Quantitative Sensing of Domoic Acid from Shellfish Using Biological Photonic Crystal Enhanced SERS Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of SERS Substrates
2.2. SERS of DA from Spiked Water
2.3. Multivariate Analysis—PCA and PLSR Study
2.4. SERS from Crab Meat Extract
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Fabrication of SERS Substrates
3.2.1. Diatomaceous Earth Pretreatment and Substrate Coating
3.2.2. Functionalization of DE Substrates—In Situ Growth of Silver Nanoparticles
3.3. Raman Measurements
3.3.1. Instrumentation
3.3.2. Domoic Acid Detection in Spiked Water
3.3.3. Domoic Acid Detection in Crab Meat Extract
3.4. Spectral Analysis
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shapiro, J. The importance of trophic-level interactions to the abundance and species composition of algae in lakes. In Hypertrophic Ecosystems: Developments in Hydrobiology; Barica, J., Mur, L.R., Eds.; Springer: Dordrecht, The Netherlands, 1980; Volume 2, pp. 105–116. [Google Scholar]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G. Harmful algal blooms and public health. Harmful Algae 2016, 57 Pt B, 2–8. [Google Scholar] [CrossRef] [Green Version]
- National Centres for Coastal Ocean Science (NCCOS). An Early Warning System for Pseudo-Nitzschia Harmful Algal Blooms on Pacific Northwest Outer-Coast Beaches. Available online: https://coastalscience.noaa.gov/project/early-warning-pseudo-nitzschia-harmful-algal-blooms-pacific-northwest/ (accessed on 23 July 2022).
- Olson, T.Y.; Schwartzberg, A.M.; Liu, J.L.; Zhang, J.Z. Raman and Surface-enhanced Raman detection of domoic acid and saxitoxin. Appl. Spectrosc. 2011, 65, 159–164. [Google Scholar] [CrossRef]
- Berman, F.W.; Murray, T.F. Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release. J. Neurochem. 1997, 69, 693–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Chen, S.; Taylor, A.D.; Homola, J.; Hock, B.; Jiang, S. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sens. Actuators B Chem. 2005, 107, 193–201. [Google Scholar] [CrossRef]
- Saeed, A.F.; Awan, S.A.; Ling, S.; Wang, R.; Wang, S. Domoic acid: Attributes, exposure risks, innovative detection techniques and therapeutics. Algal Res. 2017, 24 Pt A, 97–110. [Google Scholar] [CrossRef]
- Kleivdal, H.; Kristiansen, S.-I.; Nilsen, M.V.; Briggs, L. Single-laboratory validation of the biosense direct competitive Enzyme-Linked Immunosorbent Assay (ELISA) for determination of domoic acid toxins in shellfish. J. AOAC Int. 2007, 90, 1000–1010. [Google Scholar] [CrossRef]
- Porter, M.D.; Lipert, R.J.; Siperko, L.M.; Wang, G.; Narayanan, R. SERS as a bioassay platform: Fundamentals, design and applications. Chem. Soc. Rev. 2008, 37, 1001–1011. [Google Scholar] [CrossRef]
- Djaoued, Y.; Balaji, S.; Priya, S. Non-resonance micro-Raman spectroscopic studies on crystalline domoic acid and its aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 67, 1362–1369. [Google Scholar] [CrossRef]
- Quezada, C.; Vera, M.; Barraza, L.F.; García, Y.; Eduardo, D.; Pereira, E.D. Molecularly imprinted nanoparticle-based assay (MINA): Potential application for the detection of the neurotoxin domoic acid. Anal. Chim. Acta 2021, 1181, 338887. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.-Y.; Shen, Q.-F.; Lu, S.-Y.; Ren, H.-L.; Li, Y.-S.; Liu, Z.-S.; Pan, F.-G.; Meng, X.-M.; Zhang, J.-H. Development of a novel antibody probe useful for domoic acid detection. Biosens. Bioelectron. 2009, 24, 3159–3163. [Google Scholar] [CrossRef]
- Nelis, J.L.D.; Migliorelli, D.; Mühlebach, L.; Generelli, S.; Stewart, L.; Elliott, C.T.; Campbell, K. Highly sensitive electrochemical detection of the marine toxins okadaic acid and domoic acid with carbon black modified screen-printed electrodes. Talanta 2021, 228, 122215. [Google Scholar] [CrossRef] [PubMed]
- Pannico, M.; Rea, I.; Chandrasekaran, S.; Musto, P.; Voelcker, N.H.; De Stefano, L. Electroless gold-modified diatoms as Surface-enhanced Raman scattering supports. Nanoscale Res. Lett. 2016, 11, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraai, J.A.; Wang, A.X.; Rorrer, G.L. Photonic crystal enhanced SERS detection of analytes separated by ultrathin layer chromatography using a diatom frustule monolayer. Adv. Mater. Interfaces 2020, 7, 200019. [Google Scholar] [CrossRef]
