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Abstract: Novel aryl-substituted homophthalic acids were cyclodehydrated to the respective homoph-
thalic anhydrides for use in the Castagnoli–Cushman reaction. With a range of imines, this reaction
proceeded smoothly and delivered hitherto undescribed 4-aryl-substituted tetrahydroisoquinolonic
acids with remarkable diastereoselectivity, good yields and no need for chromatographic purification.
These findings significantly extend the range of cyclic anhydrides employable in the Castagnoli–
Cushman reaction and signify access to a novel substitution pattern around the medicinally relevant
tetrahydroisoquinolonic acid scaffold.

Keywords: homophthalic anhydride; imine; Castagnoli–Cushman reaction; tetrahydroisoquinolone;
lactam; all-carbon quaternary atom

1. Introduction

The Castagnoli–Cushman reaction (CCR) [1] is a remarkably versatile [4 + 2]-type
cyclocondensation of a-C-H-acidic cyclic anhydrides 1 with imines 2 leading, depending
on the specific anhydride employed [2], to skeletally diverse [3] lactams 3 bearing multiple
substituents, which in many cases proceeds in diastereoselective fashion. This reaction
is multicomponent in nature because the requisite imine can be generated in situ from
the respective amine and aldehyde [4], which makes this reaction particularly suitable for
generating compound libraries in array format for drug discovery (Figure 1).
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Figure 1. The Castagnoli–Cushman reaction.

Considering the fact that the cyclic anhydride (1) for the CCR input primarily controls
the skeletal nature of the lactam product 3, involvement of novel anhydrides in the reaction
promises to deliver molecular frameworks which are either completely novel [5] or carry
unprecedented substitution patterns around known cores.

Homophthalic anhydride (HPA) is one of the most popular and most reactive anhy-
drides used in the CCR. The reaction with HPA delivers tetrahydroisoquinolones (THIQs)
with good control of diastereoselectivity [6–8]. The THIQ scaffold is of undisputable
medicinal relevance, as evidenced by various molecular series possessing diverse biological
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activities reported in the literature. These can be exemplified by such compounds as adreno-
corticotropic hormone receptor modulator 4 [9], apoptosis regulator 5 [10], trypanocidal
cysteine protease inhibitor 6 [11], as well as antimalarial 7 [12] (Figure 2).
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Figure 2. Examples of diversely biologically active tetrahydroisoquinolones.

The peripheral group diversity of HPA has been largely limited to the substitutions
in the benzene ring [13], while substitutions at the methylene position remain almost
completely unexplored except for methyl- [14,15] and benzyl- [15] substituted variants.
We became interested in synthesizing novel HPA versions bearing an aryl group at the
methylene linker (8) and exploring them as partners in the CCR. Our interest was fueled
by the prospect of obtaining, possibly in diastereoselective manner, densely substituted
THIQs 9 where the α-position (position 4 of the THIQ scaffold) of the hitherto undescribed
carboxylic acid would be an all-carbon stereogenic center (Figure 3). Herein, we present
the results obtained in the course of pursuing this goal.
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2. Results

4-Aryl-substituted homophthalic acids 10 required for the preparation of anhydrides
8 were synthesized from indanones 11. These, in turn, were prepared either by triflic
acid-promoted arylation of cinnamic acids 12 [16] or by intramolecular Heck reaction of
bromochalcone 13 [17]. The Heck reaction approach was used for the methoxy-substituted
substrate because the respective TfOH-promoted arylation, when attempted, led to ex-
tensive tar formation. Indanones 11 were condensed with diethyl oxalate using either
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potassium or lithium tert-butoxide as the base, and the resulting condensation products 14
were oxidized with hydrogen peroxide in basic medium (as described previously [18]) to
furnish novel homophthalic acids 10a–f in modest to excellent yields over two steps from
indanones 11 (Scheme 1).
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Scheme 1. Synthesis of substituted homophthalic acids 10.

