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Abstract: Human jumping translocation breakpoint (hJTB) gene is located on chromosome 1q21 and
is involved in unbalanced translocation in many types of cancer. JTB protein is ubiquitously present
in normal cells but it is found to be overexpressed or downregulated in various types of cancer
cells, where this protein and its isoforms promote mitochondrial dysfunction, resistance to apoptosis,
genomic instability, proliferation, invasion and metastasis. Hence, JTB could be a tumor biomarker
for different types of cancer, such as breast cancer (BC), and could be used as a drug target for therapy.
However, the functions of the protein or the pathways through which it increases cell proliferation
and invasiveness of cancer cells are not well-known. Therefore, we aim to investigate the functions
of JTB by using in-solution digestion-based cellular proteomics of control and upregulated and
downregulated JTB protein in MCF7 breast cancer cell line, taking account that in-solution digestion-
based proteomics experiments are complementary to the initial in-gel based ones. Proteomics analysis
allows investigation of protein dysregulation patterns that indicate the function of the protein and its
interacting partners, as well as the pathways and biological processes through which it functions. We
concluded that JTB dysregulation increases the epithelial-mesenchymal transition (EMT) potential
and cell proliferation, harnessing cytoskeleton organization, apical junctional complex, metabolic
reprogramming, and cellular proteostasis. Deregulated JTB expression was found to be associated
with several proteins involved in mitochondrial organization and function, oxidative stress (OS),
apoptosis, and interferon alpha and gamma signaling. Consistent and complementary to our previous
results emerged by using in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that
are overexpressed in this experiment suggest the development of a more aggressive phenotype and
behavior for this luminal type A non-invasive/poor-invasive human BC cell line that does not usually
migrate or invade compared with the highly metastatic MDA-MB-231 cells. This more aggressive
phenotype of MCF7 cells related to JTB dysregulation and detected by both in-gel and in-solution
proteomics could be promoted by synergistic upregulation of EMT, Mitotic spindle and Fatty acid
metabolism pathways. However, in both JTB dysregulated conditions, several downregulated JTB-
interacting proteins predominantly sustain antitumor activities, attenuating some of the aggressive
phenotypical and behavioral traits promoted by the overexpressed JTB-related partners.

Keywords: breast cancer; jumping translocation breakpoint (JTB) protein; in-solution proteomics;
MCF7; EMT
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1. Introduction

Cancer is the leading cause of death in many countries. 2020 cancer statistics show
about 2.26 million new cases of breast cancer, 2.20 million new cases of lung cancer,
1.41 million new cases of prostate cancer and 1.14 million new cases of colorectal can-
cer [1]. There is a rapid increase in the number of cases every year, hence early diagnosis
of cancer is important for clinical diagnosis, monitoring toxicity and for the successful
treatment of cancers [2]. Biomarkers play a crucial role in early detection of tumors.

In clinic, tumor associated protein-based biomarkers are the most commonly used type
of molecular biomarkers [3]. As defined by the World Health Organization, a biomarker
is “any substance, structure, or process that can be measured in the body or its products
and influence or predict the incidence of outcome or disease” [4]. Also, a biomarker is an
indicator of biological or pathogenic process, as well as for assessing the pharmacological
responses to therapeutic intervention [2]. The identification of a new biomarker requires the
determination of its relevance and validity [5]. Constant research to identify biomarkers that
are cost effective and reliable are always in place. Biomarkers help with estimating the risk
of cancer and screening for primary cancers, distinguishing between benign and malignant
tumors and monitoring the status of the disease [6]. Cancer biomarkers are categorized into
predictive biomarkers that predict the risk of developing a cancer, prognostic biomarkers
that measure risk of cancer progression or potential response to therapy, and diagnostic
biomarkers that indicates the early onset of cancer [3]. Although there are many well-
known cancer biomarkers, rapid mutation of genes enables the constant need for new
biomarkers. Here, we aim to characterize a new putative biomarker, the JTB protein,
which could facilitate early diagnosis and may act as a drug target for the treatment of
breast tumors.

JTB is a gene located on human chromosome 1q21 and is involved in unbalanced
translocation in many types of cancer such as lung, stomach and colon [7] and most
predominantly in breast and prostate cancer [8,9]. JTB protein consists of 146 amino acids
and has a molecular weight of 16.4 kDa [10]. It consists of a signal sequence at the N
terminus, an extracellular domain rich in cysteine [11], a transmembrane domain that is
highly hydrophobic as well an intracellular or a cytoplasmic domain. The JTB protein is
ubiquitously present in normal cells but is found to be overexpressed in cancer cells [10].
Hence, this protein could be a tumor biomarker for different types of cancer such as breast,
prostate and liver cancers [12] and can be used as a drug target for treatment. However, the
function of the protein or the pathways through which it increases cell proliferation is not
entirely clear. Hence, we aim to identify the functions of the JTB protein by using in-solution
digestion based cellular proteomics that is complementary to the initial gel-based approach
previously used in MCF7 BC cells transfected for overexpressed [13] and downregulated
JTB condition [14]. Here, we overexpressed and knocked down JTB and looked at the
proteomes of the cell for protein dysregulation patterns that indicates the role of the protein
and its interacting partners as well as the pathways through which it functions.

MCF7 BC cells were transfected with sense orientation of the hJTB cDNA in a CMV
expression vector containing HA, His and FLAG tags to overexpress hJTB and with shRNA
plasmid targeting the hJTB mRNA containing an eGFP tag to knockdown the hJTB. The
expression levels of upregulated and downregulated JTB conditions were confirmed by
Western blotting. The lysates were used for in-solution digestion with trypsin and the
digested peptides were analyzed by nano liquid chromatography tandem mass spectrome-
try (nano LC-MS/MS). Data analysis using Mascot and Scaffold software facilitated the
analysis of protein dysregulation patterns. GSEA algorithm was further performed to
determine the biological pathways associated with both overexpressed and knockdown
conditions of hJTB.

To complement the previously reported JTB proteomics experiments through MS
analysis, where we performed in-gel digestion of the upregulated and downregulated JTB
samples and their matched controls, an in-solution trypsin digestion of the samples, fol-
lowed by mass spectrometry-based proteomics analysis was performed, complementarity
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that was already demonstrated in combinatorial gel electrophoresis [15]. This method is
ideal for highly concentrated protein samples; it provides high protein sequence coverage
and allows the identification of integral membrane proteins if any in the sample. In addi-
tion, the potential problems from in-gel digestion such as poor protein digestion due to gel
fixation and insufficient extraction can be avoided in this technique [16].

2. Results

We found 18 differentially overexpressed proteins and 14 downregulated proteins
compared to control in the overexpressed JTB condition. HSPD1, HSP90AA1, HSPA1A,
EEF1A1, RPS14, RPL6, RAN, CAND1, IFITM2, TUBB4A, TUBB2A, TPM3, LAMP2, CRE-
BZF, ENO2, PPIA, PRKCSH and SLC25A5 are overexpressed, while FASN, TPI1, PRDX1,
ENO1, SOD1, ACTN4, YWHAQ, CALM1, PCBP1, AHSG, IQGAP2, PDIA4, EEF1A1 and
TPD52L2 were found to be downregulated. GSEA was performed for the upregulated
JTB condition (Table 1) using H (hallmark gene sets) collection in MSigDB. Analysis of H
collection revealed six upregulated pathways, including proteins important for mitotic
spindle assembly, epithelial-mesenchymal transition (EMT), fatty acid metabolism (FAM),
UV response, interleukin 2 STAT5 signaling, and apoptosis. Two downregulated pathways
comprised proteins involved in oxidative phosphorylation (OXPHOS) and apical junction
(AJ) pathways.

Table 1. Significant up and downregulated pathways in JTB upregulated condition in MCF7 BC cells,
according to GSEA analysis with FDR < 25%.

Pathways NES FDR q-Val

Upregulated MITOTIC SPINDLE 1.23 1
EPITHELIAL MESENCHYMAL TRANSITION 1.21 1

FATTY ACID METABOLISM 1.21 0.979
UV RESPONSE UP 1.16 0.964

IL2 STAT5 SIGNALING 1.15 0.82
APOPTOSIS 1.04 1

Downregulated OXIDATIVE PHOSPHORYLATION −1.25 0.138
APICAL JUNCTION −1.25 0.127

NES-normalized enrichment score; FDR q-val-false discovery rate q-value.

Similar to overexpressed JTB condition, we found 15 differentially expressed proteins
that were upregulated and 16 downregulated compared to control in the knocked-down lev-
els of JTB. PSME1, ENO2, HASPA1A, HSPD1, HSPE1, POTEKP, ACTC1, TUBB, TUBA1A,
TMSB10, PARK7, PRDX2, PGK1, GAPDH and PPIA were found to be upregulated and
ACTG1, TPI1, HSPA1A, HSPA8, HSPB1, FASN, EEF1A1, ENO2, SOD1, MKI67, CALM1,
IFITM2, RPS5, CTNNB1, ISG15, and ANXA2 were found to be downregulated. GSEA was
performed for the downregulated JTB condition (Table 2) using H (hallmark gene sets)
collection in MSigDB. Analysis of H collection revealed three upregulated pathways, based
on proteins involved in complement, interferon gamma response and unfolded protein
response (UPR). Five downregulated pathways comprised proteins involved in cholesterol
homeostasis, glycolysis, E2F targets, apical junctional complex, hypoxia, and Myc-version
2 pathways.

To study the JTB-related proteins in more detail, we focused on the analysis of protu-
morigenic (PT) and antitumorigenic (AT) roles of these proteins in correlation with their
involvement in cancer-related pathways and biological processes (Tables 3 and 4). The
proteins identified in our study are listed in Supplementary Materials Table S1 and the
dysregulated proteins are listed in Supplementary Materials Table S2.
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Table 2. Significant up and downregulated pathways in JTB downregulated condition in MCF7 BC
cells, according to GSEA analysis with FDR < 25%.

Pathways NES FDR q-Val

Upregulated COMPLEMENT 1.23 1
INTERFERON GAMMA RESPONSE 1.07 1

UNFOLDED PROTEIN RESPONSE (UPR) 1 1
Downregulated CHOLESTEROL HOMEOSTASIS −1.56 0.167

GLYCOLYSIS −1.45 0.239
E2F TARGETS −1.44 0.187

APICAL JUNCTION −1.32 0.297
HYPOXIA −1.18 0.465

MYC TARGETS V2 −1.09 0.534
NES-normalized enrichment score; FDR q-val-false discovery rate q-value.

2.1. JTB Dysregulation Is Associated with the EMT Process

JTB dysregulation increases the EMT potential and cell proliferation, harnessing
cytoskeleton organization, apical junctional complex (AJC), metabolic reprogramming, and
cellular proteostasis.

Linked to the alteration of the intracellular skeleton and extracellular matrix (ECM)
remodeling, the epithelial-mesenchymal transition (EMT) process facilitates the local inva-
sion in cancer [110]. The EMT pathway has been found as upregulated in our previously
published analyses conducted in MCF7 BC cells transfected for JTB overexpression [13] and
downregulation, respectively [14], by using SDS-PAGE and nanoLC-MS/MS. We identified
then as upregulated proteins related to JTB overexpression filamin A (FLNA), involved
in actin cytoskeleton organization and biogenesis, as well as collagen type XI alpha 1
chain (COL11A), and collagen type III alpha1 chain (COL3A1) involved in ECM remodel-
ing [13]. We also identified beta-actin-like protein (ACTBL2), tubulin alpha-4A (TUBA4A),
myosin-14 (MYH14), eukaryotic translation elongation factor 1-alpha 1 (EEF1A1), chon-
droitin sulfate proteoglycan 5 (CSPG5) and clathrin heavy-chain (CLTC) as upregulated
EMT-related proteins for downregulated JTB condition [14].

