Evolution of Hydroxytyrosol, Hydroxytyrosol 4-β-d-Glucoside, 3,4-Dihydroxyphenylglycol and Tyrosol in Olive Oil Solid Waste or “Alperujo”
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture Content of Samples
2.2. Phenolic Profile
2.3. Evolution of the Main Simple Phenolic Compounds
2.4. Correlation Values between Mean Values
2.5. Liquid Source of Phenolic Compounds
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. Determination of Moisture Content
3.4. Analytical Extraction of Phenolics
3.5. Obtention of the Phenolic-Rich Liquid Phase
3.6. Analysis by High-Performance Liquid Chromatography
3.7. Statistical Analysis of the Results Obtained
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jiménez-Márquez, A.; Hermoso-Fernández, M.; Uceda-Ojeda, M. Extraction of virgin olive oil by two-phase continuous system. Influence of different variables of the process on certain parameters related to oil quality. Grasas Y Aceites. 1995, 46, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Safarzadeh Markhali, F. Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes. Processes 2021, 9, 953. [Google Scholar] [CrossRef]
- Uddin, M.A.; Siddiki, S.Y.A.; Ahmed, S.F.; Rony, Z.I.; Chowdhury, M.A.K.; Mofijur, M. Estimation of Sustainable Bioenergy Production from Olive Mill Solid Waste. Energies 2021, 14, 7654. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Rubio-Senent, F.; Bermúdez-Oria, A.; Fernández-Bolaños, J.; Fernández Prior, A.; Rodríguez-Gutiérrez, G. The use of industrial thermal techniques to improve the bioactive compounds extraction and the olive oil solid waste utilization. Innov. Food Sci. Emerg. Technol. 2019, 55, 11–17. [Google Scholar] [CrossRef]
- Podgornik, M.; Bucar-Miklavcic, M.; Levart, A.; Salobir, J.; Rezar, V.; Butinar, B. Chemical Characteristics of Two-Phase Olive-Mill Waste and Evaluation of Their Direct Soil Application in Humid Mediterranean Regions. Agronomy 2022, 12, 1621. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenolics from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef]
- Katsinas, N.; Enríquez-de-Salamanca, A.; Bento da Silva, A.; Bronze, M.R.; RodríguezRojo, S. Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Molecules 2021, 26, 6002. [Google Scholar] [CrossRef]
- Rodríguez-Gutiérrez, G.; Lama, A.; Jaramillo, S.; Fuentes-Alventosa, J.M.; Guillén, R.; Jiménez, A.; Rodríguez, R.; Fernández-Bolaños, J. 3,4-Dihydroxyphenylglycol (DHPG): An important Phenolic Compound Present in natural Table Olives. J. Agric. Food Chem. 2009, 57, 6298–6304. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.G.; López, O.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Hydroxytyrosol and derivatives: Isolation, synthesis, and biological properties. Curr. Org. Chem. 2008, 12, 442–463. [Google Scholar] [CrossRef]
- Fernández-Prior, A.; Bermúdez-Oria, A.; Millán-Linares, M.C.; Fernández-Bolaños, J.; Espejo-Calvo, J.A.; Rodríguez-Gutiérrez, G. Anti-inflammatory and antioxidant activity of hydroxytyrosol and 3,4-dihydroxyphenyglycol purified from table olive effluents. Foods 2021, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Guerrero, B.; Garrido-Fernández, A.; Fermoso, F.G.; Rodríguez-Gutierrez, G.; Fernandez-Prior, M.A.; Reinhard, C.; Nystrom, L.; Benítez-Cabello, A.; Arroyo-Lopez, F.N. Antimicrobial effects of treated olive mill waste on foodborne pathogens. LWT-Food Sci. Technol. 2022, 164, 113628. [Google Scholar] [CrossRef]
