowers condensed
L. pedunculatus marsh bird’s-foot trefoil leaves/flowers condensed
P. abies European spruce leaves condensed
P. granatum pomegranate fruit hydrolizable
Q. robur European oak leaves hydrolizable
R. coriaria tanner’s sumach leaves condensed
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Table 2. Cont.

Scientific Name Common Name Part of the Plant Main Tannins

R. fruticosus European blackberry fruit hydrolizable
S. lorentzii red quebracho fruit condensed/hydrolizable
S. balansae willow-leaf red quebracho fruit condensed

T. chebula black- or chebulic
myrobalan fruit hydrolizable

V. vinifera common grape vine fruit condensed

Table 3. Potential tannins’ source for animal feeding reported with their scientific name, common
name, part of the plant richest in tannins and tannins’ chemical profile. Vegetal industry co-products
tannins source used for ruminants [49,51–72].

Scientific Name Common Name By-Product Main Tannins

Cupressus lusitanica Mexican cedar steam distillation residues condensed/hydrolizable
Cistus ladanife labdanum steam distillation residues condensed/hydrolizable
Coffea arabica coffee pulp condensed
P. Granatum pomegranate peels condensed/hydrolizable
Vitis vinifera red grape variety pomace condensed
Castanea sativa chestnut shells condensed/hydrolizable
Camellia sinensis L. tea leaves condensed/hydrolizable
Myrtus communis common myrtle leaves condensed/hydrolizable
Endopleura uchi yellow uxi bark condensed/hydrolizable
Picea abies Norway spruce bark condensed
Picea abies spruce bark condensed/hydrolizable
Eucalyptus globulus blue gum leaves condensed/hydrolizable
Pinus taeda loblolly pine bark condensed/hydrolizable
Persea americana avocado peel/pulp condensed
Musa acuminata banana peel/seed/pulp condensed
Psidium guajava guava peel/seed/pulp condensed
heterophyllus
artocarpus jackfruit peel/seed/pulp condensed

Dimocarpus longan longan peel/seed/pulp condensed
Mangifera indica mango peel/seed condensed
Olra europae olive leaves hydrolizable
Cynara cardunculus artichoke leaves condensed
Citrus limon lemon pomace condensed
Brassica napus canola pulp condensed

Several factors can modulate tannins effect as negative, positive or indifferent. This
can be due to their different chemical composition or type, the administered quantity, the
animal species involved and the diet to which tannins are added [73]. For these reasons,
there are many aspects that could have affected the apparently inconsistent findings that
can be found in literature. They are characterized by great chemical structural diversity,
with results that cannot be easily extrapolated from one type of tannin to others [74].

Tannins may have important effects, both adverse and beneficial, on animal perfor-
mance and on their production quality, due to chemical structure but also to their content in
the diet; both aspects are intrinsically linked to animal physiology [75,76]. Some adverse ef-
fects may be listed as a reduction of feed intake, fiber digestibility and consequently animal
performance [77], but some other researchers showed how tannins may enhance protein
utilization, control internal parasites and act also on production (growth performance, milk,
meat, wool) [75,78] and animal welfare [79,80]. Moreover, it has been shown that they may
play an important role in improving antioxidant and immunity status of animals [57,81].

Recent studies have seen an increasing interest in this topic, minding that they can be
used in nutritional strategies, but limits on their practical application are linked to potential
adverse effects.
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With a focus on ruminants, the main objective of this paper is to review the current
knowledge about dietary tannins use and effects on animal production and performance
(both milk and meat). Of course, tannins’ chemistry and their chemical properties will
be discussed.

2. Classification of the Tannins

The tannins have several structures that can provide a systematic classification sys-
tem with their properties and chemical structural basis for further analysis [82,83]. Many
tannins can be hydrolyzed, and these are classified as “hydrolyzable tannins” (HT). Poly-
meric proanthocyanidins and non-hydrolyzable oligomeric were classified as condensed
tannins [84,85]. The ‘HT’ included both the gallotannins and the ellagitannins [86,87]. Due
to a different C–C interaction for polyphenolic waste and polyol, ellagitannins may not be
hydrolyzed but classified as HT for specific purposes. In addition to hexahydroxydiphenoyl
(HHDP), the first tannins were described in 1985 as having the C-glycosidic catechin units
(the structural and functional component of isomeric HT). Because the only component of
the C–C relationship between their catechin and glycosidic entities is partially hydrolyzable,
these tannins were previously categorized as “non-classified.” The terms ‘complex tannins’
and flavanoellagitannins have been established over the following years to properly merge
these ‘non-classified tannins’ [88,89]. Hydrolyzable and non-hydrolyzable or condensed
tannins are the two types of tannins that can be found. However, they are not structurally
diverse [90,91]. Tannins have catechin units flavanotannins or condensed flavonoids that
characterize the tannins’ [92,93]. Paired flavan-3-ol (catechin) units are used in condensed
tannins—polymer flavanotannins (oligomeric and polymeric proanthocyanidins). On a
structural level, tannins are split into four categories: gallotannins, ellagitannins, compli-
cated tannins, and condensed tannins (Figure 1) [94,95].

(1) Gallotannins tannins are derivatives of diverse polyol, catechin, or triterpenoid units
of galloyl or their meta-depends [98].

(2) Ellagitannins tannins are two C-C galloyls and have no glycosidically-related catechin
unit attached to one another [99].

(3) Complex tannins are bound glycosidically by a catechin component of gallotannine
or ellagitannin [100].