For the prospective employment of homophthalic acids in the CCR, anhydrides 8 were
prepared immediately before the reaction using acetic anhydride as the cyclodehydrating
agent and were used in the condensation with imines without further purification. For
the preparation of anhydrides from homophthalic acids 10a–d, the cyclodehydration was
performed at room temperature in dichloromethane. For substrates 10e–f, due to limited
solubility in the latter conditions, the same reaction was performed in toluene at 80 °C.

Although the CCR of HPA can be conducted in a range of different solvents [19], after
brief optimization, we found the reaction of anhydride derived from unsubstituted diacid
10b to furnish an optimum 72% yield of THIQ cycloadduct 9a as a single diastereomer
after refluxing the reaction partners in acetonitrile over 18 h. The same reaction conducted
in refluxing toluene gave lower (66%) yield. Interestingly, the reaction in acetonitrile
also proceeded to completion at room temperature but with lower yield (55%) and lower
diastereoselectivity (dr 5:1, trans-/cis-). Thus, the conditions involving refluxing acetonitrile
were extended to anhydrides 8 of this and other homophthalic acids 10 in combination
with various imines prepared from aromatic aldehydes (Scheme 2).

The yields of 4-aryl-substituted THIQ acids 9a–u were generally good after simple
evaporation of acetonitrile and trituration of the crude material with hexane and ether, with
no need for chromatographic purification. The reactions were completely diastereoselective
throughout except for those yielding products 9q–t. The stereochemical identity of products
9a–u was unequivocally confirmed as being trans with respect to the vicinal aryl groups by
single-crystal X-ray analysis of compound 9a (Figure 4, see ESI for details). The substituents
in the homophthalic portion did not apparently influence the reaction outcome. The scope
of the reaction was also quite broad with respect to the aromatic, aldehyde-derived group
tolerating heterocyclic motifs as well as phenyl group with a nitro group. Likewise, the
scope of amines, aromatic and aliphatic alike, was also fairly broad.
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Despite our initial expectations of potentially lower reactivity of anhydrides 8 in the
CCR due to increased steric bulk compared to HPA, the reactivity of these anhydrides
was similar to that of HPA (considering the fact that the reaction also proceeded at room
temperature, vide supra). This is in line with the observations by others for methyl- and
benzyl-substituted versions of HPA [15].

In addition to dicarboxylic acids 10a–f, we prepared 1,2,3-triazol-1-yl-substituted di-
carboxylic acid 15 by copper-catalyzed [3 + 2] azide-alkyne cycloaddition of the known [20]
azido-substituted homophthalic diethyl ester 16 and phenylacetylene followed by hydroly-
sis. Due to solubility issues, the cyclodehydration procedure to anhydride 17 was modified,
and the reaction was performed in DMF using dicyclohexylcarbodiimide (DCC) as the
cyclodehydrating agent. Anhydride 17 proved to be a competent substrate for the CCR;
however, due to low solubility of 17 in acetonitrile, the reaction was conducted in DMF at
room temperature. Trans-configured cycloadduct 18 was obtained as a single diastereomer
in 50% yield, also with no need for chromatographic purification (Scheme 3).
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3. Conclusions

We have described the synthesis of novel aryl-substituted homophthalic acids. Their
cyclodehydration to the respective homophthalic anhydrides and the Castagnoli–Cushman
reaction of the latter with a range of imines resulted in good yields and delivered hitherto
undescribed 4-aryl-substituted tetrahydroisoquinolonic acids with remarkable diastereose-
lectivity, good yields and no need for chromatographic purification. These products are
distinct in that they contain an all-carbon quaternary stereogenic centers in the α-position
to the carboxylic acid. The cyclodehydration–Castagnoli–Cushman reaction protocol was
found to be also transferrable to a novel 1,2,3-triazol-1-yl-substituted homophthalic acid.
These findings significantly extend the range of cyclic anhydrides employable in the
Castagnoli–Cushman reaction and signify access to a novel substitution pattern around the
medicinally relevant tetrahydroisoquinolonic acid scaffold.