- Squire, K.J.; Sivashanmugan, K.; Zhang, B.; Kraai, J.; Rorrer, G.; Wang, A.X. Multiscale photonic crystal enhanced core−shell plasmonic nanomaterial for rapid vapor-phase detection of explosives. ACS Appl. Nano Mater. 2020, 3, 1656–1665. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, H.; Yu, Q.; Li, Q.; Lu, X.; Kong, X. On-site separation and identification of polycyclic aromatic hydrocarbons from edible oil by TLC-SERS on diatomite photonic biosilica plate. Microchem. J. 2021, 160, 105672. [Google Scholar] [CrossRef]
- Alimunnisa, J.; Ravichandran, K.; Meena, K.S. Synthesis and characterization of Ag@SiO2 core-shell nanoparticles for antibacterial and environmental applications. J. Mol. Liq. 2017, 231, 281–287. [Google Scholar] [CrossRef]
- Guo, C.; Wang, J.; Liu, H.-Z.; Chen, J.-Y. Hydration and conformation of temperature dependent micellization of PEO-PPO-PEO block copolymers in aqueous solutions by FT-Raman. Langmuir 1999, 15, 2703–2708. [Google Scholar] [CrossRef]
- Etchegoin, P.G.; Ru, E.C.L. Resolving Single Molecules in Surface-Enhanced Raman Scattering within the Inhomogeneous Broadening of Raman Peaks. Anal. Chem. 2010, 82, 2888–2892. [Google Scholar] [CrossRef]
- Feliu, N.; Hassan, M.; Rico, E.G.; Cui, D.; Parak, W.; Alvarez-Puebla, R. SERS quantification and characterization of proteins and other biomolecules. Langmuir 2017, 33, 9711–9730. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, L.; Yin, L.; Arslan, M.; El-Seedi, H.R.; Zou, X. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem. 2023, 403, 134384. [Google Scholar] [CrossRef]
- Anibal, C.V.D.; Marsal, L.F.; Callao, M.P.; Ruisánchez, I. Surface enhanced Raman spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices. Spectrochim. Acta A Mol. 2012, 87, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hou, X.; Zhen, C.; Wang, A.X. Sub-part-per-billion level sensing of fentanyl residues from wastewater using portable Surface-enhanced Raman scattering sensing. Biosensors 2021, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Sivashanmugan, K.; Squire, K.; Tan, A.; Zhao, Y.; Kraai, J.A.; Rorrer, G.L.; Wang, A.X. Trace detection of tetrahydrocannabinol in body fluid via surface enhanced Raman scattering and principal component analysis. ACS Sens. 2019, 4, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Xi, Y.; LeDuff, P.; Li, E.; Liu, Y.; Cheng, L.-J.; Rorrer, G.L.; Tan, H.; Wang, A.L. Optofluidic sensing from inkjet-printed droplets: The enormous enhancement by evaporation induced spontaneous flow on photonic crystal biosilica. Nanoscale 2016, 8, 17285–17294. [Google Scholar] [CrossRef]
S. No | Spiking Concentration (ppm) | Concentration (ppm) Tabulated from SERS | Tabulated Elution Efficiency (%) |
---|---|---|---|
1. | 1000 | 998 | ~78–90% |
2. | 500 | 390 | |
3. | 100 | 80 | |
4. | 50 | 42 | |
5. | 25 | 27 | |
6. | 10 | 6.9 | |
7. | 1 | 0.92 | |
8. | Control | <5 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juneja, S.; Zhang, B.; Nujhat, N.; Wang, A.X. Quantitative Sensing of Domoic Acid from Shellfish Using Biological Photonic Crystal Enhanced SERS Substrates. Molecules 2022, 27, 8364. https://doi.org/10.3390/molecules27238364
Juneja S, Zhang B, Nujhat N, Wang AX. Quantitative Sensing of Domoic Acid from Shellfish Using Biological Photonic Crystal Enhanced SERS Substrates. Molecules. 2022; 27(23):8364. https://doi.org/10.3390/molecules27238364
Chicago/Turabian StyleJuneja, Subhavna, Boxin Zhang, Nabila Nujhat, and Alan X. Wang. 2022. "Quantitative Sensing of Domoic Acid from Shellfish Using Biological Photonic Crystal Enhanced SERS Substrates" Molecules 27, no. 23: 8364. https://doi.org/10.3390/molecules27238364
APA StyleJuneja, S., Zhang, B., Nujhat, N., & Wang, A. X. (2022). Quantitative Sensing of Domoic Acid from Shellfish Using Biological Photonic Crystal Enhanced SERS Substrates. Molecules, 27(23), 8364. https://doi.org/10.3390/molecules27238364