(4) Condensed tannins are all proanthocyanidins oligomeric and polymeric formed by
the similarity between C-4 and one C-8 or C-6 of one catechin and the next catechin
monomeric [101].
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3. Chemical Properties of Tannins

Tannins are polyphenolic compounds also known as tannic acids. It is the name given
to amorphous (amorphous) substances in the form of a light yellow-brown powder, flake
or spongy mass obtained from plants. Tannins are solid compounds in phenol structure
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and are soluble in water. They are usually found in the roots, wood, bark, leaves and fruits
of plants [102,103].

Tannins are chemically divided into hydrolyzable tannins (HT) and condensed tannins
(CT). The HT yield water-soluble compounds such as gallic acid, pyrocatechic acid and
sugar as hydrolysis in the presence of an acid or enzyme. It is slightly soluble in water, well
soluble in alcohol and acetone. One of the best-known examples of HT is gallotanins. The
CT, which are a much larger group, cannot be hydrolyzed. They form dark red insoluble
compounds called flobafen with strong acids or some oxidizing agents against heat [102].

Hydrolyzable tannins contain hydroxyl groups esterified with carbohydrate (usually
D glucose) and phenolic groups in the center. They decompose into carbohydrates and
phenolic acids as a result of hydrolysis by weak acids, weak bases, hot water or enzymes
such as tannase [104]. They are usually found in fruit seeds, in low amounts. They are
degraded by the enzymatic functions of the ruminal microflora and by gastric digestion and
turn into low molecular weight, absorbable toxic metabolites. As a result of degradation,
gallic acid, pyrogallol, phloroglucinol and finally acetate and butyrate are formed as a
result of successive enzyme activities [104,105].

Proanthocyanidins, also known as condensed tannins due to their chemical structure,
are the most common tannin group found in trees and shrubs used as fodder plants [103].
These do not carry carbohydrates in the core; they are oligomers or polymers of carbon-
carbon bonded flavonoid units (e.g., flavan-3-ol) resistant to degradation by hydroly-
sis [105]. Depending on the chemical structure and degree of polymerization of proantho-
cyanidins, their solubility in aqueous organic solvents varies. The term proanthocyanidin
derives from the acid that catalyzes the oxidation reaction that results in the formation of
red anthocyanidins by heating proanthocyanidins in acidic alcohol solutions. The most
well-known anthocyanidins produced are cyanidin and delphinidin. Catechic tannins,
which are not hydrolyzed by the action of enzymes or dilute acids, are the condensation
product of catechin and turn into pyrocatechol by dry distillation [106].

The high affinity of protein tannins depends on how many phenolic compounds bind
many places with carbonyl peptide groups [107–109].

The formation of these complexes is specific to the level of affinity between the partici-
pating molecules, which are based on each tannin’s chemical characteristics and the protein
concerned [110–112]. For tannins, their relatively high molecular weight and chemical
structure flexibility are some of the factors that support complexes’ development [113–115].
In addition, it was reported that the addition of condensed tannin (CT) extract to a forage-
based diet can contribute to the decrease in CH4 emission by ruminants [10,82,116,117].
However, many types of condensed tannin with different biological activities, such as
CH4 emissions, may impact animal responses [115]. The importance of the condensed
tannin source and the dietary level must be understood for a better understanding of CH4
emission by ruminants and for the implementation of effective feeder methods that take
benefit of such implications.

The small-statured and hydrophobic proteins have an open, flexible structure and are
rich in proline [118–120]. Generally, tannins and proteins have very unstable bonds, which
break and re-form continually. Kumar and Singh [121] showed that the formation of these
structures might well involve four types of bonds.

The hydrogen linkages (reversible and pH-dependent) between phenolic hydroxyl
radicals and amide oxygen in peptide-protein bonds are the same. The aromatic ring of
the phenols interacts hydrophobically with hydrophobic regions of the protein (reversible
and dependent on pH). By forming ionic (reversible) bonds between the phenolic ion and
the cationic region of the protein (exclusive to HT). Covalent (irreversible) connection to
quinones with oxidation and subsequent condensation of polyphenols with nucleophile
protein groups. Hydrogen bonds were involved in forming tannin protein complexes for a
long period, but later research demonstrated the significance of hydrophobic interactions.
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4. Effect of Tannins on Ruminant Nutrition

It is important to monitor the feed consumption, the structure and molecular weight
of the compound, and the physiology of consuming species to understand the beneficial
and damaging impact of tannins on ruminants [116,122]. Distinct analytical methods,
especially different standards, may yield different results (e.g., Equitrac, tannic acid, cate-
chin, cyanidin, delphinidin, or the plant itself internal standards, etc.) [123]. Tannins are
abundant in forages, trees, shrubs, and legumes often ingested by ruminants, particularly
condensed tannins. As a result, the effects of condensed tannin on ruminant nutrition,
health, and productivity have been extensively researched [73,115,124]. The beneficial or
adverse effects of condensed tannins, particularly the concentration of crude protein (CP)
in the diet, on ruminants are based on their amount, type, chemical structure, and feed
composition [114] (Figure 2).
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Frothy bloat is a common gastrointestinal disease in ruminants, which is caused
by the accumulation of gas in the rumen and reticulum, causes damage to the function
of the gastrointestinal tract and respiratory tract, which can be reduced by using tan-
nins [125]. Li et al. [126] reported that a bloat of 1.0 mg CT/g of dry matter (DM) efficiently
prevents pasture. Alfalfa pasture bloat can be controlled by incorporating condensed
tannin-containing fodder, such as sainfoin, into the crop. Tannins have also been reported
to help ruminants control parasites in their digestive tracts [127]. Hoste et al. [128] have
reported in vivo studies on significant anthemia effects in the gastrointestinal tract of sheep,
goats and deer on tannins in sainfoin, sulla, Acacia nilotica, Sericea lespedeza, L. pedunculatus,
and chicory.

