Long-Distance Protonation-Conformation Coupling in Phytochrome Species
Abstract
:1. Introduction
2. Results
2.1. Protein Variants, Their Spectroscopic Characterization and Fluorescein Labeling of the Photosensory Module
2.2. pH-Dependence of UV–Vis Absorption of Agp1-PGP and Its Variants
2.3. pH-Dependence of Conformational Dynamics and Structural Constraints in Cph1 Constructs Using Time-Resolved Fluorescence Anisotropy
3. Discussion
4. Materials and Methods
4.1. Phytochrome Mutagenese, Expression and Purification
4.2. Phytochrome Labeling with IAF
4.3. UV–Vis Spectroscopy, pH-Titration and pKa Determination
4.4. Time-Resolved Fluorescence Spectroscopy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Macháčková, I.; Kendrick, R.E.; Kronenberg, G.H.M. Photomorphogenesis in plants, 2nd Edition. Biol. Plant. 1994, 36, 564. [Google Scholar] [CrossRef]
- Hughes, J.; Lamparter, T. Prokaryotes and Phytochrome. The Connection to Chromophores and Signaling1. Plant Physiol. 1999, 121, 1059–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamparter, T.; Michael, N.; Mittmann, F.; Esteban, B. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proc. Natl. Acad. Sci. USA 2002, 99, 11628–11633. [Google Scholar] [CrossRef] [Green Version]
- Claesson, E.; Wahlgren, W.Y.; Takala, H.; Pandey, S.; Castillon, L.; Kuznetsova, V.; Henry, L.; Panman, M.; Carrillo, M.; Kubel, J.; et al. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. eLife 2020, 9, e53514. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Stensitzki, T.; Sauthof, L.; Schmidt, A.; Piwowarski, P.; Velazquez Escobar, F.; Michael, N.; Nguyen, A.D.; Szczepek, M.; Brünig, F.N.; et al. Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat. Chem. 2022, 14, 823–830. [Google Scholar] [CrossRef]
- Takala, H.; Bjorling, A.; Berntsson, O.; Lehtivuori, H.; Niebling, S.; Hoernke, M.; Kosheleva, I.; Henning, R.; Menzel, A.; Ihalainen, J.A.; et al. Signal amplification and transduction in phytochrome photosensors. Nature 2014, 509, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Krieger, A.; Molina, I.; Oberpichler, I.; Michael, N.; Lamparter, T. Spectral properties of phytochrome Agp2 from Agrobacterium tumefaciens are specifically modified by a compound of the cell extract. J. Photochem. Photobiol. B 2008, 93, 16–22. [Google Scholar] [CrossRef]
- Salvadori, G.; Macaluso, V.; Pellicci, G.; Cupellini, L.; Granucci, G.; Mennucci, B. Protein control of photochemistry and transient intermediates in phytochromes. Nat. Commun. 2022, 13, 6838. [Google Scholar] [CrossRef] [PubMed]
- Borucki, B.; von Stetten, D.; Seibeck, S.; Lamparter, T.; Michael, N.; Mroginski, M.A.; Otto, H.; Murgida, D.H.; Heyn, M.P.; Hildebrandt, P. Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. J. Biol. Chem. 2005, 280, 34358–34364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Thor, J.J.; Borucki, B.; Crielaard, W.; Otto, H.; Lamparter, T.; Hughes, J.; Hellingwerf, K.J.; Heyn, M.P. Light-induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1. Biochemistry 2001, 40, 11460–11471. [Google Scholar] [CrossRef]
- Alexiev, U.; Farrens, D.L. Fluorescence spectroscopy of rhodopsins: Insights and approaches. Biochim. Biophys. Acta Bioenerg. 2014, 1837, 694–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchberg, K.; Kim, T.Y.; Moller, M.; Skegro, D.; Dasara Raju, G.; Granzin, J.; Buldt, G.; Schlesinger, R.; Alexiev, U. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc. Natl. Acad. Sci. USA 2011, 108, 18690–18695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, M.; Balke, J.; Schneider, C.; Nagano, S.; Stellmacher, J.; Lochnit, G.; Lang, C.; Weise, C.; Hughes, J.; Alexiev, U. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Biochemistry 2020, 59, 1051–1062. [Google Scholar] [CrossRef]