- Leouifoudi, I.; Harnafi, H.; Zyad, A. Olive Mill Waste Extracts: Polyphenolics Content, Antioxidant, and Antimicrobial Activities. Adv. Pharmacol. Sci. 2015, 2015, 714138. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.; Fermoso, F.G.; Alonso-Fariñas, B.; Rodríguez-Gutiérrez, G.; López, S.; Fernández-Bolaños, J.; Borja, R. Performance evaluation of mesophilic semi-continuous anaerobic digestion of high-temperature thermally pre-treated olive mill solid waste. Waste Manag. 2019, 87, 250–257. [Google Scholar] [CrossRef]
- Tüzel, Y.; Ekinci, K.; Öztekin, G.B.; Erdal, I.; Varol, N.; Merken, O. Utilization of Olive Oil Processing Waste Composts in Organic Tomato Seedling Production. Agronomy 2020, 10, 797. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Caponio, F.; Squeo, G.; Brunetti, L.; Pasqualone, A.; Summo, C.; Paradiso, V.M.; Catalano, P.; Bianchi, B. Influence of the feed pipe position of an industrial scale two-phase decanter on extraction efficiency and chemical-sensory characteristics of virgin olive oil. J. Sci. Food Agric. 2018, 11, 4279–4286. [Google Scholar] [CrossRef]
- Caporaso, N.; Formisano, D.; Genovese, A. Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Crit Rev Food Sci Nutr. 2018, 58, 2829–2841. [Google Scholar] [CrossRef]
- Borja, R.; Raposo, F.; Rincón, B. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Y Aceites 2006, 57, 32–46. [Google Scholar] [CrossRef]
- Romero, C.; Brenes, M.; García, P.; Garrido, A. Hydroxytyrosol 4-β-d-Glucoside, an Important Phenolic Compound in Olive Fruits and Derived Products. J. Agric. Food Chem. 2002, 50, 3835–3839. [Google Scholar] [CrossRef]
- Olmo-Cunillera, A.; Lozano-Castellón, J.; Pérez, M.; Miliarakis, E.; Tresserra-Rimbau, A.; Ninot, A.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds. Antioxidants 2021, 11, 1819. [Google Scholar] [CrossRef] [PubMed]
- Miho, H.; Moral, J.; López-González, M.A.; Díeza, C.M.; Priego-Capote, F. The phenolic profile of virgin olive oil is influenced by malaxation conditions and determines the oxidative stability. Food Chem. 2020, 314, 126183. [Google Scholar] [CrossRef] [PubMed]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Palacios-Díaz, R.; Fernández-Bolaños, J. A study of the precursors of the natural antioxidant phenolic 3,4-dihydroxyphenylglycol in olive oil waste. Food Chem. 2013, 140, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gutiérrez, G.; Fernández-Bolaños, J.; García-Borrego, A.; Espejo-Calvo, J.A.; Rojano-Delgado, A.M.; y Fernández-Prior, M.A. “Uso del 3,4-dihidroxifenilglicol (DHFG) como fitorregulador”. National application number P201631404 (Spain 3/11/2016).
- Garrido, I.; Hernández, M.; Llerena, J.L.; Espinosa, F. Effect of Water Supplementation on Oxidant/Antioxidant Activities and Total Phenolic Content in Growing Olives of the Morisca and Manzanilla Varieties. Antioxidants 2022, 11, 729. [Google Scholar] [CrossRef]
- Carrara, M.; Kelly, M.T.; Roso, F.; Larroque, M.; Margout, D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenolics for the Treatment of Skin Disorders: A Review. J. Agric. Food Chem. 2021, 69, 7268–7284. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Fernández-Bolaños, J.; García, A.; Lama-Muñoz, A.; Rodríguez-Gutiérrez, G. Influence of pH on the antioxidant phenolics solubilised from hydrothermally treated alperujo. Food Chem. 2017, 219, 339–345. [Google Scholar] [CrossRef]
- Azzam, M.O.J.; Hazaimeh, S.A. Olive mill wastewater treatment and valorization by extraction/concentration of hydroxytyrosol and other natural phenolics. Process Saf. Environ. Prot. 2021, 148, 495–523. [Google Scholar] [CrossRef]
- Fernández-Prior, M.A.; Charfi, A.; Bermúdez-Oria, A.; Rodríguez-Juan, E.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Deep eutectic solvents improve the biorefinery of alperujo by extraction of bioactive molecules in combination with industrial thermal treatments. Food Bioprod. Process. 2020, 121, 131–142. [Google Scholar] [CrossRef]