4.1. Effect of Tannins on Voluntary Feed Intake

The researchers hypothesized that tannin ingestion would limit ruminant voluntary
feed intake. As a result, researchers now have a lot more information and can make more
accurate conclusions about tannins, their dosages, and their effects on the animals which
consume them [129,130].

The voluntary feed intake of ruminants by providing plants with high condensed
tannin (CT) content (usually >50 g/kg DM) can be reduced, with a moderate or low intake
(<50g/kg DM) not affecting it [131]. On this side, Cabral Filho et al. [132] observed no effect
on DM consumption of sheep.

Voluntary feed consumption in ruminants depends on the taste and degree of digestion
of the feed. With the consumption of tannin-containing feeds, tannin forms a compound
with the glycoprotein found in the saliva. A high amount of tannin reduces the flavor and
consumption of the feed. Therefore, it causes a decrease in productivity in animals. Some
animals can adapt to diets containing high amounts of tannin by increasing the quantity of
proline-rich proteins in the saliva. These proline-rich proteins in saliva form bonds with
tannin. Thus, it prevents tannin from making compounds with proteins in the diet [133].
Barry and McNabb [134] reported a detrimental effect on voluntary feeding in grazing
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sheep given Lotus pedunculatus (condensed tannin content > 50 g/kg DM), but no findings
in L. corniculatus (condensed tannin content 34–44 g/kg DM)

The consumption of tannin-containing feeds for a long time causes enlargement of the
salivary gland [135]. Not all animals can secrete proline-rich proteins in saliva. For example,
animals such as humans, mice, deer, and gazelles secrete proline-rich protein in their saliva.
However, this secretion is much less in sheep and cattle [136]. It has been reported by
several researchers that feed consumption decreased in sheep fed diets containing high
amounts of tannin. Waghorn, Shelton, McNabb and McCutcheon [131] reported that feed
consumption decreased in sheep fed with feed containing 55 g of tannin per kilogram. It
has been reported that the amount of tannin below this level has little or no effect on the
feed consumption of the animal.

The effect of condensed tannin varies according to the ruminant species. They do not
contain proline-rich protein in the saliva of domesticated sheep and cattle [136]. For this
reason, it can be said that domesticated sheep and cattle may be more affected by tannin.

Hydrolyzable tannins have also had variable effects depending upon the consumed quan-
tity. McSweeney et al. [137] observed that Terminalia oblongata having low HT (34 g kg-1 DM),
when supplemented to sheep, shows no significant reduction in voluntary feed intake
(34 g kg−1 DM) while Clidemia hirta, a shrub which is high with HT (>50 g kg−1 DM) shows
a reduction in voluntary feed action in the same animal. According to Frutos et al. [138],
voluntary food intake of soya bean treated sheep with HT (20.8 g HT/kg DM diet) did not
decrease. However, in an experiment with sheep fed 8 g Tannic Acid per kg live weight,
voluntary feed consumption fell considerably within 24 h (from 18 to 2.5 g DM/kg LW).

Feed palatability, sluggish digesting, and enhanced conditioned aversions are three
recommendations for clarifying the harmful effects of excessive tannin concentrations on
voluntary feed intake [138].

The reaction between salivary tannins and mucoproteins and the direct response to
taste receptors can reduce the taste, an astringent sensation [121]. The saliva of many herbi-
vore species consists of proline-rich tannins and proteins that are plant species components
and can bind with tannins [139]. The tannin-proline-rich protein complexes, which are
stable over the whole pH range of the digestive system, are responsible for building stable
complexes other than protein-tannins, which have a negative influence on taste and feeding
and promote digestion of tannin-rich diets [140].

Herbivores are thought to have evolved distinct adaptation mechanisms for tannin-
rich plants through time [140,141]. All the time animals secrete proline-rich proteins, but
sheep only produce them when they consume tannin-rich plants [136]. However, in cows,
tannin consumption did not result in increased synthesis of these proteins, despite the
presence of many proteins with high partiality in their saliva [142].

Narjisse, Elhonsali and Olsen [140] directly transplanted tannins into the rumen
to test if non-rational causes were to blame for the voluntary feeding intake reduction.
The digestive system’s discharge is harmed when dry matter digestion is slowed. This
sends out signals that the animal is “overflowing” and gives the nerve center feedback.
Researchers have determined that this might impact voluntary feed intake in ways other
than diminished palatability [131].

Thirdly, the detrimental post-prandial effects of tannin consumption and the establish-
ment of conditioned aversions are found [143]. Rumen microbiota plays a fundamental
role in ruminant nutrition, and factors related to microbial fermentation are assumed to
mediate the post-prandial consequences of ingestion of tannin-rich feeder [138].

4.2. Effect of Tannins on Digestibility of the Diet

There are many articles on tannins’ ability to reduce food digestibility. Tannins mainly
affect proteins (Figure 3). Tannins were also found to make slight changes to different
degrees in other components [121]. The effect of tannins on protein is based on hydrogen
bonds that are stable between pH 3.5 and 8. Ruminal pH changes affect the complexes and
provide information about the function of tannins in the gastrointestinal tract [103]. Cabral
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Filho et al. [132] investigated three levels of tannin in the diet of sheep and reported a
different DM digestibility between high- and low-tannin cultivars. The low tannin content
diet had a higher crude protein digestibility, and there were no significant differences
between the medium tannin content and high tannin content diets. The highest values
for low tannin content and high tannin content were found for the neutral detergent fiber
(NDF) digestibility, and the average medium tannin content diet was 582 g/kg, which
differed only a little from the low tannin content diet.
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Tannin ingestion modifies digestibility by the correlation of the ruminal fermentation
pattern. These effects are addressed in two sub-sections, but the repeated conclusion
is that the higher dietary tenor of tannin reduces food digestibility by increasing fecal
nitrogen excretion. In any case, increased release of endogenous proteins such as salivary
glycoproteins, body fluids, and gastric catalysts, and increased descaling of intestinal cells,
are detrimental consequences of tannin consumption [131]. This rise in fecal nitrogen might
be due to an increase in metabolic fecal nitrogen, i.e., endogenous nitrogen that does not
account for a decrease in the amount of protein ingested from the feed.

