Bioassay-Guided Fractionation with Antimalarial and Antimicrobial Activities of Paeonia officinalis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Evaluation of Antimicrobial Activity
3.5. Evaluation of Antimalarial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Crompton, P.D.; Pierce, S.K.; Miller, L.H. Advances and challenges in malaria vaccine development. J. Clin. Investig. 2010, 120, 4168–4178. [Google Scholar] [CrossRef] [PubMed]
- Frimpong, A.; Kusi, K.A.; Ofori, M.F.; Ndifon, W. Novel strategies for Malaria vaccine design. Front. Immunol. 2018, 9, 2769. [Google Scholar] [CrossRef] [PubMed]
- Arama, C.; Troye-Blomberg, M. The path of malaria vaccine development: Challenges and perspectives. J. Intern. Med. 2014, 275, 456–466. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Malaria vaccine: WHO position paper, January 2016—Recommendations. Vaccine 2018, 36, 3576–3577. [Google Scholar] [CrossRef]
- White, N.J. Antimalarial drug resistance. J. Clin. Investig. 2004, 113, 1084–1092. [Google Scholar] [CrossRef]
- Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: A review. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 54. [Google Scholar]
- Wu, S.; Wu, D.; Chen, Y. Chemical constituents and bioactivities of plants from the genus Paeonia. Chem. Biodivers. 2010, 7, 90–104. [Google Scholar] [CrossRef]
- Dienaitė, L.; Pukalskienė, M.; Pukalskas, A.; Pereira, C.V.; Matias, A.A.; Venskutonis, P.R. Isolation of strong antioxidants from Paeonia officinalis roots and leaves and evaluation of their bioactivities. Antioxidants 2019, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Xie, L.; Li, M.; Yuan, M.; Tian, Y.; Sun, D.; Zhang, Y.; Niu, L. Phytochemical components and bioactivities of novel medicinal food—Peony roots. Food Res. Int. 2021, 140, 109902. [Google Scholar] [CrossRef]
- Ahmad, F.; Tabassum, N. Preliminary phytochemical, acute oral toxicity and antihepatotoxic study of roots of Paeonia officinalis Linn. Asian Pac. J. Trop. Biomed. 2013, 3, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Tabassum, N.; Rasool, S. Medicinal uses and phytoconstituents of Paeonia officinalis. Int. Res. J. Pharm. 2012, 3, 85–87. [Google Scholar]
- Ahmad, F.; Tabassum, N. Effect of 70% ethanolic extract of roots of Paeonia officinalis Linn. on hepatotoxicity. J. Acute Med. 2013, 3, 45–49. [Google Scholar] [CrossRef]
- Chen, Y. Extraction of paeoniflorin in Paeonia officinalis by decoction method. Shizhen Guoyi Guoyao 2010, 21, 645–646. [Google Scholar]
- Liu, S.; Xu, W.; Li, S. Paeoniflorin purification in Paeonia officinalis by macroporous resin. Zhongcaoyao 2010, 41, 1480–1482. [Google Scholar]
- Lu, D.; Dou, Z.; Luo, L. Extraction of albiflorin and paeoniflorin in Paeonia officinalis. Jiangsu Zhongyiyao 2008, 40, 64–66. [Google Scholar]
- Yu, J.; Elix, J.A.; Iskander, M.N. Lactiflorin, a monoterpene glycoside from paeony root. Phytochemistry 1990, 29, 3859–3863. [Google Scholar] [CrossRef]
- Scott, K.N. Carbon-13 nuclear magnetic resonance of biologically important aromatic acids. I. Chemical shifts of benzoic acid and derivatives. J. Am. Chem. Soc. 1972, 94, 8564–8568. [Google Scholar] [CrossRef]
- Lee, S.C.; Kwon, Y.S.; Son, K.H.; Kim, H.P.; Heo, M.Y. Antioxidative constituents from Paeonia lactiflora. Arch. Pharm. Res. 2005, 28, 775–783. [Google Scholar] [CrossRef]
- Huang, J.; Xu, X.; Xie, C.; Xie, Z.; Yang, M. Isolation and purification of paeoniflorin and albiflorin from radix Paeonia rubra by high-speed counter current chromatography. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 419–427. [Google Scholar] [CrossRef]