- Obied, H.K.; Prenzler, P.D.; Ryan, D.; Servili, M.; Taticchi, A.; Esposto, S.; Robards, K. Biosynthesis and biotransformations of phenolic-conjugated oleosidic secoiridoids from Olea europaea L. Nat. Prod. Rep. 2008, 25, 1167–1179. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Iborra-Clara, A.; Vincent-Vela, M.A.; Álvarez-Blanco, S. Exploring the extraction of the bioactive content from the two-phase olive mill waste and further purification by ultrafiltration. LWT- Food Sci. Technol. 2022, 165, 113742. [Google Scholar] [CrossRef]
OOM | Season 1 (% Moisture) | Season 2 (% Moisture) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Average | SD | 1 | 2 | 3 | 4 | Average | SD | |
OOM1 | 67.7 | 68.7 | 69.9 | 70.4 | 69.2 | 1.2 | 67.7 | 68.7 | 69.9 | 70.4 | 69.2 | 1.2 |
OOM2 | 69.4 | 72.0 | 74.1 | 73.1 | 72.2 | 2.0 | 69.4 | 72.0 | 74.1 | 73.1 | 72.2 | 2.0 |
OOM3 | 72.4 | 74.8 | 73.0 | 75.2 | 73.9 | 1.4 | 72.4 | 74.8 | 73.0 | 75.2 | 73.9 | 1.4 |
OOM4 | 68.6 | 69.2 | 67.5 | 68.9 | 68.6 | 0.7 | 68.6 | 69.2 | 67.5 | 68.9 | 68.6 | 0.7 |
OOM5 | 68.7 | 70.4 | 67.0 | 71.0 | 69.3 | 1.8 | 68.7 | 70.4 | 67.0 | 71.0 | 69.3 | 1.8 |
OOM6 | 69.9 | 62.9 | 69.4 | 72.3 | 68.6 | 4.0 | 69.9 | 62.9 | 69.4 | 72.3 | 68.6 | 4.0 |
OOM7 | 68.1 | 65.8 | 67.8 | 69.9 | 67.9 | 1.7 | 68.1 | 65.8 | 67.8 | 69.9 | 67.9 | 1.7 |
OOM8 | 68.8 | 64.8 | 68.5 | 74.6 | 69.2 | 4.0 | 68.8 | 64.8 | 68.5 | 74.6 | 69.2 | 4.0 |
OOM9 | 67.1 | 69.8 | 68.3 | 67.1 | 68.1 | 1.3 | 67.1 | 69.8 | 68.3 | 67.1 | 68.1 | 1.3 |
OOM10 | 70.4 | 71.6 | 69.6 | 72.5 | 71.0 | 1.3 | 70.4 | 71.6 | 69.6 | 72.5 | 71.0 | 1.3 |
Average | 69.1 | 69.0 | 69.5 | 71.5 | 69.1 | 69.0 | 69.5 | 71.5 | ||||
SD | 1.5 | 3.6 | 2.3 | 2.5 | 1.5 | 3.6 | 2.3 | 2.5 |
Season 1 | DHPG | Glu-HT | HT | Ty |
DHPG | 1.00 | 0.57 | 0.35 | −0.24 |
Glu-HT | 0.57 | 1.00 | −0.37 | −0.89 |
HT | 0.35 | −0.37 | 1.00 | 0.75 |
Ty | −0.24 | −0.89 | 0.75 | 1.00 |
Season 2 | DHPG | Glu-HT | HT | Ty |
DHPG | 1.00 | −0.05 | −0.19 | −0.39 |
Glu-HT | −0.05 | 1.00 | −0.91 | −0.88 |
HT | −0.19 | −0.91 | 1.00 | 0.97 |
Ty | −0.39 | −0.88 | 0.97 | 1.00 |
DHPG | Glu-HT | HT | Ty | |
Seasons | 0.74 | 1.00 | 0.53 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Prior, Á.; Bermúdez-Oria, A.; Fernández-Bolaños, J.; Espejo-Calvo, J.A.; López-Maestro, F.; Rodríguez-Gutiérrez, G. Evolution of Hydroxytyrosol, Hydroxytyrosol 4-β-d-Glucoside, 3,4-Dihydroxyphenylglycol and Tyrosol in Olive Oil Solid Waste or “Alperujo”. Molecules 2022, 27, 8380. https://doi.org/10.3390/molecules27238380
Fernández-Prior Á, Bermúdez-Oria A, Fernández-Bolaños J, Espejo-Calvo JA, López-Maestro F, Rodríguez-Gutiérrez G. Evolution of Hydroxytyrosol, Hydroxytyrosol 4-β-d-Glucoside, 3,4-Dihydroxyphenylglycol and Tyrosol in Olive Oil Solid Waste or “Alperujo”. Molecules. 2022; 27(23):8380. https://doi.org/10.3390/molecules27238380
Chicago/Turabian StyleFernández-Prior, África, Alejandra Bermúdez-Oria, Juan Fernández-Bolaños, Juan Antonio Espejo-Calvo, Francisco López-Maestro, and Guillermo Rodríguez-Gutiérrez. 2022. "Evolution of Hydroxytyrosol, Hydroxytyrosol 4-β-d-Glucoside, 3,4-Dihydroxyphenylglycol and Tyrosol in Olive Oil Solid Waste or “Alperujo”" Molecules 27, no. 23: 8380. https://doi.org/10.3390/molecules27238380
APA StyleFernández-Prior, Á., Bermúdez-Oria, A., Fernández-Bolaños, J., Espejo-Calvo, J. A., López-Maestro, F., & Rodríguez-Gutiérrez, G. (2022). Evolution of Hydroxytyrosol, Hydroxytyrosol 4-β-d-Glucoside, 3,4-Dihydroxyphenylglycol and Tyrosol in Olive Oil Solid Waste or “Alperujo”. Molecules, 27(23), 8380. https://doi.org/10.3390/molecules27238380