According to Besharati and Taghizadeh [144], increased dried grape by-products
in diets shows a negative effect on CP digestibility. It was assumed that tannins could
influence feed protein and rumen microbiota; the accessibility of rumen microbiota to
such proteins has decreased because tannins bind with protein. The same authors [144]
analyzed four diets, one as a basal diet (alfalfa) and the remainder as mixed diets (dried
grape by-product with alfalfa). Table 4 shows the digestibility of the chemical components
of the in vivo study. Increased products of dried grape in diets lead to lower digestibility,
but no difference was found. Incremental grapes substituted by alfalfa levels resulted in
the digestibility of DM by quadratic and cubic, but no linear effect was observed. Dry
grape by-product supplementation has no impact on organic matter (OM) digestibility
in experimental diets. An increase in dried grape by-products was associated with no
significant response, and a quadratic response was found. In addition, the digestibility
of CP was affected by dried grape by-product in basal diets, as well as an increase in the
levels of supplementation of dried grapes by-product in CP digestibility in diet. There
was no indication of a quadratic or cubic impact. In treatments, the treated and control
group four had the greatest and lowest digestible CP, respectively. The addition of dried
grape by-products to treatments reduces the digestibility of NDF and acid detergent fiber
(ADF) with increased dried grape by-products to foods. A linear increase in the amount of
additional dried by-products affected the digestibility of ADF and NDF in diets.
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Table 4. Statistical significance of perceived nutritional digestibility and ruminal states in sheep given
dry grape by-products-based diets [144].

Nutrient Trt 1 Contrasts (p<)
Linear Quadratic Cubic

Dry Matter 0.09 0.69 <0.05 <0.05
Organic Matter 0.65 0.32 0.53 0.44
Crude protein <0.05 <0.05 0.96 0.72
Natural detergent fiber <0.01 <0.05 0.83 0.60
Acid detergent fiber <0.01 <0.05 0.52 0.58

1 Significant level of treatment effect.

McSweeney et al. [137] investigated the effects of increasing condensed tannin in the
diet in sheep, finding that increasing condensed tannin in the diet (from 6 to 65 g/kg DM)
lowered N digestibility from 0.805 to 0.378 and raised excretory N in sheep feces from
4.3 to 9.7 g/d. Hagerman et al. [103] showed that tannins could reduce CP digestibility.
The significant drop in N digestibility was reported to be due to the tannin presence, and
the results were similar to those in Lotus pedunculatus-fed sheep and the ryegrass in Lotus
pedunculatus with or without polyethanol glycol (PEG) [131].

If the drop in N digestibility was attributable to a decrease in protein digestion, the
decreased protein digestibility might account for the overall reduction in tannin-related
DM digestibility [144].

Yisehak et al. [145] demonstrated that PEG addition in the diet as a tannin binder
enhanced digestion and performance in both species but with the largest effect size in
sheep. Corrêa et al. [146] showed that tannins are useful to reduce intakes of feed but to
increase daily feed time linearly, even though the number of meals did not change. Tannins
also decreased DM, CP, OM, urinary urea, and TDN digestibility linearly, while reducing
ADF and NDF was quadratic. Tannins reduced rumen loss by slowing transit and digesting
rates in a linear fashion. They concluded that tannins might have a significant effect in
lowering nitrogen excretion in urine.

4.3. Effect of Tannins on Ruminal Microbiome and Fermentation

The rumen microbiome had great importance, because through rumination, fibrous
and non-fibrous plant material can be transformed into valuable products such as meat
and milk, thanks to the rumen microbiome activity [147]. Rumen inhabits various microbes
like bacteria, protozoa, fungi, archaea, and bacteriophages [148]. The rumen microbiome
and host had symbiotic relationships, each one provide substances to the other: first of
all, mastication and rumination are processes that permit to expand feed surface area to
microbial attachment, mixing constantly digesta and yielding fermentation products as
volatile fatty acids compounds (VFA); moreover, rumen permits the elimination of useful
and toxic substances maintaining the best condition for microbial growth and activity,
returning urea for microbial development (Figure 4) [147].

Rumen microbiome is mainly made up of bacteria, with a population that exceeds
one thousand cells per gram of rumen content and includes over 200 species [148]. Their
main role is the metabolism of carbohydrates and nitrogen taken with the diet. Methane
emission is mainly dependent on H2-producing bacteria [149].

Fungi represents a range of 5 to 20% of the total ruminal microbiota [150,151]. The
anaerobic ones play key role in lignocellulosic fiber breakdown [152], considered one
of the most able fiber-degrading agents [153], they produces a lot of enzymes (cellulases,
xylanases, mannanases, esterases, glucosidases, and glucanases) that are important for plant
polymers breakdown; but they are also characterized by amylolytic [154] and proteolytic
activities [155].
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Ruminal protozoa, commonly divided in flagellates and ciliates, represent about
20–50% of the total rumen microbiome [156]. Instead, that of ciliates is particularly impor-
tant because it engulfs carbohydrates and do not allow abnormal rumen fermentations
which could alter the pH and make the rumen environment uncomfortable for the mi-
crobiota [157]. They have a positive correlation with CH4 production because they are
involved in H2 production that is subsequently converted to CH4 by the methanogens
through the hydrogenotrophic pathway [158], so their defaunation is able to reduce CH4
emission [157,159]. Archea, the third rumen domain, constitutes about the 20% of rumen
microbiome [160]. They are involved in methanogenesis [160,161], starting by different
substrates as formate, or acetate, methanol, H2, methylamines, and CO2 (71).