- Volz, P.; Krause, N.; Balke, J.; Schneider, C.; Walter, M.; Schneider, F.; Schlesinger, R.; Alexiev, U. Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2. J. Biol. Chem. 2016, 291, 17382–17393. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Winter, A.; Rueckert, C.; Uchanska-Ziegler, B.; Alexiev, U. Natural MHC class I polymorphism controls the pathway of peptide dissociation from HLA-B27 complexes. Biophys. J. 2007, 93, 2743–2755. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.; Schneider, C.; Quick, M.T.; Volz, P.; Mahrwald, R.; Hughes, J.; Dick, B.; Alexiev, U.; Ernsting, N.P. Dual-fluorescence pH probe for bio-labelling. Phys. Chem. Chem. Phys. 2015, 17, 30590–30597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, F.V.; Lang, C.; Takiden, A.; Schneider, C.; Balke, J.; Hughes, J.; Alexiev, U.; Hildebrandt, P.; Mroginski, M.A. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. J. Phys. Chem. B 2017, 121, 47–57. [Google Scholar] [CrossRef]
- Nagano, S.; Scheerer, P.; Zubow, K.; Michael, N.; Inomata, K.; Lamparter, T.; Krauß, N. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers. J. Biol. Chem. 2016, 291, 20674–20691. [Google Scholar] [CrossRef] [Green Version]
- Essen, L.O.; Mailliet, J.; Hughes, J. The structure of a complete phytochrome sensory module in the Pr ground state. Proc. Natl. Acad. Sci. USA 2008, 105, 14709–14714. [Google Scholar] [CrossRef] [Green Version]
- von Stetten, D.; Seibeck, S.; Michael, N.; Scheerer, P.; Mroginski, M.A.; Murgida, D.H.; Krauss, N.; Heyn, M.P.; Hildebrandt, P.; Borucki, B.; et al. Highly Conserved Residues Asp-197 and His-250 in Agp1 Phytochrome Control the Proton Affinity of the Chromophore and Pfr Formation. J. Biol. Chem. 2007, 282, 2116–2123. [Google Scholar] [CrossRef]
- Möller, M.; Alexiev, U. Surface Charge Changes upon Formation of the Signaling State in Visual Rhodopsin. Photochem. Photobiol. 2009, 85, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Alexiev, U.; Marti, T.; Heyn, M.P.; Khorana, H.G.; Scherrer, P. Surface charge of bacteriorhodopsin detected with covalently bound pH indicators at selected extracellular and cytoplasmic sites. Biochemistry 1994, 33, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Kirchberg, K.; Michel, H.; Alexiev, U. Exploring the entrance of proton pathways in cytochrome c oxidase from Paracoccus denitrificans: Surface charge, buffer capacity and redox-dependent polarity changes at the internal surface. Biochim. Biophys. Acta 2013, 1827, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björling, A.; Berntsson, O.; Lehtivuori, H.; Takala, H.; Hughes, A.J.; Panman, M.; Hoernke, M.; Niebling, S.; Henry, L.; Henning, R.; et al. Structural photoactivation of a full-length bacterial phytochrome. Sci. Adv. 2016, 2, e1600920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexiev, U.; Rimke, I.; Pohlmann, T. Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: A time-resolved fluorescence depolarization study. J. Mol. Biol. 2003, 328, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, V.; Salvadori, G.; Cupellini, L.; Mennucci, B. The structural changes in the signaling mechanism of bacteriophytochromes in solution revealed by a multiscale computational investigation. Chem. Sci. 2021, 12, 5555–5565. [Google Scholar] [CrossRef]