JTB-related proteinsinvolved in cytoskeletal dynamics and AJC promote EMT. Tak-
ing account that in-solution digestion-based proteomics experiments are complementary to
the initial gel-based ones, we identified here more JTB-related proteins that exert several
functions and activities involved in cytoskeleton organization and modulation. Thus, we an-
alyzed the biological and pathological functions of actin filaments and microtubules-related
proteins identified by using in-solution proteomics. Proteins involved in cytoskeletal dy-
namics that promote EMT and influence BC metastasis are: TMSB10, TPM3, IQGAP2,
ACTC1, ACTG1, ACTN4, TUBA4A, TUBB, TUBA1A, TUBB2A, POTEKP/ACTBL3, and
EEF1A1, listed in Tables 3 and 4. TMSB10 transcriptional factor is involved in cytoskeleton
organization and cancer cell migration. It was emphasized as overexpressed in many
cancers, such as renal cell carcinoma (RCC), pancreatic cancer, non-small cell lung cancer
(NSCLC), papillary thyroid carcinoma [82] and BC [83]. It promotes proliferation, EMT,
invasion, migration of cells, and might be used as a serum marker for the diagnosis and
potential therapeutic target in BC [83]. TPM3 is also involved in cytoskeleton organization
as well as actin alpha cardiac muscle 1 (ACTC1), an overexpressed protein that also pro-
motes the EMT process [95]. There are evidences that demonstrated that TPM3 mRNA is
overexpressed in the platelets from patients with metastatic BC and its delivery into BC
cells through microvesicles led to an increased migratory behavior and metastasis potency
of BC cells [28]. TPM3 mediates EMT and promotes proliferation, invasion and migration
of esophageal cancer (EC) cells via metalloproteinase (MMP)2/9 [29]. Overexpression of
TPM3 activates SNAIL-mediated EMT, which represses E-cadherin expression and that
induces migration and sustains invasion potential of HCC cells during hepatocarcinogene-
sis [30]. Reduced IQGAP2 expression in upregulated JTB condition could promote EMT by
modulating the MEK-ERK and p38 signaling in BC cells [65].
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Table 3. Deregulated proteins, tumorigenic roles, and biological processes expressed in response to JTB dysregulation.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

Overexpressed JTB Condition

Upregulated proteins and pathways

HSPD1
Heat shock protein family D

(HSP60) member 1

cancer cell survival, regulation of cell death,
proliferation [17], represses E-cadherin, promotes

cell invasion, migration, poor prognosis [18]
PT

MYC_TARGETS_V1 BIOLOGICAL_ADHESION;
PROTEIN_FOLDING;

PROTEIN_REFOLDING;
PROTEIN_MATURATION;

PROTEIN_CONTAINING_COMPLEX_ORGANIZATION;
PROTEIN_STABILIZATION;

PROTEIN_INTRACELLULAR_TRANSPORT;
TRANSMEMBRANE_TRANSPORT;

PRO-
TEIN_TRANSMEMBRANE_TRANSPORT_INTO_INTRACELLULAR_ORGANELLE;

MITOCHONDRION_ORGANIZATION;
DNA_RECOMBINATION;

IMMUNE_RESPONSE_TO_TUMOR_CELL;
PROGRAMMED_CELL_DEATH

MTORC1_SIGNALING

EMT [18]

HSP90AA1
Heat shock protein 90 alpha

family class A member 1

overexpressed in tumors [19], carcinogenesis,
activation of oncogenic proteins involved in

cancer cell survival, adaptation to stress, growth,
proliferation, angiogenesis, signal transduction,
metabolic rewiring, motility and invasiveness

[20]

PT

FAM CELL_MORPHOGENESIS; CELL_PROJECTION_ORGANIZATION;
CMA & PROTEIN_CATABOLIC_PROCESS;

PROTEIN_FOLDING;
PRO-

TEIN_STABILIZATION;PROTEIN_CONTAINING_COMPLEX_ORGANIZATION;
MITOCHONDRION_ORGANIZATION;

TELOMERE_ORGANIZATION;
PROGRAMMED_CELL_DEATH

EMT [21]

HSPA1A
Heat shock 70 kDa protein 1A

variant

potential biomarker for BC, overexpressed in BC,
promotes progression, inhibits apoptosis,
extracellularly-activates proinflammatory

immunity [22]
PT

COMPLEMENT REGULATION_OF_CELL_DIFFERENTIATION;
MITOTIC_SPINDLE_ORGANIZATION; MITOTIC_CELL_CYCLE_PROCESS;

CYTOSKELETON_ORGANIZATION; PROTEIN_FOLDING/CMPF;
PROTEIN_REFOLDING;

PROTEIN_STABILIZATION;
LYSOSOMAL_TRANSPORT; PROTEIN_CATABOLIC_PROCESS;

RNA-CATABOLIC_PROCESS; MITOCHONDRION_ORGANIZATION; REGULA-
TION_OF_DNA_TEMPLATED_TRANSCRIPTION_IN_RESPONSE_TO_STRESS

PROGRAMMED_CELL_DEATH

EMT [23]

RAN
RAS-related nuclear

protein/GTP-binding nuclear
protein RAN

BC progression, associated with histological
grade of tumor, nerve invasion and metastasis,

vascular metastasis and Ki-67 [24]
PT

MYC_TARGETS_V1 INTRACELLULAR_PROTEIN_TRANSPORT;
MITOTIC_SPINDLE; MITOTIC_CELL_CYCLE_PROCESS;

CHROMOSOME_SEGREGATION;
RIBOSOME_BIOGENESIS

E2F_TARGETS

RPS14 40S ribosomal protein S14

overexpressed in ER+ BC, enhances cell
proliferation, cell cycle, metastasis, anti-apoptotic
affect, stimulates interferon signaling pathways

[25]

PT UPR CYTOPLASMIC_TRANSLATION;
RIBOSOME_BIOGENESIS/RIBOSOME_ASSEMBLY

RPL6 Human 60s
ribosomal protein L6

up-regulated in multidrug-resistant gastric
cancer cells, overexpression is anti-apoptotic,
accelerates cell growth and colony forming

ability [26]

PT MYC_TARGETS_V1
GOBP_CYTOPLASMIC_TRANSLATION;

RIBOSOME_BIOGENESIS/RIBOSOME_ASSEMBLY;
Peptide chain elongation (genecards.org)
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

IFITM2
Interferon- induced

transmembrane protein 2
tumor progression and lymphatic metastasis in

ccRCC [27] PT

IFN-α_RESPONSE DEFENSE_RESPONSE;
RESPONSE_TO_INTERFERON_ALPHA;

RESPONSE_TO_INTERFERON_BETA;
RESPONSE_TO_INTERFERON_GAMMA

IFN-γ_RESPONSE

TPM3 Tropomyosin alpha-3 chain overexpressed in BC, promotes cancer cell
migration [28], proliferation, invasion, EMT [29] PT EMT [30] CYTOSKELETON_ORGANIZATION

TUBA4A Tubulin alpha-4a chain
oncogenic role, drug resistance [31], cell

movement and development [32], microtentacles
formation and metastatic dissemination [33]

PT
MITOTIC_SPINDLE

MITOTIC_CELL_CYCLE;
CYTOSKELETON_ORGANIZATION

MTORC1_SIGNALING
UV_RESPONSE_UP

TUBB2A Tubulin beta-2A chain
overexpressed in invasive BC cell lines,

predictive biomarker for distant metastasis in BC,
cell proliferation, movement, adhesion [34]

PT
UPR MITOTIC_CELL_CYCLE;

CYTOSKELETON_ORGANIZATION;
CELL_MIGRATION

TNFA_SIGNALING_VIA_NFKB

LAMP2
Lysosome-associated

membrane protein type 2

overexpressed in BC tissue and BC cell lines,
promotes proliferation [35], protein degradation
and turnover [36]; co-overexpressed with HSPA8,

promotes cancer cell survival during OS [35]

PT
COMPLEMENT

LYSOSOMAL_TRANSPORT;
CMA & PROTEIN_CATABOLIC_PROCESS

PROTEIN_SECRETION
COAGULATION

PRKCSH

Protein kinase C substrate
80K-H/Hepatocystin

[37]/Glucosidase 2 subunit
beta

promotes tumorigenesis, overexpressed in
tumors, correlated with the progression of lymph

node metastasis in BC; induction of
tumor-promoting factors and tumor resistance to

ER stress [37]

PT UPR, ERAD pathway [37]
CARBOHYDRATE_DERIVATIVE_METABOLIC_PROCESS;

Metabolism of proteins;
protein N-glycosylation processing phase (genecards.org);

PPIA/CYPA
Peptidyl-prolyl isomerase

A/cyclophilin A

overexpressed in BC, cell survival [17], growth,
malignant transformation, metastasis, drug

resistance [38], anti-apoptosis [39]; promotes
EMT in NSCLC cells [40]

PT

GLYCOLYSIS CELL_ADHESION;
CELL_MIGRATION;

PROTEIN_FOLDING;
PRO-

TEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION_OR_REMOVAL;
CELL_DEATH_IN_RESPONSE_TO_OXIDATIVE_STRESS

MYC_TARGETS_V1

EMT [40]

ENO2 Neuron–specific enolase
promotes cell proliferation, glycolysis [41];

overexpressed in lung cancer [42] and glycolytic
subtype of TNBC [43]

PT

GLYCOLYSIS

CARBOHYDRATE_METABOLIC_PROCESS

HYPOXIA
APOPTOSIS

EMT
FAM

UV_RESPONSE_UP

SLC25A5/AAC2/
ANT2

Solute carrier family 25
member 5/mitochondrial

ADP/ATP carrier-2/adenine
nucleotide translocase 2

overexpressed in cancer cells, including BC,
induces cellsurvival in hypoxic condition,
depletion inhibits tumor cell growth and

proliferation, stimulates apoptosis, and facilitates
chemotherapy-induced apoptosis [44,45]

PT OXPHOS

MITOCHONDRION_ORGANIZATION; AUTOPHAGY_OF_MITOCHONDRION;
CHROMOSOME_SEGREGATION;

NUCLEOTIDE_TRANSMEMBRANE_TRANSPORT;
PROGRAMMED_CELL_DEATH
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

EEF1A1 Eukaryotic translation
elongation factor-1 alpha-1

overexpressed in tumors, including BC, controls
cell proliferation and cell death [46], promotes

heat shock response, protecting cancer cells from
proteotoxic stress, sustains cancer cell survival
[47], oncogenesis, pro-apoptotic/anti-apoptotic

activity

PT - CMA & PROTEIN_CATABOLIC_PROCESS; TRANSLATIONAL_ELONGATION;
Cytoskeleton modulation

CAND1
Cullin-associated and

neddylation dissociated
protein 1

overexpressed in PCa, promotes cell viability,
proliferation, anti-apoptotic role [48]; mediates

invasion and metastasis in ER+ BC through
activation of estrogen and androgen signaling

pathways [49]

PT - REGULATION_OF_DNA_TEMPLATED_TRANSCRIPTION_INITIATION;
Centriole duplication control [48]