In a large pH range (3.5-7), tannins can bind dietary proteins, starch and sugars
creating strong complexes [162], and this can limit their digestibility if concentration is
more than 5% [163]. Although many studies have been conducted, the real action of tan-
nins in rumen is not yet clear [116]. In fact, although they possess bacteriostatic effects,
their association with rumen microbiota is different due to different tannins nature. In
fact, hydrolysable tannins resulted more hydrolysable by microbiome than condensed
ones [137]. Tannins can inhibit methanogens activity directly, limiting the degree of mi-
crobial hydrolysis, and indirectly decreasing the H2 availability [164], although this can
reduce fiber digestion. Their ability to modify the ruminal microbiome can result in a
reduction in protein degradation, can reduce methanogenesis and inhibit the fatty acids
biohydrogenation [165–167] (Figure 5).

As expected, results about potential shifting of microbial population and rumen fer-
mentation are variable depending on species, doses, and tannins source. Researchers
reported different results about methane mitigation. Some studies reported that tannins
can reduce the short-chain fatty acids and acetate production, increasing the diversity and
abundance of butyrate-producing bacteria and other beneficial species (such as probiotic
species), and enhancing the amino acid metabolic pathways [146]. Although these exhibit
different effects, the mechanism action is not known. Tannin supplementations seems to
reduce the crude protein digestion and methane production in beef [168], although other
authors reported no effect on live and growth performance of beef, no effect on in vitro
digestion traits, and no reduction in CH4 emission [57]. Different tannins sources have
been used with the aim to mitigate methane emission without affecting, but improving,
productive performance. For example, gallic acid has the potential to reduce the rumen
greenhouses production without affecting performances [169]. The same results were
found for tara, mimosa, gambier extracts [170] and legumes with condensed tannins [171].
However, dietary sources of tannins and their chemical composition can affect quiet dif-
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ferently rumen microbiota, in fact HT are considered more suitable than CT for methane
mitigation [164]. The encapsulation can be considered a good solution for tannin extract
due to the slow release of tannin and their more efficient utilization [172,173]. However,
CT rich diets can reduce CH4 emissions in ruminants, with an effective inhibitory effect on
ruminal protein degradation and CH4 emission, but this requires careful source selection
for diet inclusion to avoid adverse effects on feed digestibility and efficiency [174]. Never-
theless, many other studies are necessary in order to fully understand the mechanism of
action of tannins at the rumen level regarding the potential inhibitory effect of methanogens
and protozoa, and above all to determine the best inclusion level to inhibit the production
of methane without compromising the productions. The tannins are characterized by a
powerful antioxidant effect as they can scavenge free radicals due to hydroxyl groups,
degree of polymerization, and redox activities [175,176]. In fact, tannin supplementation
improves ruminant’s antioxidant state [57,177–179]. Among the chemical characteristics,
hydrolysable tannins are considered the most potent antioxidants [180].
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Tannins are the main source for the degradation of the ruminal protein [103]. Tannins
are intimately connected to these molecules, and the pH of the ruminal media encourages
tannin protein complex synthesis. Protein degradation can be reduced as a result of lower
ammonia nitrogen synthesis and more non-ammonia flow to the duodenums [131].

Tannins influence proteins and carbohydrates, particularly hemicelluloses, celluloses,
starch, and pectins [181]. The tannins have long been a secondary anti-nutritional effect on
fiber degradation [137,182].

The methods for minimizing ruminal damage to various dietary tannin components
are unknown. The most widely established procedures are denial of nutrients, enzyme
inhibition, and direct action on rumen bacteria [183,184]. Regarding the first of these,
various authors have indicated that attachment of rumen microbes to plant cell walls
is necessary for the breakdown process, but the presence of tannins in plant material
prevents the plant material from adhering to rumen microorganisms [185,186]. Furthermore,
complexes of proteins and carbohydrates decrease the effectiveness with which these
nutrients may reach these microbes [187]. Tannins also limit the availability of several metal
ions that are required for rumen microbial metabolism [184].

Tannins also inhibit the enzymatic activity of rumen microbes [137,186]. But the exact
mechanism of enzyme inhibition activity of tannins is still poorly understood. Polypheno-
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lics have been found to react to the cell wall of bacteria and to secrete extracellular enzymes.
Any interaction will probably inhibit the transport of nutrients into the cell and delay
the organism’s growth. Although the exact mechanism of how tannins bind to enzymes,
whether bacterial or endogenous, does not indicate inhibition, some writers have reported
that tannins modify bacterial proteolytic, cellulolytic, and other enzyme activity [142,188].
When fibrolytic enzymes were investigated, condensed tannin was more effective in in-
hibiting hemicellulases than cellulases [143]. This is since they relate to bacterial cell walls,
whereas hemicellulases are extracellular and more susceptible [135]. This explains why
most investigators have reported a greater decrease in hemicellulose degradability in tannin
presence [131,182]. However, this can vary depending on the tannin desired [186].

Besharati and Taghizadeh [144] indicated tannin contents in the plant material re-
duce fermentation, resulting in major differences among VFA and NH3–N concentrations.
Priolo et al. [189] reported that when PEG and tannin-feed was given to sheep, rapid rumen
fermentation was observed by PEG, resulting in significant differences among VFA and
NH3–N concentrations.