- Ihalainen, J.A.; Gustavsson, E.; Schroeder, L.; Donnini, S.; Lehtivuori, H.; Isaksson, L.; Thoing, C.; Modi, V.; Berntsson, O.; Stucki-Buchli, B.; et al. Chromophore-Protein Interplay during the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy. J. Am. Chem. Soc. 2018, 140, 12396–12404. [Google Scholar] [CrossRef] [Green Version]
- Borg, O.A.; Durbeej, B. Relative ground and excited-state pKa values of phytochromobilin in the photoactivation of phytochrome: A computational study. J. Phys. Chem. B 2007, 111, 11554–11565. [Google Scholar] [CrossRef]
- Modi, V.; Donnini, S.; Groenhof, G.; Morozov, D. Protonation of the Biliverdin IX alpha Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome. J. Phys. Chem. B 2019, 123, 2325–2334. [Google Scholar] [CrossRef] [Green Version]
- Margulies, L.; Stockburger, M. Spectroscopic studies on model compounds of the phytochrome chromophore. Protonation and deprotonation of biliverdin dimethyl ester. J. Am. Chem. Soc. 1979, 101, 743–744. [Google Scholar] [CrossRef]
- Mizutani, Y.; Tokutomi, S.; Aoyagi, K.; Horitsu, K.; Kitagawa, T. Resonance Raman study on intact pea phytochrome and its model compounds: Evidence for proton migration during the phototransformation. Biochemistry 1991, 30, 10693–10700. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.F.; Campos, S.R.R.; Baptista, A.M.; Soares, C.M. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochim. Biophys. Acta 2016, 1857, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, S.; Njimona, I.; Renz, A.; Feng, J.; Reijerse, E.; Lubitz, W.; Krauss, N.; Scheerer, P.; Nagano, S.; Lamparter, T.; et al. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion. J. Biol. Chem. 2017, 292, 7598–7606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takala, H.; Lehtivuori, H.K.; Berntsson, O.; Hughes, A.; Nanekar, R.; Niebling, S.; Panman, M.; Henry, L.; Menzel, A.; Westenhoff, S.; et al. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. J. Biol. Chem. 2018, 293, 8161–8172. [Google Scholar] [CrossRef] [Green Version]
- Nagano, S.; Sadeghi, M.; Balke, J.; Fleck, M.; Heckmann, N.; Psakis, G.; Alexiev, U. Improved fluorescent phytochromes for in situ imaging. Sci. Rep. 2022, 12, 5587. [Google Scholar] [CrossRef]
- Lamparter, T.; Esteban, B.; Hughes, J. Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803—Purification, assembly, and quaternary structure. Eur. J. Biochem. 2001, 268, 4720–4730. [Google Scholar] [CrossRef]
- Lamparter, T.; Michael, N.; Caspani, O.; Miyata, T.; Shirai, K.; Inomata, K. Biliverdin Binds Covalently to Agrobacterium Phytochrome Agp1 via Its Ring A Vinyl Side Chain. J. Biol. Chem. 2003, 278, 33786–33792. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.Y.; Winkler, K.; Alexiev, U. Picosecond multidimensional fluorescence spectroscopy: A tool to measure real-time protein dynamics during function. Photochem. Photobiol. 2007, 83, 378–384. [Google Scholar] [CrossRef]
Sample | Chromophore pKDPC | pKDPC a |
---|---|---|
Agp1 PGP WT | 10.70 ± 0.02 | - |
Agp1 PGP C295S | 10.70 ± 0.01 | 0 ± 0.03 |
Agp1 PGP C279S | 10.40 ± 0.02 | −0.3 ± 0.03 |
Agp1 PGP C279S/C295S | 10.51 ± 0.02 | −0.19 ± 0.04 |
Agp1 PGP C279S/C295S/V364C | 10.50 ± 0.02 | −0.20 ± 0.04 |