4. Materials and Methods
4.1. General Information

All reagents were obtained from commercial sources and used without further pu-
rification. Acetonitrile, toluene and N,N-dimethylformamide were distilled from suitable
drying agents (CaH2 or P2O5) and stored over MS 4Å. Mass spectra were recorded with
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a Bruker Maxis HRMS-ESI-qTOF spectrometer (Moscow, Russia) (electrospray ionization
mode). NMR data were recorded with Bruker Avance 400/500 spectrometer (Moscow,
Russia) (400.13 MHz for 1H, 100.61 MHz and 125.73 MHz for 13C and 376.50 MHz for 19F)
in DMSO-d6 and were referenced to residual solvent proton peaks (δH = 2.51 ppm) and
solvent carbon peaks (δC = 39.52 ppm). NMR and HRMS spectra are in the Supplementary
Material.

4.2. Preparation of Arylhomophthalic Acids 10a–10f: General Procedure 1

Step 1. Condensation of arylindanones with diethyl oxalate

Compounds 10a,b,d,e: Corresponding indanone (9.6 mmol, 1 equiv.) and diethyl
oxalate (4.2 g, 3.9 mL, 28.8 mmol, 3 equiv.) were dissolved in THF (10 mL, dry) in a round-
bottom flask, and to the resulting solution a suspension of t-BuOK (3.23 g, 28.8 mmol,
3 equiv.) in THF (15 mL, dry) at room temperature was added dropwise. Next, the flask
was stoppered, and the mixture was heated in a metal heating block at 65 ◦C for 72 h
(conversion was estimated by TLC, using DCM as an eluent). After cooling to room
temperature, the solvent was evaporated and the mixture was dissolved in CHCl3 (30 mL),
washed with 3% hydrochloric acid solution (1 × 15 mL), water (1 × 15 mL) and brine
(1 × 15 mL), then organic layer was dried over anhydrous sodium sulfate. The solvent
was evaporated, and the resulting mixture was used in the next step without purification.
Compounds 10c,f were obtained according to nearly the same procedure (but using t-BuOLi
instead of t-BuOK), and the heating was performed for 16h.

Step 2. Oxidation

A solution of KOH (3.76 g, 67.2 mmol, 7 equiv.) in water (20 mL) was added to the
product of the previous step in a round-bottom flask; the mixture was stirred for 20 min,
then H2O2 (30%, 27.2 mL) was added dropwise. The solution was stirred overnight at
room temperature, then heated in a metal heating block to 50 ◦C and stirred for two hours
(until the mixture became transparent). Activated charcoal (12 g) (powder−100 particle size
(mesh)) was added to the resulting chilled solution and intensively stirred for 15 min. The
solution was filtered through zeolite, and a solution of concentrated hydrochloric acid was
added to the filtrate at room temperature to reach pH 1. The precipitated acid was extracted
into EtOAc (3 × 30 mL). The organic layer was combined, dried over anhydrous sodium
sulfate and evaporated. The resulting acids 10a–e did not require further purification. The
acid 10f was additionally crystallized from acetonitrile. Yields of compounds 10 were
calculated for 2 steps.

4.2.1. 2-[Carboxy(4-chlorophenyl)methyl]benzoic Acid (10a)

Prepared according to the general procedure GP1 from 3-(4-chlorophenyl)-2,3-dihydro-
1H-inden-1-one[21]. Yield 2.344 g, 84%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 12.89 (s, 2H), 8.02–7.80 (m, 1H), 7.55–7.48 (m, 1H), 7.46–7.34 (m, 3H), 7.31–7.23
(m, 2H), 7.15–7.10 (m, 1H), 5.99 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ 173.6, 169.0, 140.1,
138.5, 132.3, 132.1, 131.4, 131.0, 130.9, 130.2, 128.9, 127.5, 52.9. HRMS (ESI/Q-TOF) m/z:
[M + Na+]+ Calcd for C15H11ClO4Na+ 313.0238; Found 313.0234.