CREBZF CREB/ATF bZIP transcription
factor

putative tumor-suppressive activity, participates
in modulation of p53 [50], reduces MCF7 cell

proliferation, migration, and invasion, its
knockdown facilitating BC development [51]

AT - GOBP_CHROMATIN_ORGANIZATION

Downregulated proteins and pathways

FASN Fatty acid synthase

overexpressed in cancer cells, enhances cancer
malignant progression [52], tumor cell migration,

metastasis [53]; inhibition reduces cell
proliferation, suppresses migration and invasion

and induces apoptosis [54]

AT

FAM
LIPID_BIOSYNTHETIC_PROCESS;

FATTY_ACID_BIOSYNTHETIC_PROCESS;
FATTY_ACID_METABOLIC_PROCESS

CHOLESTEROL_HOMEOSTASIS

ESTROGEN_RESPONSE_EARLY

TPI1 Triosephosphate isomerase

upregulated in multiple cancers, promotes tumor
development and progression of BC in tissue and

cell lines, promotes glycolysis, proliferation,
metastasis, activates PI3K/Akt/mTOR, regulates

EMT [55]

AT
GLYCOLYSIS

CARBOHYDRATE_METABOLIC_PROCESS
MTORC1_SIGNALING

HYPOXIA

PRDX1 Peroxiredoxin-1

regulates cell growth, differentiation, apoptosis,
overexpressed in BC tissues and cell lines,

controversial role, it could act as tumor
suppressor or as a suppressor of tumor cell death

[56]; knockout inhibits in vivo growth of
mammary tumors derived from MCF7 cells and

reduces survival of MCF7 cells under stress
condition [57]; tumor suppressor in BC, its

deletion promotes tumor growth in mice [58];
loss of PRDX1 results in development of

cancer-associated fibroblasts (CAFs) in BC [59]

AT [57]

PEROXIZOME CELL_REDOX_HOMEOSTASIS

ROS

PDIA4 Protein disulfide isomerase A4
upregulated in BC, inhibition promotes reduction

of OC cells growth and proliferation, induces
apoptosis in MM cells [60]

AT - PROTEIN_FOLDING
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

SOD1
Superoxide dismutase 1

(Cu-Zn)
downregulation promotes apoptosis and

oncogene-induced senescence [61] AT

ROS CYTOSKELETON_ORGANIZATION;
CELL_DEATH_IN_RESPONSE_TO_OS;

LIPID_METABOLIC_PROCESS;
INFLAMMATORY_RESPONSE;
PROGRAMMED_CELL_DEATH

GLYCOLYSIS
PEROXIZOME

PROTEIN_SECRETION

ENO1 Alpha-enolase
overexpressed in BC, involved in cell growth,

hypoxia tolerance, autoimmune activities,
glycolysis pathway [62]

AT
GLYCOLYSIS

CARBOHYDRATE_METABOLIC_PROCESSHYPOXIA
MTORC1_SIGNALING

TPD52L2 Tumor protein D52-like 2

overexpressed in BC, OC and PCa; its
knockdown suppressed cell colony-forming

potency, cell growth, and induces apoptosis and
ER stressof oxaliplatin-resistant gastric

carcinoma cells [63]

AT ANDROGEN_RESPONSE CARBOHYDRATE_METABOLIC_PROCESS

ACTN4 Actinin alpha 4

BC tumorigenesis, cell movement, proliferation,
metastasis; depletion results in reduced
proliferation, migration and metastasis,
decreases estrogen-mediated cancer cell

proliferation in MCF7 [64]

AT

APICAL_JUNCTION

CELL_MORPHOGENESIS; CYTOSKELETON_ORGANIZATION;
TRANSMEMBRANE_TRANSPORTMITOTICSPINDLE

IQGAP2 RAS GTP-ase-activating-like
protein

tumor suppressor in most cancers,
downregulation promotes proliferation and EMT,
inhibits apoptosis, stimulates metastatic abilities

of BC cells and lymphovascular invasion [65]

PT ANDROGEN_RESPONSE
CYTOSKELETON_ORGANIZATION;

ACTIN_CYTOSKELETON_REORGANIZATION;
ACTIN_FILAMENT_BASED_PROCESS

CALM1 Calcium-calmodulin
N-terminal domain

knockdown inhibits proliferation, invasion,
migration, induces cell cycle arrest and increases

apoptosis in ESCC [66]
AT COMPLEMENT

CYTOSOLIC_CALCIUM_ION_TRANSPORT; TRANSMEMBRANE_TRANSPORT;
CELL_CYCLE_PROCESS; MITOTIC_CELL_CYCLE;

CYTOKINESIS

AHSG Fetuin-A/Alpha2- Heremans
Schmid (HS) glycoprotein

synthetized, modified and secreted by tumor
cells, downregulated, reduces growth, motility,

adhesion and attachment of tumor cells [67]
AT - INFLAMMATORY_RESPONSE; VESICLE_MEDIATED_TRANSPORT; cell

attachment [67]

EEF1A1 Eukaryotic translation
elongation factor-1 alpha-1

overexpressed in tumors, including BC, controls
cell proliferation and cell death [46], promotes

heat shock response, protecting cancer cells from
proteotoxic stress, sustains cancer cell survival
[47], oncogenesis, pro-apoptotic/anti-apoptotic

activity

AT - CMA &PROTEIN_CATABOLIC_PROCESS; TRANSLATIONAL_ELONGATION

PCBP1/
hn-RNP-E1

(HNRNP E1)

polyC-RNA-binding protein
1/heterogeneous nuclear

riboproteinE1

tumor suppressor, downregulated in human
cancers promotes proliferation, migration and

invasion of LUAD [68]
PT - REGULATION_OF_DNA-TEMPLATED TRANSCRIPTION
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

Downregulated JTB condition

Upregulated proteins and pathways

PSME1/
PA28α

Proteasome activator complex
subunit 1 isoform 4

tumor-associated protein/putative tumor
biomarker/upregulated in hESCC [69], PC [70],

SKCM [71], MM, when promotes cell growth and
proliferation [72], anti-apoptotic [73];

downregulated in HCC [74]

PT

IFN-α_RESPONSE

PROTEIN_CATABOLIC_PROCESS; MITOTIC_CELL_CYCLE
IFN-γ_RESPONSE

ENO2 Neurone –specific enolase
promotes cell proliferation, glycolysis [41];

overexpressed in lung cancer [42] and glycolytic
subtype of TNBC [43]

PT

GLYCOLYSIS

CARBOHYDRATE_METABOLIC_PROCESS

HYPOXIA
APOPTOSIS

FAM
EMT

UV_RESPONSE_UP

PGK1 Phosphoglycerate kinase 1

overexpression associated with poor prognosis in
BC, progression, metastases, potential survival

biomarker and invasion promoter, regulates
HIF-1α-mediated EMT [75]

PT

GLYCOLYSIS

CARBOHYDRATE_METABOLIC_PROCESSMTORC1-SIGNALING

HYPOXIA

POTEKP/ACTBL3
POTE ankyrin domain family

member K/beta-actin-like
protein 3

involved in HCC [76], upregulated in HGSC [77];
lung cancer exosome-specific protein [78] PT - CYTOSKELETON_ORGANIZATION

TUBA1A Tubulin alpha-1a

upregulated in BC tissue [79], involved in cell
division and cell movement; overexpression was
correlated with poor overall survival and a more

aggressive phenotype in GC [80]

PT -

MICROTUBULE_BASED_PROCESS;
CELL_DIVISION;

CELL_JUNCTION_ORGANIZATION;
CYTOSKELETON_ORGANIZATION;

CYTOSKELETON_DEPENDENT_INTRACELLULAR_TRANSPORT

TUBB Beta-tubulin upregulated in BC tissue [79] PT E2F_TARGETS

MICROTUBULE_BASED_PROCESS;
CELL_DIVISION;

CELL_CYCLE; CYTOSKELETON_ORGANIZATION;
CYTOSKELETON_DEPENDENT_INTRACELLULAR_TRANSPORT;

CELL_JUNCTION_ORGANIZATION

HSPE1/
CH10

Heat shock protein family E
(HSP10) member/10kDa HSP

tumorigenesis [81], cancer cell survival,
regulation of cell death [17] PT

MYC_TARGETS_V1 PROTEIN_FOLDING/CMPF;
PROGRAMMED_CELL_DEATHMTORC1-SIGNALING

HSPD1
Heat shock protein family D

(HSP60) member 1

cancer cell survival, regulation of cell death,
proliferation [17], represses E-cadherin, promotes

cell invasion, migration, poor prognosis [18]
PT

MYC_TARGETS_V1 BIOLOGICAL_ADHESION;
PROTEIN_FOLDING;

PROTEIN_REFOLDING;
PROTEIN_MATURATION;

PROTEIN_CONTAINING_COMPLEX_ORGANIZATION;
PROTEIN_STABILIZATION;

PROTEIN_INTRACELLULAR_TRANSPORT;
TRANSMEMBRANE_TRANSPORT;

PRO-
TEIN_TRANSMEMBRANE_TRANSPORT_INTO_INTRACELLULAR_ORGANELLE;

MITOCHONDRION_ORGANIZATION;
DNA_RECOMBINATION;

IMMUNE_RESPONSE_TO_TUMOR_CELL;
PROGRAMMED_CELL_DEATH

MTORC1_
SIGNALING

EMT [18]
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

HSPA1A Heat shock 70 kDa protein 1A
variant

potential biomarker for BC, overexpressed in BC,
promotes progression, inhibits apoptosis,
extracellularly-activates proinflammatory

immunity [22]

PT COMPLEMENT

REGULATION_OF_CELL_DIFFERENTIATION;
MITOTIC_SPINDLE_ORGANIZATION; MITOTIC_CELL_CYCLE_PROCESS;

CYTOSKELETON_ORGANIZATION; PROTEIN_FOLDING/CMPF;
PROTEIN_REFOLDING;

PROTEIN_STABILIZATION;
LYSOSOMAL_TRANSPORT; PROTEIN_CATABOLIC_PROCESS;

RNA-CATABOLIC_PROCESS; MITOCHONDRION_ORGANIZATION; REGULA-
TION_OF_DNA_TEMPLATED_TRANSCRIPTION_IN_RESPONSE_TO_STRESS

PROGRAMMED_CELL_DEATH

TMSB10 Thymosin beta 10

overexpressed in many cancers: RCC, pancreatic,
lung, and thyroid carcinoma, promotes

migration, invasion, and EMT [82]; positively
associated with high-grade aggressive BC,

significantly elevated in BC cells and tissues,
proliferation, invasion migration of BC cells by

activation of Akt/FOXO signaling, valuable
serum biomarker for diagnosis and potential

therapeutic target in BC [83]

PT EMT [83] CYTOSKELETON_ORGANIZATION; CELL_MIGRATION

PARK7/DJ-1 Parkinsonism associated
deglycase DJ-1

oncogene upregulated in various cancers,
involved in tumor initiation, progression,

proliferation, metastasis, recurrence, resistance to
chemotherapy [84], overexpression increases cell

survival; highly expressed in cytoplasm of
invasive BC cells [85]

PT -

RAS_PROTEIN_SIGNAL_TRANSDUCTION;
INTRACELLULAR_PROTEIN_TRANSPORT;

PROTEIN_MODIFICATION_BY_SMALL_PROTEIN_REMOVAL;
PROTEIN_CATABOLIC_PROCES;