CT/bacterial cell reactions are less well-conceived than CT/feed protein reactions.
However, the interactions between condensed tannin and the substrate appear to be
different between bacterial cells and Rubisco. The CT-bacterial interaction was found
much stronger than CT-protein interaction, or the interaction is of a different kind [190].
The condensed tannin most likely connects the bacterial cell surface to limit the action
of cell-bound enzymes. The inhibition scope may vary with different condensed tannin
types. However, the fact that we cannot quantify actual condensed tannin contents of the
CT-bacterial interactions requires more research since digesta affects our knowledge of
physical and chemical relationships between CT, rumen microbes, and plant protein [191].

Cabral Filho et al. [132] observed no significant differences between the treatment
groups with diets containing three different concentrations of tannin. Aboagye, Oba,
Castillo, Koenig, Iwaasa and Beauchemin [10] have shown that the combination of HT
and condensed tannin at 1.5% dietary DM also tended to reduce CH4 emissions without
adverse effects on performance. Sadarman et al. [192] found that adding tannin to both
acacia and chestnuts had no significant influence on DM, OM degradation, total volatile
fatty acids (tVFA), NH3, and pH. The accumulation of gas at 8, 12, and 24 h was influenced
by acacia tannin. They concluded that adding tannins up to levels 2%, acacia, and chestnuts
did not interfere with the fermentation of rumen and in vitro by-products of soy sauce.
Toral et al. [193] observed that nutrition tannins boosted milk content by numerous FA
ramification isomers of 18/1 and 18/2, but that they were not effective in changing milk
FA composition in the long run, especially when combined with quebracho tannins in a
linoleic acid-rich diet (Figure 6).
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4.4. Effect of Tannins on Milk Production and Composition

While the daily milk yield was 16.5 kg in dairy cows fed L. corniculatus with a tannin
content of 27 g/kg DM, a yield of 13.8 kg in animals fed L. corniculatus and polyethylen
glycol (PEG) was found [194]. Dschaak, et al. [195] reported that cows fed a ration sup-
plemented with condensed tannin extract (CTE) had a decrease in milk urea nitrogen and
ruminal ammonia nitrogen concentrations, without any loss in milk protein yield. Dairy
cows fed L. corniculatus produced milk 60 percent greater than perennial ryegrass-fed
cows, with a 10 percent increase in milk protein. PEG responses showed that the action of
condensed tannin could explain half of the lotus effect [78].

Condensed tannin of lactating L. corniculatus ewes had little effect on early lac-
tate milk production but enhanced whole milk, lactose, and protein secretion rates by
21, 12, and 14 percent, respectively, during mid to late lactation [143]. Studies assumed
that the increase in milk production is due to condensed tannin content, while the content
does not affect the increased voluntary feed intake (VFI). In these studies, it is clearly seen
that tannin has a positive effect on milk production. However, more studies are needed to
determine at what levels tannin has a positive effect in the diet. It has been accepted that
the nutritional value of milk fat in ruminants can be improved by manipulating rumen
biohydrogenation by changing diet-related factors. In recent years, most of the research
for modulators of ruminal biohydrogenation focused to secondary plant compounds such
as tannins. Both in vitro and in vivo study results show that both CT and HT can affect
rumen biohydrogenation. Most of them, or their metabolites, can be found in milk and
cheese [196]. However, these results are also controversial. Some in vitro studies have
reported accumulation of VA and a decrease in stearic acid (18:0, SA) in rumen fluid and
rumen bacteria after incubations with tannin sources such as CT or HT at the ruminal
biohydrogenation stage [197–200].

Sulla is one of the most studied tannin sources in terms of its effect on the FA profile
of ruminant meat and milk. Addis, et al. [201] reported that milk from sulla-fed sheep
had higher levels of short-chain FA and LNA and higher levels of short-chain FA and
LNA than milk from sheep fed Lolium rididum Gaudin, Medicago polymorpha L. and
Chrysanthemum coronarium L., it was observed that it showed an atherogenicity index,
but the 18:1 cis-9 content was lower. It was observed that dietary supplementation with
quebracho (Schinopsis balansae) tannin extract (150 g/day, 0.45% DM intake) had no effect
on milk FA composition of dairy cows [202]. Studies on the effect of tannins on the milk FA
profile in ruminants show a wide variation in ration sources and inclusion levels of tannins,
supplementation time, ration composition and physiological stages of the animal, resulting
in controversial results. Although tannins are heterogeneous compounds, their structures
and sizes are variable. Moreover, their metabolism and activity would be expected to
depend on the tannin type. This helps to explain the controversial results regarding the
ability of ruminant-derived products to modulate the FA profile.

4.5. Effect of Tannins on Meat Production and Composition

Most of the research reported that the intramuscular fat content was not affected by the
dietary treatment explaining this lack of differences with the diet formulation. In fact, all
experimental diets that compared a control group to an experimental group with addition
of tannins had isonitrogenous and isoenergetic diets. Differently, the intramuscular fatty
acid composition was clearly affected by the inclusion of tannins in the diet in most of them.

In ruminants, muscle fatty acids deposition depend both on the intake of different
fatty acids and on the extent of the ruminal biohydrogenation of the ingested PUFA [203].
Fatty acids found in ruminant meat can be derived from two main ways, direct uptake of
preformed fatty acids then transported in plasma and a de novo synthesis directly in body
tissue [204].