4.2.2. 2-[Carboxy(phenyl)methyl]benzoic Acid (10b)

Prepared according to the general procedure GP1 from 3-phenyl-2,3-dihydro-1H-
inden-1-one [16]. Yield 2.017 g, 82%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 12.81 (s, 2H), 7.95–7.82 (m, 1H), 7.53–7.44 (m, 1H), 7.41–7.32 (m, 3H), 7.32–7.22
(m, 3H), 7.13–7.04 (m, 1H), 5.97 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ 173.9, 169.1, 140.6,
139.5, 132.1, 131.1, 130.7, 130.3, 129.5, 129.0, 127.4, 127.3, 53.6. HRMS (ESI/Q-TOF) m/z:
[M + Na+]+ Calcd for C15H12O4Na+ 279.0628; Found 279.0623.
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4.2.3. 2-[Carboxy(4-methoxyphenyl)methyl]benzoic Acid (10c)

Prepared according to the general procedure GP1 from 3-(4-methoxyphenyl)-2,3-
dihydro-1H-inden-1-one [21]. Yield 703 mg, 62%. Colorless amorphous solid. 1H NMR
(400 MHz, DMSO-d6) δ 12.75 (s, 2H), 7.86 (dd, J = 7.7, 1.6 Hz, 1H), 7.46 (td, J = 7.5, 1.6 Hz,
1H), 7.33 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 7.7 Hz, 1H), 6.92 (d, J = 8.7 Hz,
2H), 5.88 (s, 1H), 3.74 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 173.7, 168.7, 158.2, 140.6,
131.5, 130.9, 130.6, 130.2, 130.1, 129.7, 126.7, 113.9, 55.1, 52.3. HRMS (ESI/Q-TOF) m/z:
[M-H]− Calcd for C16H13O5

− 285.0769; Found 285.0768.

4.2.4. 2-[Carboxy(phenyl)methyl]-5-methylbenzoic Acid (10d)

Prepared according to the general procedure GP1 from 6-methyl-3-phenyl-2,3-dihydro-
1H-inden-1-one [16]. Yield 1.167 g, 45%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 12.71 (s, 2H), 7.71–7.65 (m, 1H), 7.38–7.32 (m, 2H), 7.30–7.26 (m, 2H), 7.25–7.19
(m, 2H), 7.05–6.89 (m, 1H), 5.91 (s, 1H), 2.31 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 174.00,
169.17, 161.41, 139.66, 137.68, 136.58, 132.61, 131.11, 130.88, 130.24, 129.44, 128.92, 127.30,
53.20, 20.78. 13C NMR (101 MHz, DMSO-d6) δ 174.0, 169.2, 161.4, 139.7, 137.7, 136.6, 132.6,
131.1, 130.9, 130.2, 129.4, 128.9, 127.3, 53.2, 20.8. HRMS (ESI/Q-TOF) m/z: [M + Na]+ Calcd
for C16H14O4Na+ 293.0784; Found 293.0785.

4.2.5. 2-[Carboxy(4-fluorophenyl)methyl]benzoic Acid (10e)

Prepared according to the general procedure GP1 from 3-(4-fluorophenyl)-2,3-dihydro-
1H-inden-1-one [16]. Yield 0.789 g, 30%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 12.88 (s, 2H), 7.94–7.83 (m, 1H), 7.53–7.45 (m, 1H), 7.40–7.33 (m, 1H), 7.31–7.25
(m, 2H), 7.23–7.09 (m, 3H), 6.06–5.94 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ 173.8, 169.1,
161.6 (d, J = 243.3 Hz), 140.4, 135.7 (d, J = 3.1 Hz), 132.2, 131.4 (d, J = 8.1 Hz), 131.1, 130.8,
130.1, 127.4, 115.7 (d, J = 21.3 Hz), 52.8. 19F NMR (376 MHz, DMSO-d6) δ −115.9. HRMS
(ESI/Q-TOF) m/z: [M + Na+]+ Calcd for C15H11FO4Na+ 297.0534; Found 297.0528.