- Kang, S.-S.; Shin, K.-H.; Chi, H.-J. Galloylpaeoniflorin, A new acylated monoterpene glucoside from paeony root. Arch. Pharm. Res. 1991, 14, 52–54. [Google Scholar] [CrossRef]
- Mahmoud, B.K.; Hamed, A.N.; Samy, M.N.; Mostafa, E.M.; Wanas, A.S.; Radwan, M.M.; Elsohly, M.A.; Kamel, M.S. Phytochemical composition and antimicrobial properties of Markhamia platycalyx (Baker) Sprague leaf. Trop. J. Pharm. Res. 2019, 18, 2623–2631. [Google Scholar]
- Lang, H.; Shouzhen, L.; McCabe, T.; Clardy, J. A new monoterpene glycoside of Paeonia lactiflora. Planta Med. 1984, 50, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Oancea, S.; Perju, M.; Olosutean, H. Influence of enzyme-aided extraction and ultrasonication on the phenolics content and antioxidant activity of Paeonia officinalis L. petals. J. Serb. Chem. Soc. 2020, 85, 845–856. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, R.W.; Waters, A.L.; Peng, J.; Schumacher, R.A.; Bateman, A.; Thiele, J.; Mitchell, A.J.; Miller, S.G.; Goldberg, A.; Tripathi, S.K.; et al. Structure and antimicrobial activity of rare lactone lipids from the sooty mold (Scorias spongiosa). J. Nat. Prod. 2022, 85, 1436–1441. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Pandey, P.; Tripathi, S.K.; Ali, Z.; Chittiboyina, A.G.; Khan, I.A. Benzoylcyclopropane derivatives from Hpoxis hemerocallidea Corms. Planta Med. 2022, 88, 685–692. [Google Scholar]
- Bharate, S.B.; Khan, S.I.; Yunus, N.A.M.; Chauthe, S.K.; Jacob, M.R.; Tekwani, B.L.; Khan, I.A.; Singh, I.P. Antiprotozoal and antimicrobial activities of O-alkylated and formylated acylphloroglucinols. Bioorg. Med. Chem. 2007, 15, 87–96. [Google Scholar] [CrossRef]
C. neoformans | MRS | P. aeruginosa | K. pneumoniae | |
---|---|---|---|---|
Fraction II | 28.106 | 194.869 | 20.216 | 43.214 |
Fraction III | 74.372 | >200 | 24.716 | 94.405 |
Fluconazole | 4.684 | - | - | - |
Meropenem | - | 46.921 | 28.542 | 9.143 |
P. falciparum D6 | SI | P. falciparum W2 | SI | VERO | |
---|---|---|---|---|---|
Methyl gallate (3) | 1.57 | >3 | 0.61 | >7.8 | >4.76 |
Galloyl paeoniflorin (5) | 4.72 | >1 | 2.91 | >1.6 | >4.76 |
Fraction II | 19.48 | >2.4 | 8.06 | >5.9 | >47.60 |
Fraction III | 24.57 | >1.9 | 15.51 | >3.1 | >47.60 |
Chloroquine | 0.026 | >9 | 0.14 | >1.8 | >0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samy, M.N.; Mahmoud, B.K.; Shady, N.H.; Abdelmohsen, U.R.; Ross, S.A. Bioassay-Guided Fractionation with Antimalarial and Antimicrobial Activities of Paeonia officinalis. Molecules 2022, 27, 8382. https://doi.org/10.3390/molecules27238382
Samy MN, Mahmoud BK, Shady NH, Abdelmohsen UR, Ross SA. Bioassay-Guided Fractionation with Antimalarial and Antimicrobial Activities of Paeonia officinalis. Molecules. 2022; 27(23):8382. https://doi.org/10.3390/molecules27238382
Chicago/Turabian StyleSamy, Mamdouh Nabil, Basma Khalaf Mahmoud, Nourhan Hisham Shady, Usama Ramadan Abdelmohsen, and Samir Anis Ross. 2022. "Bioassay-Guided Fractionation with Antimalarial and Antimicrobial Activities of Paeonia officinalis" Molecules 27, no. 23: 8382. https://doi.org/10.3390/molecules27238382
APA StyleSamy, M. N., Mahmoud, B. K., Shady, N. H., Abdelmohsen, U. R., & Ross, S. A. (2022). Bioassay-Guided Fractionation with Antimalarial and Antimicrobial Activities of Paeonia officinalis. Molecules, 27(23), 8382. https://doi.org/10.3390/molecules27238382