PROTEIN_REPAIR;
CELLULAR_AMINO_ACID_BIOSYNTHETIC_PROCESS;

NUCLEOBASE_CONTAINING_SMALL_MOLECULE_METABOLIC_PROCESS;
DNA_REPAIR;

TRANSMEMBRANE_TRANSPORT;
REGULATION_OF_SIGNALING_RECEPTOR_ACTIVITY;

REGULATION_OF_TRANSCRIPTION_REGULATORY_REGION_DNA_BINDING;
GENERATION_OF_PRECURSOR_METABOLITES_AND_ENERGY;

MITOCHONDRION_ORGANIZATION;
INFLAMMATORY_RESPONSE;

PROGRAMMED_CELL_DEATH;
CELL_DEATH_IN_RESPONSE_TO_HYDROGEN_PEROXIDE;

DETOXIFICATION

PRDX2 Peroxiredoxin 2

overexpressed in various cancers [86], highly
upregulated in BC [57]; dual effect in

carcinogenesis, in BC induces selective growth of
metastatic cancer cells in lung by protecting them

against OS [87]; reduces OS, cell damage and
apoptosis [88]

PT

PEROXIZOME

CELL_REDOX_HOMEOSTASIS
ROS
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

GAPDH1
Glyceraldehyde-3-phosphate

dehydrogenase 1

overexpressed in many cancers [89], in
association with BC cell proliferation and tumor

aggressiveness [90]; several PTMs have
pro-apoptotic role [73]; promotes cancer growth

and metastasis by affecting EMT [91]

PT

GYCOLYSIS CARBOHYDRATE_METABOLIC_PROCESS; nuclear tRNA export, DNA
replication and repair, endocytosis, exocytosis, cytoskeletal organization, iron
metabolism, cell death [89], membrane fusion, vesicle secretion, transcription

co-activation, cell cycle regulation, mRNA stabilization [92];
DEFENSE_RESPONSE

HYPOXIA

EMT [91]

ACTC1 Actin alpha cardiac muscle 1
upregulated in BC and other malignancies [93];
promotes resistance to apoptosis, cell survival,

controls cell migration [94]
PT

KRAS_SIGNALING_DN Cell differentiation, anatomical structure development, cell cytoskeleton
organization, programmed cell deathAPICAL_JUNCTION

EMT [95]

PPIA/CYPA Peptidylprolyl isomerase A
overexpressed in BC, cell survival [17], growth,

malignant transformation, metastasis, drug
resistance [38], anti-apoptosis [39]

PT

GLYCOLYSIS CELL_ADHESION;
CELL_MIGRATION;

PROTEIN_FOLDING;
PRO-

TEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION_OR_REMOVAL;
CELL_DEATH_IN_RESPONSE_TO_OS

MYC_TARGETS_V1

Downregulated proteins and pathways

ACTG1 Actin gamma 1

overexpressed in skin cancer and HCC, promotes
growth, migration, proliferation, inhibits

mitochondrial apoptotic pathway, increases
aerobic glycolysis, role in microtubule integrity;

depletion in BC cells resulted in centrosome
amplification, formation of multipolar spindles,
defects in chromosome segregation, leading to

mitotic abnormalities [93]

AT

APICAL_JUNCTION

ACTOMYOSIN_STRUCTURE_ORGANIZATION;
CYTOSKELETON_ORGANIZATION; CELL_MIGRATION;

CELL_JUNCTION_ORGANIZATION; BIOLOGICAL_ADHESIONCHOLESTEROL_HOMEOSTASIS

TPI1 Triosephosphate isomerase

upregulated in multiple cancers, promotes tumor
development and progression of BC in tissue and

cell lines, promotes glycolysis, proliferation,
metastasis, activates PI3K/Akt/mTOR, regulates

EMT [55]

AT

GLYCOLYSIS

CARBOHYDRATE_METABOLIC_PROCESS
MTORC1_SIGNALING

HYPOXIA

HSPA1A Heat shock 70kDa protein 1A
variant

potential biomarker for BC, overexpressed in BC,
promotes progression, inhibits apoptosis,
extracellularly-activates proinflammatory

immunity [22]

AT COMPLEMENT

REGULATION_OF_CELL_DIFFERENTIATION;
MITOTIC_SPINDLE_ORGANIZATION;

MITOTIC_CELL_CYCLE_PROCESS/CELL_CYCLE_PROCESS;
CYTOSKELETON_ORGANIZATION; PROTEIN_FOLDING/CMPF;
PROTEIN_STABILIZATION; PROTEIN_CONTAINING_COMPLEX_

ORGANIZATION;
LYSOSOMAL_TRANSPORT; PROTEIN_CATABOLIC_PROCESS;

RNA-CATABOLIC_PROCESS; MITOCHONDRION_ORGANIZATION; REGULA-
TION_OF_DNA_TEMPLATED_TRANSCRIPTION_IN_RESPONSE_TO_STRESS

PROGRAMMED_CELL_DEATH

HSPB1 Heat shock 27 kDa protein 1
overexpressed in BC, downregulation was

correlated with PTEN increase (tumor
suppressor) that negatively regulates PI3K/AKT

AT APOPTOSIS

PROTEIN_FOLDING/CMPF;
CELL_ADHESION; CELL_MIGRATION;

CYTOSKELETON_DEPENDENT_INTRACELLULAR_TRANSPORT;
CELL_DEATH_IN_RESPONSE_TO_OXIDATIVE_STRESS;

PROGRAMMED_CELL_DEATH
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

HSPA8 Heat shock 70 kDa protein 8 depletion suppresses cancer cells growth,
induces apoptosis, and cell cycle arrest [96] AT G2M_CHECKPOINT

PROTEIN_FOLDING/CMPF;
PROTEIN_REFOLDING;PROTEIN_CONTAINING_COMPLEX_ORGANIZATION;

LYSOSOMAL_TRANSPORT;
CMA & PROTEIN_CATABOLIC_PROCESS; CELL_JUNCTION_ORGANIZATION;

CYTOSKELETON_DEPENDENT_INTRACELLULAR_TRANSPORT

FASN Fatty acid synthase
inhibition reduces cell proliferation, suppresses
migration and invasion and induces apoptosis

[54]
AT

FAM LIPID_BIOSYNTHETIC_PROCESS;
FATTY_ACID_BIOSYNTHETIC_PROCESS;

FATTY_ACID_METABOLIC_PROCESS
CHOLESTEROL
HOMEOSTASIS

ESTROGEN_RESPONSE_EARLY

EEF1A1 Eukaryotic translation
elongation factor-1 alpha-1

overexpressed in tumors, including BC, controls
cell proliferation and cell death [46], promotes

heat shock response, protecting cancer cells from
proteotoxic stress, sustains cancer cell survival
[47], oncogenesis, pro-apoptotic/anti-apoptotic

activity

AT - CMA & PROTEIN_CATABOLIC_PROCESS; TRANSLATIONAL_ELONGATION

SOD1
Superoxide dismutase 1

(Cu-Zn)
downregulation promotes apoptosis and

oncogene-induced senescence [61] AT

ROS CYTOSKELETON_ORGANIZATION;
CELL_DEATH_IN_RESPONSE_TO_OXIDATIVE_STRESS;

LIPID_METABOLIC_PROCESS;
INFLAMMATORY_RESPONSE;
PROGRAMMED_CELL_DEATH

GLYCOLYSIS
PEROXIZOME

PROTEIN_SECRETION
APOPTOSIS

MKI67 Proliferation marker protein
Ki-67

overexpressed in cancer cells [97];
downregulated, reduces migration, invasion,

tumor progression; knockout induces
transcriptome remodeling, alters EMT and

suppresses stem cell characteristics [98]

AT G2M_CHECKPOINT

CHROMATIN_ORGANIZATION;
CHROMOSOME_ORGANIZATION;
CHROMOSOME_SEGREGATION;
MITOTIC_NUCLEAR_DIVISION

CALM1 Calcium-calmodulin
N-terminal domain

knockdown inhibits proliferation, invasion,
migration, induces cell cycle arrest and increases

apoptosis in ESCC [66]
AT COMPLEMENT

CYTOSOLIC_CALCIUM_ION_TRANSPORT; TRANSMEMBRANE_TRANSPORT;
CELL_CYCLE_PROCESS; MITOTIC_CELL_CYCLE;

CYTOKINESIS

IFITM2
Interferon- induced

transmembrane protein 2

downregulation inhibits migration and invasion
in ccRCC [27]; knocking out IFITM2 enhanced
activation of the endogenous IFN-α pathway

that may alter the immune and stromal cells in
TME enhancing the invasive abilities of cancer

cells [99]

AT/
PT

IFN-α_RESPONSE
DEFENSE_RESPONSE;

RESPONSE_TO_INTERFERON_ALPHA;
RESPONSE_TO_INTERFERON_BETA;

RESPONSE_TO_INTERFERON_GAMMA
IFN-γ_RESPONSE

RPS5 40S ribosomal protein S5
when overexpressed, negatively regulates the
expression of p53 and plays an anti-apoptotic

role in cancer cells [100]
AT MYC_TARGETS_V1 CYTOPLASMIC_TRANSLATION;

RIBOSOME_BIOGENESIS/RIBOSOME_ASSEMBLY

CTNNB1 Catenin beta 1

Nuclear CTNNB1 plays a key role in most
cancers as an oncogene; downregulation

inhibited cell proliferation, migration, and
invasion (EMT) and induced apoptosis in RCC

[101]

AT

WNT_BETA_CATENIN_SIGNALING CELL_MORPHOGENESIS; BIOLOGICAL_ADHESION;
CELL_CELL_JUNCTION_ASSEMBLY/CELL_JUNCTION_ORGANIZATION;

REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION;
CELL_MIGRATION;

REGULATION_OF_DNA_TEMPLATED_TRANSCRIPTION_ELONGATION;
RESPONSE_TO_ESTRADIOL;

TELOMERE_ORGANIZATION;
PROGRAMMED_CELL_DEATH

CHOLESTEROL_HOMEOSTASIS
APOPTOSIS

TGF_BETA_SIGNALING

EMT [102]
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Table 3. Cont.

Gene Symbol Gene Description Expression in Malignancies and Putative Neoplastic Effects HALLMARK_PATHWAYS GOBP

ISG15
Interferon-stimulated

15/Ubiquitin-like protein
ISG15

putative oncogene, aberrantly expressed in
human cancers, protumor/antitumor functions,

overexpressed in highly metastatic MDA-MB-231
BC cell line, enhances proliferation or

invasiveness [103], cell cycle progression, cell
motility and tumor growth [104], overexpressed

in BC tissue [105]

AT

IFN-α_RESPONSE
PROTEIN_CONTAINING_COMPLEX_ORGANIZATION;

PROTEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION;
PRO-

TEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION_OR_REMOVAL;
DEFENSE_RESPONSE, immune system modulation [105]

IFN-γ_RESPONSE

ANXA2 Annexin A

depletion resulted in ROS elevation upon OS and
activation of ROS-mediated cellular

damage/death, elevated protein oxidation,
decreased tumor growth [106]

AT HYPOXIA
PROTEIN_MATURATION; cellular redox regulation [106]

MEMBRANE_ORGANIZATION;
VESICLE_MEDIATED_TRANSPORT

AML-acute myeloid leukemia; AT-antitumorigenic; CC-cervical cancer; CMA-chaperone-mediated autophagy; CMPF-chaperone-mediated protein folding; EOC-epithelial ovarian cancer;
ESCC-esophageal squamous cell carcinoma; EMT-epithelial-to-mesenchymal transition; ER-endoplasmic reticulum; ERAD-ER-associated degradation; FAM-fatty acid metabolism;
GC-gastric cancer; GOBF-gene ontology biological process; HCC-hepatocellular carcinoma; HGSC-high-grade serous cancer; IFN-α-interferon alpha; IFN-γ-interferon gamma; LUAD-
lung adenocarcinoma; MM-multiple myeloma; NSCLC-non-small cell lung cancer; OC-ovarian cancer; OXPHOS-oxidative phosphorylation; PCa-prostate cancer; PT-protumorigenic;
RCC-renal cell carcinoma; ROS-REACTIVE_OXYGEN_SPECIES_PATHWAY; SKCM-skin cutaneous melanoma; UPR-unfolded protein response.