4.2.6. 2-[Carboxy(4-chlorophenyl)methyl]-5-chlorobenzoic Acid (10f)

Prepared according to the general procedure GP1 from 6-chloro-3-(4-chlorophenyl)-
2,3-dihydro-1H-inden-1-one [22]. Yield 530 mg, 17%. Colorless amorphous solid. 1H NMR
(400 MHz, DMSO-d6) δ 13.38 (s, 1H), 12.87 (s, 1H), 7.91–7.78 (m, 1H), 7.65–7.53 (m, 1H),
7.46–7.36 (m, 2H), 7.30–7.22 (m, 2H), 7.12–7.04 (m, 1H), 5.91 (s, 1H). 13C NMR (101 MHz,
DMSO-d6) δ 173.3, 167.7, 139.1, 138.0, 133.0, 132.3, 132.3, 132.1, 132.0, 131.4, 130.3, 129.1,
52.6. HRMS (ESI/Q-TOF) m/z: [M + Na+]+ Calcd for C15H10Cl2O4Na+ 346.9848; Found
346.9841.

4.3. General Procedure for Preparation of Tetrahydroisoquinonolones 9a–9u

Step 1. Anhydride synthesis.

Products 9a–c and f–u:
Diacid 10a–c,f (50 mg) was mixed with DCM (1 mL, dry.) in a screw-cap vial, after

which acetic anhydride (6 equiv.) was added to the suspension and the reaction mixture
was stirred overnight at room temperature. Then, the solvent was evaporated in vacuo. The
resulting crude anhydride was used in the next step without purification or characterization.

For products 9d,e:
Diacid 10c,f (50 mg) was dissolved in toluene (3 mL, dry) in screw-cap vial, after which

acetic anhydride (6 equiv.) was added to the suspension and the reaction mixture was
stirred overnight at 80 ◦C in a metal heating box. Then, the solvent was evaporated in vacuo.
The resulting crude anhydride was used in the next step without further purification.

Step 2. The Castagnoli–Cushman reaction

For products 9a–9u:
The resulting crude anhydride from the previous step was dissolved in MeCN (0.3 mL,

dry) in a screw-cap vial, then imine (1.05 equiv.) dissolved in MeCN (0.2 mL, dry) was
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added with stirring. The reaction mixture was kept at 80 ◦C overnight in a metal heating
block. Then, the solvent was evaporated. Next, the crude product was treated with diethyl
ether (1 mL), after which pentane (3 mL) was added and the solid was thoroughly ground.
After cooling to −20 ◦C for 20 min, the liquid was decanted. The resulting solid was dried
in vacuo to give pure title compound.

Dr values were calculated from integrals of methine protons (1H NMR spectra) from
lactam ring.

4.3.1. (±)-(3R,4R)-2-Ethyl-1-oxo-4-phenyl-3-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline-4-
carboxylic Acid (9a)

Prepared according to the general procedure GP2 from 10b and N-(4-methylbenzylidene)
ethanamine. Yield 52 mg, 72%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6) δ
13.14 (s, 1H), 8.19–8.10 (m, 1H), 8.05–7.98 (m, 1H), 7.64 (s, 1H), 7.59–7.47 (m, 1H), 7.36–7.26 (m,
4H), 7.26–7.21 (m, 1H), 6.98 (s, 4H), 5.59 (s, 1H), 3.58 (dq, J = 14.0, 7.1 Hz, 1H), 3.20 (dq, J = 14.0,
7.1 Hz, 1H), 2.21 (s, 3H), 0.76 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 171.7, 162.3,
142.6, 137.8, 137.7, 136.0, 131.9, 130.4, 130.1, 129.0, 129.0, 128.5, 128.2, 128.0, 128.0, 127.6, 66.4, 59.0,
42.1, 21.0, 13.1. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C25H24NO3

+ 386.1751; Found
386.1744.