The preformed fatty acids derived directly by digestive tract absorption, so they have
a dietary or ruminal origin [205]. Differently, there is a low contribution, if present, of
body fat mobilization [206]. Once in the rumen, fat is hydrolyzed by lipases and free fatty
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acids are released [207]. After this, biohydrogenation by rumen microorganism occurred to
saturate fatty acids and reduce their toxicity (Figure 7) [205]

Molecules 2022, 27, x FOR PEER REVIEW 15 of 28 
 

 

sources and inclusion levels of tannins, supplementation time, ration composition and 

physiological stages of the animal, resulting in controversial results. Although tannins 

are heterogeneous compounds, their structures and sizes are variable. Moreover, their 

metabolism and activity would be expected to depend on the tannin type. This helps to 

explain the controversial results regarding the ability of ruminant-derived products to 

modulate the FA profile. 

4.5. Effect of Tannins on Meat production and Composition 

Most of the research reported that the intramuscular fat content was not affected by 

the dietary treatment explaining this lack of differences with the diet formulation. In 

fact, all experimental diets that compared a control group to an experimental group with 

addition of tannins had isonitrogenous and isoenergetic diets. Differently, the 

intramuscular fatty acid composition was clearly affected by the inclusion of tannins in 

the diet in most of them. 

In ruminants, muscle fatty acids deposition depend both on the intake of different 

fatty acids and on the extent of the ruminal biohydrogenation of the ingested PUFA 

[203]. Fatty acids found in ruminant meat can be derived from two main ways, direct 

uptake of preformed fatty acids then transported in plasma and a de novo synthesis 

directly in body tissue [204]. 

The preformed fatty acids derived directly by digestive tract absorption, so they 

have a dietary or ruminal origin [205]. Differently, there is a low contribution, if present, 

of body fat mobilization [206]. Once in the rumen, fat is hydrolyzed by lipases and free 

fatty acids are released [207]. After this, biohydrogenation by rumen microorganism 

occurred to saturate fatty acids and reduce their toxicity (Figure 7) [205] 

 

Figure 7. Main biohydrogenation processes in the rumen. 

However, it must be considered that the biohydrogenation process resulted 

incomplete and some intermediate metabolites can leave the rumen and be absorbed in 

the intestinal tract and then incorporated in meat, with relevant consequences for 

consumers [208]. This aspect is the most important for nutritionists because the 

possibility to modulate the biohydrogenation represents an opportunity to decrease the 

percentage of disappearance of the dietary PUFA Moreover, some rumen 

microorganisms have specific synthetases for fatty acids able to synthesize odd- and 

branched-chain fatty acids that we can find in meat [209]. 

The adipose tissue is a great active site of fatty acids de novo synthesis. The main 

substrates derived from carbohydrates rumen fermentation and are represented by 

Figure 7. Main biohydrogenation processes in the rumen.

However, it must be considered that the biohydrogenation process resulted incomplete
and some intermediate metabolites can leave the rumen and be absorbed in the intestinal
tract and then incorporated in meat, with relevant consequences for consumers [208].
This aspect is the most important for nutritionists because the possibility to modulate the
biohydrogenation represents an opportunity to decrease the percentage of disappearance
of the dietary PUFA Moreover, some rumen microorganisms have specific synthetases
for fatty acids able to synthesize odd- and branched-chain fatty acids that we can find in
meat [209].

The adipose tissue is a great active site of fatty acids de novo synthesis. The main sub-
strates derived from carbohydrates rumen fermentation and are represented by acetate and
lactate [204] and they give origin to the formation of fatty acids with up to 16 carbons, with
the predominant production of palmitic acid (16:0) [210], that can be after desaturated or
elongated [211]. The stearoyl-CoA desaturase represented the most active desaturase [212].
A great proportion of 16:0 is converted to stearic acid (18:0) [210]. The 18:0 can be than
desaturated to cis-9 18:1 (oleic acid) [212] in palmitoleic acid (trans-9 16:1) and to cis-9
trans-11 CLA. [213]

It is evident that tannins act at rumen level modulating the lipid metabolism and
affecting the meat fatty acid profile [198,214]. This could probably be due to changes that
tannins can induce in microbial rumen population, although it is not well known which are
really involved in which specific microorganism are involved in ruminal biohydrogenation
of dietary PUFA [215,216]. Different studies have tried to examine tannins effect on fatty
acids deposition in meat, but different results have been observed probably due to diversity
of tannins, concentration, species, and time of diet assumption. However, is evident a
reduction in the biohydrogenation extent of dietary PUFA, with most of the results reporting
an increase in them. Most studies reported increases in 18:2n-6 and 18:3n-3 concentrations
in meat [8,200]. However, low levels of tannin addition in diet can also lack in affecting
dietary PUFA proportions in meat [217–221]. However, the mechanisms explaining the
abovementioned effects remain uncertain, although it seems to be assumed that the rumen
microbiota modulation represents the best way to mediate meat fatty acid profile [222].

Tannins can also modify the concentration of some biohydrogenation intermediates.
In fact, tannins can inhibit the saturation of vaccenic acid [223], although the capacity to
increase trans-11 18:1 and cis-9 trans-11 CLA concentration is still controversial. In some
studies, vaccenic acid was increased with no effect on cis-9 trans-11 CLA [200,221], while
other studies reported increased cis-9 trans-11 CLA with no effect on vaccenic acid [223,224].



Molecules 2022, 27, 8273 15 of 26

It must be considered that lipid diet level result important to have magnification of
tannins effect on biohydrogenation. With low lipid diet, the most used in experimental
trials, there is poor biohydrogenation substrate that can put in evidence the tannins effect
on the process. The effects of tannins on de novo synthesized fatty acids are not well
studied; nevertheless it is reported that tannins can be able to mitigate the inhibition of de
novo fatty acids synthesis in meat [225].