Table 4. Protumorigenic (in red) and antitumorigenic roles (in green) of JTB-related proteins.
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HSPD1 [18]
HSP90AA1 [107] [21]
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RAN
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TUBB2A
RPS14
PRKCSH
IFITM2
LAMP2
TPM3 [30]
SLC25A5 [45]
D in UP
TPI1
FASN
CALM1
ACTN4
TPD52L2
SOD1
ENO1
YWHAQ
PRDX1 [59]
IQGAP2 [65] [65]
UP in D
HSPD1 [18]
HSPE1
HSPA1A [23]
PPIA/CYPA [40]
PGK1 [108]
ENO2
PSME1
GAPDH1 [91]
PRDX2
TMSB10 [82]
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TUBA1A [80]
TUBB
ACTC1 [95]
PARK7 [84] [84]
D in D
CTNNB1 [109]
TPI1
FASN
SOD1
CALM1
ACTG1
HSPA1A [23]
HSPB1
HSPA8
ANXA2 [106]
ISG15
IFITM2
MKI67
RPS5

UP in UP JTB-upregulated proteins in overexpressed JTB condition; D in UP-downregulated proteins in overexpressed JTB condition; UP in D-upregulated protein in downregulated JTB
condition; D in D-downregulated proteins in downregulated JTB condition.
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The apical junctional complex (AJC) regulates cell-to-cell adhesion, the paracellular
transport, gene transcription, cell proliferation and differentiation, and maintain epithelial
cell polarity, acting as tumor suppressor or promoter of cell transformation, migration
and metastasis [111]. AJC alteration, as well as the disorganization of the connected actin
cytoskeleton, plays an essential role in disturbance of epithelial tissue architecture and
cell homeostasis leading to epithelial cancer progression [112]. Three proteins involved in
HALLMARK_APICAL_JUNCTION pathway, ACTC1, actin gamma 1 (ACTG1), and actin-
binding protein 4 (ACTN4), have been detected as dysregulated in this experiment. The
apical junctional complex was identified as downregulated in upregulated JTB condition,
according to GSEA algorithm. ACTC1 and ACTG1 are specific isoforms of actin, a key
structural protein that makes up the cytoskeleton. Early aberrant expression of actin can
be used as a biomarker for malignant transformation, leading to increased migration,
cell proliferation and drug resistance [93]. Upregulated ACTC1 was reported in various
tumors, such as head and neck cancer, bladder cancer, urothelial cancer, prostate cancer
(PCa), NSCLC, BC and glioblastoma (GBM), promoting distant metastasis or multi-drug
resistance [93]. There are evidences that indicate the potential role of ACTC1 overexpression
in cell motility and cancer cell survival [93]. ACTG1 silencing suppresses the growth of
PCa tumors and EMT through MAPK/ERK signaling pathway [113]. Also downregulated
in this experiment, ACTN4, that belongs to the family of actin-binding proteins, when
overexpressed has been associated with cancer development, aggressiveness, invasion and
metastasis, sustaining cell proliferation, motility and EMT [114]. It is predominantly express
in the cellular protrusions, such as filopodia and lamellipodia, that encourage the invasive
phenotype in cancer cells [115]. However, several proteins that are known as promoters of
EMT and that are usually upregulated in cancer cells were found to be downregulated in JTB
dysregulated condition. Thus, beta-catenin (CTNNB1), a known EMT-related protein [116],
was found as downregulated in this experiment. At this point, it is important to consider
that only nuclear accumulation of mutated CTNNB1 was reported to upregulate the EMT
process, while the wild type of CTNNB1 showed membrane localization in correlation with
a lack of downregulation of claudin-7 and E-cadherin, which could lead to an increasing in
cell motility [102]. Downregulated CTNNB1, among other catenin family members, and
downregulated expression of cadherin may disrupt the normal cell-cell adhesion machinery
in malignant transformed cells that may contribute to enhanced migration, proliferation,
invasion and metastasis [109].

According to GSEA algorithm, HALLMARK_MITOTIC_SPINDLE was found as up-
regulated in upregulated JTB condition as well as the EMT pathway, in accordance with
our previous results obtained by SDS-page proteomics [13]. Different tubulin isoforms
and their posttranslational modifications (PTMs) emphasized an impact on mitotic spindle
assembly and mitosis [117]. We identified as upregulated four tubulins: tubulin alpha-4a
chain (TUBA4A), tubulin beta-2A chain (TUBB2A), tubulin alpha-1a (TUBA1A), and beta
tubulin (TUBB). Significantly overexpressed in migratory BC cells [32] and identified as
a highly expressed gene in primary breast tumors with brain-specific metastasis [118],
TUBA4A was found as overexpressed in MCF7 BC cell line in upregulated JTB condition of
this experiment. TUBA4A is a member of alpha-tubulin family involved in cellular move-
ment and development [32] by formation of tubulin-based microtentacles as cytoskeletal
structures that sustain the metastatic dissemination, in association with EMT pathway [33].
High TUBA1A expression was correlated with mTOR and p38 MAPK pathways, which
may control proliferation, growth, and survival of cancer cells; elevated TUBA1A expres-
sion was correlated with invasive subtypesand poor overall survival in GC patients [80].
TUBB2A might control the migration of BC cells from a primary tumor to distant metastatic
sites by regulation of the adhesion and proliferation of BC cells [34].

HSPs related to JTB dysregulation promote EMT. Several heat shock proteins
(HSPs) have been reported as EMT inductors associated with increased invasiveness of
cancer cells [119]. HSPD1 might repress E-cadherin expression and promotes metastatic
characters such as EMT of buccal mucosa squamous cell carcinoma (BMSCC) cells [18].
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Also, the upregulated HSP90AA1 promotes the expression of EMT biomarkers in MDA-
MB-231 cells [21]. HSPD1 was established as a protein biomarker for metastatic BC related
to lymph node metastasis and regional metastasis [34]. The overexpression of HSPA1A
chaperone was found to elevate cell motility and to upregulate the EMT biomarkers in
colon cancer cells incubated in hyperglycemic condition associated with tumorigenesis [23].

JTB-related metabolic reprogramming promotes EMT. EMT process is subjected to
the metabolic regulation, while EMT rewires the metabolic program to adapt to cellular
changes during EMT [120]. Usually, the EMT-derived BC cells emphasize the overexpres-
sion of several enzymes and transporters related to aerobic glycolysis [121]. Thus, the
overexpression of enolase 2/neuron-specific enolase (ENO2/NSE), an important glycolytic
enzyme, has been reported as an EMT inductor in pancreatic cancer cells, thereby promoting
metastasis [122]. Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1), also upregu-
lated in JTB downregulated condition, is known to play an important role in metabolism
and gene transcription; it promotes cancer growth and metastasis by affecting EMT through
upregulation of SNAIL expression [91]. Playing an important role in tumor metabolism,
phosphoglycerate kinase 1 (PGK1), upregulated in JTB downregulated condition in this
experiment, under hypoxic conditions, promotes glycolysis and increases stem-cell like
abilities and the EMT in oral squamous cell carcinoma (OSCC) cells through the AKT
signaling pathway [108]. Peptidyl-prolyl isomerase A/cyclophilin A (PPIA/CYPA) has
been reported as overexpressed in BC, promoting cell survival [17], cancer cell growth,
malignant transformation, metastasis, drug resistance [38], anti-apoptosis [39], and EMT in
NSCLC cells via p38 MAPK [40].

To survive and proliferate in both well oxygenated and hypoxic microenvironments,
cancer cells develop three cellular metabolic phenotypes: glycolytic (aerobic glycoly-
sis), oxidative (oxidative phosphorylation), and hybrid, based on both OXPHOS and
glycolysis, which are simultaneously activated [123]. Increased glycolysis is commonly
exhibited in cancer cells, allowing them to produce energy, known as the Warburg ef-
fect [124]. Based on GSEA results, we found that glycolysis-related enzymes, such as
ENO2, PPIA, PGK1, and GAPDH1 described above as promoters of EMT, were differen-
tially overexpressed when JTP was dysregulated in MCF7 cells. In contrast, SOD1, that
is also an adipogenesis-related enzyme, ENO1, and TPI1 were downregulated. HALL-
MARK_FATTY_ACID_METABOLISM was found to be significantly upregulated in overex-
pressed JTB condition in correlation with the overexpression of ENO2, a glycolysis-related
enzyme that contributes to the increased fatty acid production [125] and HSP90AA1 that
may activate the MTORC1 signaling pathway [107], which is upregulated in multiple can-
cer types, including BC [126], leading to cell growth and tumor proliferation and playing a
significant role in endocrine resistance in BC [127]. The oncogenic signal transduction path-
way PI3K-AKT-mTOR regulates fatty acid metabolism [128]. However, the downregulation
of the fatty acid synthase (FASN) enzyme has been observed in both dysregulated JTB
conditions in this experiment, while an overexpression of FASN has been previously iden-
tified in the overexpressed JTB condition in the SDS-PAGE-based proteomics [13]. FASN
was reported as highly upregulated in BC cell lines, including the hormone-dependent
MCF7 line [129], and in a variety of human cancers in association with invasion and poor
prognosis [130]. It is well known that the FASN inhibition could suppress or reduce the
proliferation, migration, invasion and induces apoptosis by inhibiting β-catenin and C-Myc
in HepG2 hepatoma carcinoma cells [54]. However, it is possible that during the initiation
of the EMT process, cancer cells switch from a rapid cell growth and a proliferative state,
characterized by high de novo lipid biosynthesis that requires FASN, to a migratory phe-
notype, in which FA uptake or selective release of FA from membrane lipids leads to the
formation of signaling molecules involved in cell migration and invasion [131]. The mito-
chondrial solute carrier family 25-member 5 (SLC25A5) protein, also known as ANT2, here
overexpressed in overexpressed JTB condition, has been reported as positively correlated
to the oxidative phosphorylation (OXPHOS). SLC25A5 is known to regulate adipogenesis
by modulation of extracellular signal-related kinase (ERK), a member of MAPK signaling
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pathway [132], that promotes cell proliferation, angiogenesis, cell differentiation, and cell
survival [133].