Crystal Data for C28.571429H26.285714N1.142857O3.428571 (M = 440.51 g/mol): orthorhombic,
space group Pbca (no. 61), a = 15.8652(2) Å, b = 14.6469(2) Å, c = 16.7176(2) Å, V = 3884.77(9) Å3,
Z = 7, T = 100.15 K, µ(CuKα) = 0.689 mm−1, Dcalc = 1.318 g/cm3,
41,022 reflections measured (9.774◦ ≤ 2Θ ≤ 152.44◦), 4053 unique (Rint = 0.0439, Rsigma = 0.0168)
which were used in all calculations. The final R1 was 0.0408 (I > 2σ(I)) and wR2 was 0.1105 (all
data). Please see ESI (p.S2-5) for details.

4.3.2. (±)-(3R,4R)-3-(4-Nitrophenyl)-1-oxo-4-phenyl-2-propyl-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9b)

Prepared according to the general procedure GP2 from 10b and N-(4-nitrobenzylidene)
propan-1-amine. Yield 62 mg, 74%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-
d6) δ 13.46 (s, 1H), 8.12–8.05 (m, 3H), 8.03–7.98 (m, 1H), 7.72–7.66 (m, 1H), 7.60 (t, J = 7.5 Hz,
1H), 7.39 (d, J = 8.5 Hz, 2H), 7.29 (p, J = 6.6 Hz, 5H), 5.80 (s, 1H), 3.51 (ddd, J = 13.2, 8.9,
6.7 Hz, 1H), 2.97 (ddd, J = 13.6, 9.0, 5.0 Hz, 1H), 1.23 (dt, J = 8.1, 4.9 Hz, 1H), 1.15–0.99 (m,
1H), 0.47 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 171.7, 162.7, 147.6, 147.2,
142.3, 137.0, 132.4, 130.5, 130.3, 130.0, 128.7, 128.5, 128.3, 128.1, 127.8, 123.5, 66.3, 59.5, 48.3,
20.7, 11.4. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C25H23N2O5

+ 431.1601; Found
431.1606.

4.3.3. (±)-(3R,4R)-2-Ethyl-7-methyl-1-oxo-4-phenyl-3-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9c)

Prepared according to the general procedure GP2 from 10d and N-(4-methylbenzylidene)
ethanamine. Yield 45 mg, 61%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6) δ
13.06 (s, 1H), 8.05–7.99 (m, 1H), 7.83–7.80 (m, 1H), 7.47–7.41 (m, 1H), 7.35–7.26 (m, 4H), 7.25–7.19
(m, 1H), 7.02–6.92 (m, 4H), 5.55 (s, 1H), 3.57 (dq, J = 14.0, 7.1 Hz, 1H), 3.18 (dq, J = 14.0, 7.1 Hz,
1H), 2.42 (s, 3H), 2.21 (s, 3H), 0.74 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 171.8,
162.4, 142.8, 137.6, 137.5, 136.1, 134.9, 132.6, 130.2, 130.1, 129.0, 129.0, 128.5, 128.4, 128.0, 127.5,
66.5, 58.8, 42.1, 21.2, 21.0, 13.1. HRMS (ESI/Q-TOF) m/z: [M + Na+]+ Calcd for C26H25NO3Na+

422.1727; Found 422.1718.