Agp1 PGP WT-AF | 10.42 ± 0.02 | −0.28 ± 0.04 |
Agp1 PGP C295S/C279-AF | 10.49 ± 0.02 | −0.21 ± 0.04 |
Agp1 PGP C279S/C295-AF | 10.45 ± 0.03 | −0.25 ± 0.05 |
Agp1 PGP C279S/C295S/V364C-AF | 10.60 ± 0.03 | −0.09 ± 0.05 |
(A) Agp1 PGP WT-AF | ||||||||
pH | r0 | ϕ1 (ns) | ϕ2 (ns) | ϕ3 (ns) a | β1 | β2 | β3 | χred2 |
7.4 | 0.35 | 0.10 | 1.05 | 30.0 | 0.052 | 0.065 | 0.232 | 0.95 |
8.0 | 0.35 | 0.08 | 0.82 | 30.0 | 0.063 | 0.066 | 0.220 | 0.93 |
8.6 | 0.34 | 0.08 | 0.82 | 30.0 | 0.058 | 0.071 | 0.211 | 0.93 |
9.0 | 0.34 | 0.11 | 0.91 | 30.0 | 0.066 | 0.066 | 0.207 | 0.92 |
9.5 | 0.34 | 0.07 | 0.87 | 30.0 | 0.062 | 0.076 | 0.202 | 1.00 |
10.2 | 0.33 | 0.13 | 0.92 | 30.0 | 0.059 | 0.079 | 0.192 | 0.93 |
(B) Agp1 PGP C279-AF | ||||||||
pH | r0 | ϕ1 (ns) | ϕ2 (ns) | ϕ3 (ns) a | β1 | β2 | β3 | χred2 |
7 | 0.34 | 0.10 | 1.10 | 30 | 0.048 | 0.078 | 0.214 | 0.96 |
7.5 | 0.34 | 0.31 | 2.25 | 30 | 0.070 | 0.071 | 0.199 | 1.04 |
9.1 | 0.34 | 0.23 | 1.17 | 30 | 0.078 | 0.082 | 0.180 | 0.87 |
9.5 | 0.34 | 0.17 | 1.10 | 30 | 0.065 | 0.098 | 0.174 | 1.06 |
10.3 | 0.34 | 0.18 | 1.17 | 30 | 0.077 | 0.097 | 0.161 | 1.02 |
10.8 | 0.34 | 0.27 | 1.5 | 30 | 0.088 | 0.093 | 0.160 | 0.96 |
(C) Agp1 PGP C295-AF | ||||||||
pH | r0 | ϕ1 (ns) | ϕ2 (ns) | ϕ3 (ns) a | β1 | β2 | β3 | χred2 |
7.5 | 0.34 | 0.04 | 0.50 | 30 | 0.054 | 0.055 | 0.231 | 1.01 |
7.8 | 0.34 | 0.04 | 0.41 | 30 | 0.049 | 0.056 | 0.235 | 0.96 |
8.0 | 0.34 | 0.04 | 0.50 | 30 | 0.056 | 0.054 | 0.229 | 0.95 |
8.6 | 0.34 | 0.05 | 0.51 | 30 | 0.049 | 0.056 | 0.235 | 0.95 |
9.2 | 0.34 | 0.04 | 0.52 | 30 | 0.058 | 0.058 | 0.224 | 1.01 |
10.0 | 0.34 | 0.06 | 0.60 | 30 | 0.060 | 0.060 | 0.2196 | 0.96 |
10.5 | 0.34 | 0.07 | 0.70 | 30 | 0.060 | 0.063 | 0.2162 | 0.98 |
11.0 | 0.34 | 0.05 | 0.60 | 30 | 0.061 | 0.066 | 0.2135 | 0.94 |
(D) Agp1 PGP V364C-AF | ||||||||
pH | r0 | ϕ1 (ns) | ϕ2 (ns) | ϕ3 (ns) a | β1 | β2 | β3 | χred2 |
6.3 | 0.34 | 0.15 | 1.40 | 30 | 0.049 | 0.086 | 0.204 | 0.96 |
7.5 | 0.34 | 0.15 | 1.40 | 30 | 0.059 | 0.085 | 0.199 | 0.94 |
8.9 | 0.34 | 0.15 | 1.35 | 30 | 0.065 | 0.088 | 0.187 | 1.01 |
9.5 | 0.34 | 0.15 | 0.60 | 30 | 0.076 | 0.089 | 0.174 | 0.97 |
10.0 | 0.34 | 0.15 | 1.70 | 30 | 0.080 | 0.088 | 0.171 | 0.98 |
Sample | Chromophore pKDPC | pKa of Conformational Change |
---|---|---|
Agp1 PGP WT-AF (labeling in GAF) | 10.42 ± 0.02 | 9.0 ± 0.2 |
Agp1 PGP C295S/C279-AF (labeling in β-sheet of GAF) | 10.49 ± 0.02 | 9.2 ± 0.1 |
Agp1 PGP C279S/C295-AF (labeling in long helix of GAF) | 10.45 ± 0.03 | 9.7 ± 0.2 |
Agp1 PGP C279S/C295S/V364C-AF (labeling in β-sheet of PHY) | 10.60 ± 0.03 | 9.0 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, M.; Balke, J.; Rafaluk-Mohr, T.; Alexiev, U. Long-Distance Protonation-Conformation Coupling in Phytochrome Species. Molecules 2022, 27, 8395. https://doi.org/10.3390/molecules27238395
Sadeghi M, Balke J, Rafaluk-Mohr T, Alexiev U. Long-Distance Protonation-Conformation Coupling in Phytochrome Species. Molecules. 2022; 27(23):8395. https://doi.org/10.3390/molecules27238395
Chicago/Turabian StyleSadeghi, Maryam, Jens Balke, Timm Rafaluk-Mohr, and Ulrike Alexiev. 2022. "Long-Distance Protonation-Conformation Coupling in Phytochrome Species" Molecules 27, no. 23: 8395. https://doi.org/10.3390/molecules27238395
APA StyleSadeghi, M., Balke, J., Rafaluk-Mohr, T., & Alexiev, U. (2022). Long-Distance Protonation-Conformation Coupling in Phytochrome Species. Molecules, 27(23), 8395. https://doi.org/10.3390/molecules27238395