JTB-related proteins involved in cellular proteostasis may promote EMT. Enhanced
regulation of cellular proteostasis is observed in tumors, suggesting the essential role of
proteostasis in tumorigenesis and cancer development [134]. The intracellular pathways
that assure the protein quality control are essential for survival of BC cells that are ex-
posed to stressful condition, such as an increased in protein translation or accumulation
of unfolded proteins, as well as microenvironmental factors, such as altered pH and gly-
cosylation, oxidative stress (OS), cellular damage, nutrient deprivation, viral infection,
and hypoxia [135,136], which lead together to endoplasmic reticulum (ER) stress [135].
Dysregulation in protein synthesis, transport, folding, degradation and secretion in cancer
cells lead to overexpression of ER chaperones that facilitate selective degradation of target
misfolded proteins through unfolded protein response (UPR) and ubiquitin-proteasome
system (UPS) or by autophagy-lysosomal pathways (ALPs) [136].

JTB overexpression was here associated with an alteration in the expression of proteins
that have been functionally linked to selective degradation of target misfolded proteins
by HALLMARK_UNFOLDED_PROTEIN_RESPONSE (UPR) (RPS14, RPL6, TUBB2A,
and PRKCSH) and chaperone-mediated autophagy (CMA) (LAMP2, HSP90AA1, and
EEF1A1), promoting proliferation, migration and survival cancer cells in stress condition.
RPS14, RPL6, PRKCSH and TUBB2A were detected as overexpressed in overexpressed
JTB condition. Ribosomal protein S14 (RPS14) is overexpressed in ER+ BC cells, while
its downregulation inhibited cell proliferation and metastasis and induced apoptosis [25].
Protein kinase C substrate 80K-H/Hepatocystin [37]/Glucosidase 2 subunit beta (PRKCSH)
contributes to tumorigenesis, being upregulated in various tumors, including BC [37].
PRKCSH is involved in induction of tumor-promoting factors and tumor resistance to ER
stress by selective activation of IRE1 branch of UPR [37].

Cancer cells highlight the ability to exploit UPR signaling induced by accumulation of
misfolded and unfolded proteins to promote EMT [137]. Many types of cancer cells over-
express CMA as a proteostatic process for activation of protumorigenic and pro-survival
pathways by decreasing of the cellular stress level in growing tumors and maintaining
of the oncogenic load [138]. However, CMA may develop a favorable impact in cancer
progression or could exert an antioncogenic effect by degradation of pro-oncogenic pro-
teins [139]. In overexpressed JTB condition, LAMP2, HSP90AA1, and EEF1A1 proteins
are overexpressed, being involved in CMA biological process. As a key receptor pro-
tein in CMA pathway, the lysosome-associated membrane protein type 2A (LAMP2A)
is present in lysosomal membrane, being usually overexpressed in BC tissues than in
corresponding healthy tissues as well as in different cancer cell lines, contributing to their
proliferation [35]. It is involved in chaperone-mediated translocation and binding of mod-
ified and oxidatively damaged proteins to the lysosomal membrane and formation of a
translocation complex that facilitate the internalization of the substrate protein into the
lumen of lysosomes for degradation and protein turnover [36]. LAMP2 is also involved in
HALLMARK_PROTEIN_SECRETION. Eukaryotic translation elongation factor-1 alpha
1 (EEF1A1) is a protein also involved in cytoskeleton modulation [140] that emphasizes
chaperone-like activity and controls cell proliferation and cell death [140]. HSP90AA1 is
an essential molecular chaperone overexpressed in tumors that could serve as a cancer
biomarker [19]. This protein plays an important role in carcinogenesis, gene expression,
regulation of protein folding and assembly of large multiprotein complexes, DNA damage
regulation, cell cycle regulation, and activation of oncogenic proteins involved in cancer
cell survival, adaptation to stress, growth, proliferation, angiogenesis, signal transduction,
metabolic rewiring, motility and invasiveness [20]. Ubiquitin-like protein ISG15/interferon
stimulated gene 15 is a member of protein modification pathway that was found to be a
novel inhibitor of autophagy, its depletion or downregulation promoting autophagy and
cell survival [141]. In downregulated JTB condition, ISG15 was found as downregulated.



Molecules 2022, 27, 8301 19 of 34

Protein misfolding also promotes cancer progression. Heat skock proteins (HSP)60,
HSP70 and HSP90, the most identified proteins in proteomic approaches, are involved
in protein folding, recognizing target misfolded proteins for degradation [142]. JTB over-
expression is also associated with alteration in the expression of proteins that have been
functionally linked to protein folding/chaperonin-mediated protein folding (CMPF). Thus,
type I chaperonins (HSPD1 and HSPE1), HSPA1A, HSP90AA1, and PRKCSH were found
as upregulated in this experiment. The overexpressed heat shock protein family D (HSP60)
member 1 (HSPD1) might repress E-cadherin expression, promotes cancer cell invasion,
migration [18], and mitochondrial dysfunction, assists protein folding, tracking and degra-
dation, enhances tumor cells survival, while its downregulation induces tumor cell apop-
tosis in BC cells and cell lines [143]. HSPD1 and heat shock protein family E (HSP10)
member 1 (HSPE1) have been cited as overexpressed in basal, HER2 and luminal B, known
as the most aggressive subtypes of BC [81]. Heat shock 70 kDa protein 8 (HSPA8) is a
chaperone protein that facilitates accurate protein folding; is was found as overexpressed
in various cancer cells where it promotes cell growth, proliferation and metastasis, while its
depletion suppresses cancer cells growth, induces apoptosis, and cell cycle arrest [96]. Here,
HSPA8 as well as HSPB1 were found to be downregulated in JTB downregulated condition.
PRKCSH, as mentioned above, ensures secretion of properly folded glycoproteins and
degradation of misfolded glycoproteins by endoplasmic reticulum-associated degradation
(ERAD) pathway [37].

JTB-related proteins are involved in ribosome biogenesis linked to EMT. A strong
relation between the EMT program and ribosome biogenesis is known to lead to an in-
creased migration, invasion, and metastasis [144]. Consequently, hyperactivation of ribo-
some biogenesis and aberrant ribosome homeostasis represent hallmarks of cancer [145].
Ribosome biogenesis is known as a central player in cancer metastasis and therapeutic
resistance, cancer cells harboring specific onco-ribosomes that facilitate the oncogenic trans-
lation program and promotes metabolic reprogramming [144]. The ribosomal proteins
have a well-known role in ribosome integrity and protein synthesis as well as in gene
transcription, cell proliferation, apoptosis and differentiation [146]. Several proteins in this
experiment are involved in cytoplasmic translation and ribosome assembly/biogenesis.
Thus, 40S ribosomal protein S14 (RPS14) and human 60S ribosomal protein L6 (RPL6) were
detected as upregulated in overexpressed JTB condition. RPS14, considered as indispens-
able for ribosomal biogenesis, was highly expressed in ER+ BC tissues compared with ER-
tissues, while its downregulation significantly inhibits cell proliferation, cell cycle, and
metastasis, inducing apoptosis and activating the interferon signaling pathways [25]. RPL6
was reported as an overexpressed protein in multidrug-resistant gastric cancer cells com-
pared with normal gastric mucosa, this upregulation accelerating growth, enhancing the
in vitro colony forming ability of cancer cells and anti-apoptosis, while its downregulation
reduced colony forming ability, cell growth, and cell cycle progression [26]. The genetic
manipulation of 40S ribosomal protein S5 (RPS5) expression interacts with the cell growth
and differentiation [146]. Downregulated in JTB downregulated condition, RPS5 protein is
known for the negative regulation of the expression of p53 and for its anti-apoptotic role
in cancer cells, conferring resistance to mitogen-activated extracellular signal-regulated
kinase (MEK) inhibitor-induced cell death [100]. Translation factor EEF1A1 could act as
an oncoprotein that favors cellular transformation through aberrant protein translation
associated with cytoskeleton alterations and modulation of signaling pathways [46].

2.2. JTB Dysregulation Is Associated with Mitochondrial Organization and Function

Mitochondria are key organelles related to the alterations of the main pathways in-
volved in energy metabolism and biosynthesis that are profoundly dysregulated in cancer
cells [44]. There are studies which suggest both stimulative and suppressive impact of
mitochondrial function on tumorigenesis, related to tumor stage and microenvironmen-
tal conditions [7]. One hypothesis sustains that mitochondrial metabolism has a tumor
suppressor function by inhibiting cancer cell proliferation and activating apoptosis, con-
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sequently to the overproduction of superoxide radical as a result of the stimulation of
mitochondrial metabolism [147]. However, during malignant transformation, the specific
cancer cell clones that have stimulated mitochondrial biogenesis are known to have elevated
aggressiveness [123]. It is known that JTB affects morphology and membrane potential
of mitochondria, the dysregulation in JTB expression or aberrant JTB structure affecting
mitochondrial functions in correlation to the metabolic state of the cells and production of
superoxide, contributing to malignant transformation of cells [7]. Mitochondrial signaling
is involved in cell growth and proliferation, apoptosis and stress response of cells [7],
mitochondrial bioenergetics and cell death being tightly connected [147]. Consequently,
the oxidative phosphorylation (OXPHOS) and cell death are both the molecularly and
functionally integrated major functions of mitochondria [147].

The expression levels of HSPD1, HSP90AA1, HSPA1A, PARK7 and SLC25A5 proteins
are associated with mitochondrion organization biological function. HSPD1 is a mitochon-
drial chaperone overexpressed in cancer cells, which is involved in cell proliferation [148].
Into a HSPD1-centered PPIs network built using the Search Tool for Retrieval of Inter-
acting Genes/Proteins (STRING) for glioblastoma multiforme cells (GMF), HSPD1 was
associated with proteins involved in protein folding (such as upregulated HSP90AA1)
as well as in metabolic pathways, such as glycolysis and OXPHOS [148]. It is known
that chaperonin HSPD1 co-expressed with tricarboxylic acid cycle enzymes, while HSPE1,
also upregulated in downregulated JTB condition, co-expressed with proteins involved
in OXPHOS [149]. OXPHOS pathway is required for neoplastic transformation of cells
and plays a role in tumor metastasis, stemness and drug resistance [150]. OXPHOS is
represented here by a member of the mitochondrial carrier subfamily of solute carrier
proteins, SLC25A5, that was found to be upregulated in overexpressed JTB condition.
Associated with glycolytic metabolism, SLC25A5 inhibits mitochondrial membrane perme-
ability and may act as an anti-apoptotic oncoprotein [45]. This protein sustains cancer cell
survival under microenvironmental hypoxia or may lead to instability of mitochondrial
genome [44]. The overexpressed PARK7 protein interacts with the anti-apoptotic protein
BCL2L1, increasing its mitochondrial localization, with effects in tumorigenesis, cancer cells
proliferation, metastasis, recurrence and resistance to chemotherapy [84]. Stress-inducible
HSPA1A/HSP70 is abundantly present in mitochondria of tumor cells; its inhibition leads
to a loss of mitochondrial membrane potential, promoting mitochondrial dysfunction [150].
HSPA1A and HSP90AA1 have been also identified as overexpressed within our previous
experiment based on in-gel proteomic analysis of overexpressed JTB condition in MCF7 BC
cell line [13].