4.6. Effect of Tannins on Wool Production

Access to sulfur-containing amino acids has a very effective role in wool production.
Clean wool is mostly protein with a high cysteine concentration. Studies demonstrated that
activation of condensed tannin in L. pedunculatus and L. corniculatus enhanced the rate of
irreversible cystine loss from blood plasma, owing to lower sulfur-containing amino acids
breakdown in the rumen [226,227].

Wool growth responses to condensed tannin impact vary on both the concentration
and type of CT, with L. corniculatus growth exceeding 10% in the 22-38 g CT/kg DM
range. When the condensed tannin level rose over 50 g/kg DM, the reactions seemed to
be negative effects, particularly for L. pedunculatus and sulla. However, when condensed
tannin levels were below 22 g CT/kg DM, the response to wool growth varied. Therefore,
positive CT-effects for wool production in L. corniculatus occur between 22 and 38 g CT/kg
DM [78].

4.7. Effect of Tannins on Reproduction

One of the important factors affecting reproduction in sheep is nutrition. Ovulation
rates in sheep grazing L. corniculatus was found to be 22% higher on average than those
grazing meadow grass and clover. This probably was due to condensed tannin content of
L. corniculatus, determined with PEG, that is able to increase the lambing rate due to the
increased fertilized rate of oocytes [78].

Downing and Scaramuzzi [228] found that the ovulation rate (OR) in sheep is influ-
enced by nutritional levels, although the mechanism(s) through which nutrition affects
OR remain unclear. The OR depends on the animal nutrition that probably relates to the
ovary’s metabolic, hormonal control [228]. Changes in the plasma concentrations of growth
hormone, insulin, and insulin-like are compatible with changes in biosphere energy and
protein balance and muscle protein synthesis produced by nutrition. These factors can di-
rectly or by modulating ovarian gonadotropin function affect ovarian function [229]. More
studies have shown that increases in ovulation rate are associated with the branched-chain
plasma amino acid (BCAA) and essential amino acids (EAA) levels [143]. At the same time,
intravenous infusion branched-chain plasma amino acid was increased. These findings are
supported by those of Al-Gubory et al. [230], who found that the BCAAT cytosolic enzyme
may directly stimulate the ovaries, raising ovulation rate through an unknown mechanism,
as a result, it reduces the growth of specific BCAAA activity in the skeletal muscles of
sheep [229]. BCAA is also highly sensitive to insulin in muscle protein [231]. Furthermore,
only the ovaries found BCAA transferase (BCAAT) iso-enzyme [232]. These findings are
confirmed by the results from Al-Gubory, Garrel, Faure and Sugino [230], which show
that the developmental reduction in specific BCAAA activity in the skeletal muscles of
the sheep is due to the BCAAT cytosolic enzyme, which can directly stimulate the ovaries,
increasing the ovulation rate by an unknown mechanism.

4.8. Effect of Tannin on Parasites in the Digestive System

Parasites in the digestive system of grazing animals are one of the factors that cause
significant losses in ruminants. In animals contaminated with parasites, reductions in
growth, milk yield, fleece yield and reproduction occur [233]. Anthelmintic drugs are
generally used to control parasites in the digestive system. The presence of these drug
residues in animal products makes consumers think [234]. Therefore, the inclusion of plant
species that reduce the number and effects of parasites in the diet reduces the use of these
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drugs, e.g.; it is known that lantana camara (Sage tea) is an important herb in the control of
parasites and nematodes in the digestive system. Eucalyptus species are reported to have
anthelmintic effects in goats [235].

It has been reported that condensed tannins exert their antiparasitic effects by directly
inhibiting the larval development of digestive tract parasites and indirectly by binding
to proteins in the rumen and preventing microbial degradation. As a result, it is thought
that they improve the immunity of the host animal by providing the passage of amino
acids into the duodenum and increasing protein digestion. The consumption of rations
containing tannin in lambs and sheep infected with parasites increased the live weight gain
and caused a decrease in the number of parasite eggs laid with manure [78]. The number
of eggs in the manure obtained from sheep consuming feeds containing condensed tannins
decreased by approximately 20–50% [78]. Condensed tannin is thought to either act as an
anthelmintic in these plants or cause a suitable environment for microorganisms. More
studies are needed to determine the amount of tannin that should be present in the diet to
take advantage of the negative effects of tannins on parasites.

Plants rich in condensed tannins with demonstrated activity against gastrointestinal
nematodes in sheep and goats include Lespedeza cuneata (sericea lespedeza), Onobrychis
viciifolia (sainfoin), Hedysarum coronarium (sulla), Lotus pedunculatus (big trefoil), and Lotus
corniculatus (birdsfoot trefoil). These plants can be used to reduce fecundity of nematodes
but did not offer a control of them [236].

5. Conclusions

Tannin is a phenolic compound that tends to form compounds with nutrients found
in feeds. Tannin, which is found in various proportions in plants, has negative and positive
effects on animals.

Condensed tannin and feed sources containing tannin can be added to the ration at
certain rates in order to enable ruminants to make better use of proteins and to reduce
losses caused by excessive fragmentation of proteins in the rumen. This ratio should not
negatively affect microbial protein synthesis in the rumen. In addition, the amount of
tannin added to the ration should be at a level that will not have a toxic effect on animals.
The determination of the tannin content of the feeds to be added to the ration has an
important place in determining the amount of tannin to be added. In order to reduce the
negative effects of tannin on animals and rumen microorganisms, compounds such as PEG
can be added to the diets containing high levels of tannin.

Regarding tannin type and concentration, its effect can differ in animal performance.
In contrast, hydrolyzable tannin can efficiently increase bypass protein, resulting in high
performance in ruminants such as milk yield and milk production. Additionally, tannin can
be controlled by bloat problems and intestinal parasites in grazing ruminants. However,
more access to information about the effects of tannin in animal nutrition requires further
investigation.
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