2.3. JTB-Related Proteins Are Involved in Oxidative Stress (OS)

Cancer cells usually overexpress antioxidant proteins to maintain the redox bal-
ance [86]. Elevated reactive oxygen species (ROS) levels in tumor microenvironment
(TME) activate tumorigenesis, promote cell proliferation, increase cell survival, induce
DNA damage but can also promote antitumor signals and induce tumor apoptosis [86].
PRDX1 downregulation was detected in overexpressed JTB condition. Loss of peroxire-
doxin 1 (PRDX1) activates fibroblasts to become invasive cancer-associated fibroblasts
(CAFs) by regulation of c-Jun N-terminal kinases/JNK signaling, and promotes cancer
development in mammary gland [59]. The peroxidase peroxiredoxin 2 (PRDX2) was identi-
fied here as upregulated in downregulated JTB condition. It is found to be overexpressed
in many cancers [86], reducing OS, cell damage and apoptosis [88], while its knockdown
inhibits cell proliferation, migration, invasion, tumor growth and EMT in lung cancer [151]
and colorectal cancer [86]. PARK7 is also a “redox sensor” that protects tumor cells from
OS [84].

Downregulated in this experiment, SOD1 does not support oncogene-dependent
proliferation, that happened when it is overexpressed and maintains ROS levels below a
threshold that support the growth of cancer cells [61]. Annexin A2 (ANXA2), a protein that
could a play a role in cellular redox regulation and tumorigenesis [106], was identified as
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downregulated in downregulated JTB condition. Depletion of ANXA2 resulted in elevation
of cellular ROS upon OS, activation of the ROS-induced pro-apoptotic kinases, JNK, p38,
and AKT, and increased sensitivity to ROS-mediated cell damage/death, elevated protein
oxidation, and decreased tumor growth [106].

2.4. JTB-Related Proteins Are Involved in Apoptotic Pathway

Inducing apoptosis is cited as an important factor to control excessive BC cells prolifer-
ation [152], apoptosis pathway being frequently dysregulated in cancer development [153].
Silencing of JTB expression has been cited to promote cancer cell motility and emphasized
anti-apoptotic effect in hepatocellular carcinoma (HCC) [154].

JTB-related proteins with anti-apoptotic effect. Heat shock proteins play a key role
in regulation of apoptotic cell death [155]. There are studies that demonstrated that the com-
bined overexpression of HSPE1 and HSPD1, both overexpressed here indownregulated JTB
condition, is important for protein folding in mitochondria, emphasizing cellular protective
effects by increasing in the anti-apoptotic B-cell lymphoma 2 (BCL-2) expression through
post-translational mechanisms [155]. PARK7 protein is overexpressed in downregulated
JTB condition in MCF7 BC cell line; like in other various types of cancer, it suppresses
apoptosis in tumor cells [84]. When overexpressed, as in this experiment in upregulated
JTB condition, RPS14 and RPL6 ribosomal proteins could also protect cancer cells from
chemotherapeutic drug-induced apoptosis [26], stimulating tumor cells proliferation, cell
cycle, metastasis and anti-apoptosis [25,146], suggesting their protumorigenic function.
Also detected here as downregulated in overexpressed JTB condition, reduced IQGAP2 can
inhibit apoptosis by modulating the MEK-ERK and p38 signaling in BC [65]. Overexpressed
in upregulated JTB condition, SLC25A5, also known as adenine nucleotide translocase
2 (ANT2), acts as an anti-apoptotic oncoprotein [45]. Overexpressed in downregulated
JTB condition, proteasome activator complex 1 (PSME1) negatively regulate the apoptotic
pathways [73]. Overexpressed in upregulated as well as in downregulated JTB condition,
PPIA has been reported to emphasize anti-apoptotic effects [39].

JTB-related proteins with a pro-apoptotic effect. RPS5 negatively regulates the ex-
pression of p53 and plays an anti-apoptotic role in cancer cells, conferring resistance
to mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor-induced cell
death [100]. However, in downregulated JTB condition, RSP5 expression was detected as
downregulated and, consequently, RSP5 could emphasize an anti-tumor effect as in the case
of RPS15-depleted cancer cells that suffer apoptosis under chemotherapy via upregulation
of several apoptotic proteins [100]. Inhibition of FASN, a metabolic enzyme also detected
in this experiment as downregulated in both dysregulated JTB condition, induced apop-
tosis by inhibiting β-catenin (CTNNB1)/C-Myc signaling pathway, as well as migration
and invasion of HepG2 hepatoma carcinoma cells [54]. CTNNB1 is a component of Wnt
signaling pathway that is important in tumorigenesis and plays a key role in most cancers,
acting as an oncogene; its knockdown inhibited cell proliferation, migration, and invasion
and induced apoptosis in renal cell carcinoma (RCC) [101]. A slowed tumor progression
or a significantly increased apoptosis was reported upon MKI67 knockdown/knockout in
several cancer cells lines [98]. Tumor protein D52-like 2 (TPD52L2/TPD54) was cited as
overexpressed in BC, OC and PCa [63]. Its silencing, also identified in overexpressed JTB
condition in this experiment, reduced cell viability, cell colony-forming potency, cell growth,
and induces apoptosis and ER stress of oxaliplatin-resistant gastric carcinoma cells [63].
JTB dysregulation in MCF7 cells was associated with downregulation of other proteins
that might be associated with pro-apoptotic and anti-tumorigenic effects, such as calcium-
calmodulin N-terminal domain 1(CALM1), downregulated here in overexpressed JTB
condition, which induces apoptosis in MM cells [60] or ESCC [66], and SOD1, downregu-
lated in both overexpressed and downregulated JTB condition [61]. GAPDH1, upregulated
in downregulated JTB condition, is known to have a pro-apoptotic role [73]. Annexin
A2 (ANXA2) was identified as downregulated in downregulated JTB condition. Deple-
tion of ANXA2 results in elevation of cellular ROS upon OS, activation of ROS-induced
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pro-apoptotic kinases, JNK, p38, and AKT and increased sensitivity to ROS-mediated cell
damage/death [106].

2.5. JTB-Related Proteins Are Involved in Interferon Alpha and Gamma Signaling Pathways

Interferons play an essential role in the immune landscape of BC [156]. Even if
IFN-α signaling pathway contributes to apoptosis and cellular senescence, in contrast,
it also could play a role in increased migration and drug resistance, depending on the
interferon-stimulated transcribed genes [157]. Interferon gamma also plays a dual tumor-
suppressor and protumorigenic roles in cancer [158]. In inflammatory breast cancer
(IBC) cells, the increased levels of IFN-α has been reported as protumorigenic factors
involved in IBC progression [157]. IFN-γ plays a key role in the regulation of antitumor
immunity, but it also develops a protumorigenic role by proliferative and anti-apoptotic
signals that lead to immune-escape of cancer cells [156] and stimulation of tumor pro-
gression and metastasis [159]. It is demonstrated that the IFN-α signaling activation
in the tumor cells alters the phenotype of immune and stromal cells within the tumor-
associated stroma [157], enhancing cancer cells motility and invasion and promoting BC
metastasis [160]. JTB dysregulation is here associated with alteration in the expression
of proteins that have been linked toHALLMARK_INTERFERON_ALPHA_RESPONSE
and HALLMARK_INTERFERON_GAMMA_RESPONSE that are significantly upregulated
in downregulated JTB condition, correlated with the expression of interferon-induced
transmembrane protein 2 (IFITM2), proteasome activator complex subunit 1 (PSME1) and
interferon-stimulated protein 15/ubiquitin-like protein ISG15.

IFITM2 was found as upregulated in overexpressed JTB condition and downregulated
in JTB downregulated condition in MCF7 BC cell line. IFITM2 was reported to sustain
tumor progression and lymphatic metastasis by inducing cytokines release, while migra-
tion and invasion were inhibited by the IFITM2 downregulation in renal clear cell renal
carcinoma (ccRCC) [27]. However, knocking out IFITM2 could enhance the activation
of the endogenous IFN-α pathway that may alter the immune and stromal cells in the
TME enhancing the invasive abilities of cancer cells [99]. In downregulated JTB condition,
PSME1 was found to be upregulated. PSME1 may play different roles in various types
of cancer [71]. Thus, PSME1 has been identified as tumor-associated protein/putative tu-
mor biomarker/upregulated in human esophageal squamous cell carcinoma (hESCC) [69],
primary and metastatic human prostate cancer (PCa) [70], skin cutaneous melanoma
(SKCM) [71], and multiple myeloma (MM) [72], while it was reported as downregulated
in hepatitis B virus-infected well-differentiated hepatocellular carcinoma (HCC) [74]. In
SKCM, PSME1 was positively correlated with apoptotic process, cell adhesion, cell cycle,
metastasis, NF-κB and Wnt signaling pathways [71]. When upregulated, it is involved in
melanoma cell growth and proliferation [72]. ISG15is usually overexpressed in BC cells,
but it was downregulated in this experiment. The aberrant activation of the ISG15 leads
to a higher motility of tumor cells by disrupting cytoskeletal architecture and stabilizing
proteins that contributes to cell motility, invasion and metastasis [161]. However, ISG15
was reported as an endogenous tumor suppressor but, when dysregulated in cancer cells,
may be subverted to promote tumorigenesis [162].

3. Discussion

Our previously published results based on in-gel proteomics analysis of transfected
MCF7 breast cancer cell line emphasized that the HALLMARK_EPITHELIAL-MESENCH-
YMAL_TRANSITION (EMT) was the main upregulated pathway in both overexpressed [13]
as well as in downregulated JTB condition [14]. In JTB overexpressed condition, we previ-
ously identified FLNA, COL11A, and COL3A1 as upregulated proteins directly involved in
EMT pathway and included in GSEA algorithm. Taking account that in-solution digestion-
based proteomics experiments are complementary to the initial gel-based ones, in this
experiment based on in-solution proteomics we identified and analyzed as overexpressed
several complementary proteins involved in promotion of the EMT program. Thus, some
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proteins involved in cytoskeleton organization and modulation could play a pivotal role in
EMT. We focused on the participation of actin filaments and microtubules-related proteins
in promoting EMT and their influence on cancer metastasis, such as TMSB10, TPM3, IQ-
GAP2, ACTC1, ACTG1, ACTN4, TUBA4A, TUBB, TUBA1A, TUBB2A, POTEKP/ACTBL3,
and EEF1A1. It is well-known that EMT is subjected to the metabolic regulation, while
EMT rewires the metabolic program. Thus, we identified the overexpression of many
glycolysis-related enzymes reported to sustain the EMT process or to increase the stem-cell
like abilities in tumoral cells, such as ENO2, GAPDH, PGK1, and PPIA. Some enzymes in-
volved in HALLMARK_FATTY_ACID_METABOLISM, also upregulated in overexpressed
JTB condition, were found as upregulated, such as ENO2, above mentioned as a glycolytic
enzyme that also contributes to the increased fatty acid production, and HSP90AA1 that
also may activate MTORC1 signaling pathway, usually overexpressed in BC cells. Inter-
estingly, FASN enzyme that has been found as upregulated in in-gel proteomics analysis,
was identified as downregulated by using in-solution digestion. Usually overexpressed in
cancer cells, FASN downregulation could be associated with the switch of MCF7 cancer
cells between a proliferating state to a migratory behavior that is based on an exogenous
uptake of fatty acids and FAs release from cell membranes rather than an intracellular
de novo synthesis of FAs. We can also conclude that JTB-related proteins are involved in
cellular proteostasis and ribosomal biogenesis, both processes sustaining the EMT. JTB
dysregulation was also associated with HALLMARK_MITOTIC_SPINDLE upregulation,
mitochondrial organization and function, oxidative stress, apoptotic pathway and inter-
feron alpha and gamma response. Consistent and complementary to our previous results
emerged by in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that are
overexpressed in this experiment suggest the development of a more aggressive phenotype
and behavior for this luminal type A non-invasive/poor-invasive human BC cell line that
does not usually migrate or invade compared with the highly metastatic MDA-MB-231
cells. However, in both JTB dysregulated conditions, several downregulated JTB-interacting
proteins predominantly sustained antitumor activities, attenuating the aggressive pheno-
typical and behavioral traits promoted by the overexpressed JTB-related partners. It is
necessary to put together all data obtained by using in-gel (SDS-PAGE and 2D-PAGE) and
in-solution proteomics applied to transfected MCF7 BC cells and other analyzed cell lines
to conclude if JTB could be used as a new biomarker in breast cancer.

4. Materials and Methods
4.1. Cell Culture

MCF7 cells were ordered from American Type Culture Collection (HTB-22 ATCC) and
RPMI media supplemented with 10% FBS, 1% Penicillin Streptomycin, 0.2% Amphotericin
and 0.2% Gentamicin (growth media) was used for their growth. The cells were incubated
at 37 ◦C in 5% CO2. The media was replaced every 48 h and they were allowed to reach
~70% confluency.

4.2. Plasmids for Upregulation

Two plasmids were custom made by Genscript, Piscataway, NJ, USA®. One plasmid
was an empty vector with an eGFP tag to serve as control and the other plasmid with hJTB
gene containing the full coding region of cDNA, ggtaccGCCACCATGCATCATCATCAT-
CATCATCTTGCGGGTGCCGGGAGGCCTGGCCTCCCCCAGGGCCGCCACCTCTGCT-
GGTTGCTCTGTGCTTTCACCTTAAAGCTCTGCCAAGCAGAGGCTCCCGTGCAGGA-
AGAGAAGCTGTCAGCAAGCACCTCAAATTTGCCATGCTGGCTGGTGGAAGAGTT-
TGTGGTAGCAGAAGAGTGCTCTCCATGCTCTAATTTCCGGGCTAAAACTACCCCT-
GAGTGTGGTCCCACAGGATATGTAGAGAAAATCACATGCAGCTCATCTAAGAGA-
AATGAGTTCAAAAGCTGCCGCTCAGCTTTGATGGAACAACGCTTATTTTGGAAG-
TTCGAAGGGGCTGTCGTGTGTGTGGCCCTGATCTTCGCTTGTCTTGTCATCATTC-
GTCAGCGACAATTGGACAGAAAGGCTCTGGAAAAGGTCCGGAAGCAAATCGAGT-
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CCATAGACTACAAAGACGATGACGACAAGTACCCATACGATGTTCCAGATTACG-
CTgatatc corresponding to 146 amino acids of the protein was made. The hJTB cDNA
was inserted into a CMV promoter based plasmid in the sense orientation to get the JTB
overexpression. This plasmid was further customized with His, HA, FLAG and an eGFP
tag to enable confirmation of transfection efficiency (Figure 1).
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4.3. Plasmids for Downregulation

Four shRNA plasmids were custom made by Creative Biogene, Shirley, NY, USA.
One plasmid containing the scramble shRNA sequence GCTTCGCGCCGTAGTCTTA to
be used as control. Three shRNA plasmids targeting the hJTB sequence GCTTTGATG-
GAACAACGCTTA, GCAAATCGAGTCCATATAGCT, GTGCAGGAAGAGAAGCTGTCA
respectively were customized into a psh-u6-egfp-Puro vector, containing an U6 promoter,
a His tag and an egfp tag with a puromicin resistance gene. Three plasmids targeting
different hJTB sequences were made in order to get successful downregulation of JTB in
case one of them did not work efficiently (Figure 2).

4.4. Transfection into MCF7 Cells

DNA/Plasmid (10 µg/µL) and Lipofectamine™ 3000/DNA complexes were prepared
in Opti-MEM reduced serum media (Invitrogen, Waltham, MA, USA) for each condition
and added directly to the cells in culture medium once they reached 70% confluency.
Stable transfection was performed for overexpressed JTB condition, where 2 mg/mL
of Neomicin was added to the growth media after 48 h of transfection and the media
containing the antibiotic was replaced every two days. The cells that survived were
allowed to reach 80% confluency. The cells were observed under the confocal microscope to
visualize green fluorescence from the eGFP protein, which confirmed transfection efficiency.
Transient transfection was performed on downregulated JTB conditions, where the cells
were collected after three days of transfection, after visualizing the eGFP fluorescence under
the microscope.
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4.5. Western Blot Analysis

Lysis buffer containing 20 mM Tris HCl, 0.2 mM EDTA, 150 mM NaCl, protease &
phosphatase inhibitors and 1.1% Triton-X were used to collected cell lysates from each
condition. The lysates were incubated on ice for 30 min and centrifuged at 4 ◦C for 20 min
at 14,000× g rpm. Bio-Rad protein assay dye with BSA standards was used to determine the
protein concentration of the supernatants. 20 µg of proteins were run in a 14% SDS-PAGE
gel and transferred to a nitrocellulose membrane. The blots were incubated with blocking
buffer containing 5% milk and 0.1% tween-20 overnight at 4 ◦C with shaking. Primary
antibody (JTB Polyclonal Antibody—PA5-52307, Invitrogen, Waltham, MA, USA) diluted
to 1:1000 was added and incubated at 4 ◦C for 1 h with constant shaking. Secondary
antibody (mouse anti-rabbit IgG-HRP sc-2357, Santa Cruz Biotechnlogy, Inc., Dallas, TX,
USA) diluted to 1:2000 ratio was added and incubated for 1 h at room temperature with
constant shaking. After each incubation, the blots were washed thrice with TBS-T (1 X
TBS buffer, containing 0.05% tween-20) for 10 min each with constant shaking. Finally, the
enhanced chemi-luminescence substrate (Pierce™ ECL Western Blotting Substrate—32106,
ThermoFisher, Waltham, MA, USA) was added to the blot and the blot was analyzed using
a CCD Imager. For normalization, the blots were treated with Mouse GAPDH monoclonal
antibody (51,332, Cell-Signaling Technology, Danvers, MA, USA) and incubated for 1 h,
followed by 1 h incubation of goat anti-mouse IgG-HRP (sc-2005, Santa Cruz Biotechnology)
and the addition of ECL substrate. Detection and comparison of the intensity of the bands
were done using ImageJ software.

4.6. In-Solution Digestion

200 µg of proteins for four samples in three biological replicates: control, upregulated
JTB, shRNA control and downregulated JTB were dried down in a Speedvac and resolubi-
lized in 20 µL of 6 M urea, 100 mM Tris Buffer. The samples were sonicated for 30 min. 1 µL
of the reducing agent containing 200 mM DTT and 100 Mm Tris was added and the sample
was gently vortexed and allowed to incubate at room temperature (RT) for 1 h. 4 µL of
the alkylating agent containing 200 mM IAA and 100 mM Tris was added to the sample,
gently vortexed and incubated at RT for one hour in the dark. 4 µL of the reducing agent
was added again and incubated at RT for one hour after gentle vortex. 155 µL of water was
added to reduce urea concentration and 20 µL of trypsin solution (containing 4 µg trypsin).
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With a 1:20 ratio of trypsin to protein. The sample was then incubated overnight at 37 ◦C.
The reaction was stopped by adjusting the pH to <6 by addition a few drops of concentrated
acetic acid. They were then completely dried in the Speedvac. The samples were then
solubilized in 100 µL of 0.1% FA and ziptipped using 1 mg ziptip (Glygen, Baltimore, MD,
USA) and dried down. Finally, resolubilization was done in 2% ACN and 0.1% FA for
LC-MS/MS analysis. All samples were run in triplicates.

4.7. MS Analysis

Nanoacquity liquid chromatography (LC) and MS (LC-MS/MS) was used to analyze
the peptide mixture in NanoAcquity UPLC (Waters, Milford, MA, USA) coupled to a
QTOF Xevo G2 MS (Waters) according to the procedures mentioned in [163]. 100 µM ×
10 mm NanoAcquity BEH130 C18 1.7 µm UPLC column (Waters) was used to load the
peptides and eluted over 240-min gradients at a flow rate of 400 nL/min as follows: 1%
organic solvent B (ACN containing 0.1% FA) over 1–20 min, 8% B (20–150 min), 20–45%
B (150–220 min), 90% B (230–240 min). HPLC water in 0.1% FA was used as the aqueous
solvent A. The column was connected to a Picotip Emitter Silicatipnano-electrospray needle
(New Objective, Woburn, MA, USA) [163]. MS data acquisition involved survey 0.2 s,
0.5 s for 240-min gradient. MS scans (m/z range (350–1800 Da) and automatic DDA
analysis of the top six ions with the highest intensity, with the charge of 2+, 3+,4+, 5+
and 6+. The MS/MS recorded over m/z of 50–2000 was triggered when the MS signal
intensity over 350 counts/s. The six most intense peaks were selected for CID in the
survey MS scans, and ten most intense peaks for the 240-min gradient and fragmented
until the MS/MS ion counts reached 6000 or for upto 0.45 s for the 240-min gradient. The
procedure used was previously described in [163,164]. Each sample were run three times,
giving three technical replicates. 1 pmol Glu1-Fibrinopeptide B (Glufib) standard peptide
calibration was performed for both precursor and product ions containing the sequence
EGVNDNEEGFFSAR and monoisotopic doubly charged peak with the m/z of 785.84 [163].

4.8. Data Processing and Protein Identification

The raw data obtained from Masslynx software were processed in ProteinLynx Global
Server (PLGS, version 2.4, Waters Corporation, Milford, MA) software, as described pre-
viously [165,166]. The following parameters were used: background subtraction of five
adaptive polynomial order with a 30% threshold, three-channel window with two smooth-
ings in Savitzky-Golay mode and centroid calculation of top 80% of peaks based on four
channels with minimum peak width at half height. The resulting peak list (pkl) files were
searched against the human database for protein identification in the in-house Mascot
server (www.matrixscience.com (accessed on 12 October 2021), Matrix Science, London,
UK, version 2.5.1) using the following parameters: human databases from NCBI, 0.5%
mass error of Da, 0.8 product ion error of Da, enzyme used: trypsin with three missed
cleavages and carbamidomethyl cysteine, methionine oxidized and propionamide cysteine
as variable modifications. A list of proteins was obtained for each sample that corresponds
each gel band. These data files were then uploaded into Scaffold version 4.2.1 software
(Proteome software, Inc., Portland, OR, USA) for quantitative analysis [165] (Figure 3).

4.9. Data Sharing

Raw data from Masslynx, HTML files from Mascot and Scaffold files will be provided
upon request, according to Clarkson University Material Transfer Agreement.

4.10. Statistical Analysis

Data are presented as mean ± S.E.M. Statistical comparisons were made using the
three means using paired student’s t-test where appropriate p values < 0.05 was considered
statistically significant.

www.matrixscience.com
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4.11. Gene Set Enrichment Analysis

The GSEA analysis (https://www.gsea-msigdb.org/gsea/index.jsp (accessed on 27
October 2022)) was conducted to study the hJTB related pathways and biological processes
associated with the protein dysregulations in control and upregulated JTB conditions
as well as control vs. downregulated JTB conditions in MCF7 cells. The corresponding
genes for the dysregulated proteins and their fold change was used for the Hallmark
enrichment (h.all.v.7.4.symbols.gmt) with 1000 number of permutations and with 500
maximum size to exclude larger sets and 3 minimum size to exclude smaller sets. The
gene set summary obtained from the analysis indicates whether the biological pathways
identified are upregulated or downregulated.
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