4.3.4. (±)-(3R,4R)-2-Ethyl-4-(4-methoxyphenyl)-1-oxo-3-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9d)

Prepared according to the general procedure GP2 from 10c and N-(4-methylbenzylidene)
ethanamine. Yield 41 mg, 57%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6)
δ 13.04 (s, 1H), 8.17–8.09 (m, 1H), 8.05–7.94 (m, 1H), 7.64–7.59 (m, 1H), 7.54–7.46 (m, 1H),
7.25–7.19 (m, 2H), 7.02–6.95 (m, 4H), 6.88–6.82 (m, 2H), 5.54 (s, 1H), 3.70 (s, 3H), 3.57 (dq,
J = 13.9, 7.2 Hz, 1H), 3.17 (dq, J = 13.9, 7.2 Hz, 1H), 2.20 (s, 3H), 0.77 (t, J = 7.1 Hz, 3H). 13C NMR
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(101 MHz, DMSO-d6) δ 172.0, 162.4, 158.6, 138.1, 137.6, 136.0, 134.4, 131.8, 130.4, 130.1, 129.3,
129.0, 128.9, 128.1, 128.0, 113.8, 66.5, 58.4, 55.5, 42.1, 21.0, 13.1. HRMS (ESI/Q-TOF) m/z:
[M + H+]+ Calcd for C26H26NO4

+ 416.1856; Found 416.1848.

4.3.5. (±)-(3R,4R)-7-Chloro-4-(4-chlorophenyl)-2-ethyl-1-oxo-3-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic acid (9e)

Prepared according to the general procedure GP2 from 10f and N-(4-methylbenzylidene)
ethanamine. Yield 43 mg, 61%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6)
δ 13.48 (s, 1H), 8.26–8.13 (m, 1H), 8.01–7.93 (m, 1H), 7.79–7.55 (m, 1H), 7.52–7.27 (m, 4H),
7.10–6.85 (m, 4H), 5.65 (s, 1H), 3.58 (dq, J = 14.1, 7.1 Hz, 1H), 3.19 (dq, J = 14.1, 7.1 Hz, 1H),
2.21 (s, 3H), 0.78 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 171.0, 161.2, 141.0, 137.9,
136.4, 135.2, 133.4, 132.6, 132.6, 132.3, 131.9, 130.1, 129.2, 128.9, 128.5, 127.5, 66.3, 58.6, 42.3,
21.0, 13.0. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C25H22Cl2NO3

+ 454.0971; Found
454.0965.

4.3.6. (±)-(3R,4R)-3-(4-(Benzyloxy)-3-methoxyphenyl)-4-(4-chlorophenyl)-1-oxo-2-(prop-
2-yn-1-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylic Acid (9f)

Prepared according to the general procedure GP2 from 10b and N-(4-(benzyloxy)-3-
methoxybenzylidene)prop-2-yn-1-amine. Yield 76 mg, 80%. Colorless amorphous solid.
1H NMR (400 MHz, DMSO-d6) δ 13.37 (s, 1H), 8.29–8.18 (m, 1H), 8.08–7.96 (m, 1H),
7.74–7.65 (m, 1H), 7.58–7.26 (m, 10H), 6.92–6.82 (m, 1H), 6.67–6.61 (m, 1H), 6.59–6.50 (m,
1H), 5.75 (s, 1H), 4.98 (s, 2H), 4.65 (d, J = 17.4 Hz, 1H), 3.77 (d, J = 17.4 Hz, 1H), 3.51 (s,
3H). 13C NMR (126 MHz, DMSO-d6) δ 171.2, 162.3, 148.5, 148.3, 141.2, 137.9, 137.4, 136.7,
133.1, 132.7, 132.5, 130.2, 129.8, 129.3, 129.2, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.3,
121.2, 113.1, 79.0, 76.1, 70.2, 58.4, 55.5. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for
C33H27ClNO5

+ 552.1572; Found 552.1574.

4.3.7. (±)-(3R,4R)-2-Benzyl-4-(4-chlorophenyl)-3-(2-methoxyphenyl)-1-oxo-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9g)

Prepared according to the general procedure GP2 from 10a and N-(2-methoxybenzylidene)-
1-phenylmethanamine. Yield 62 mg, 61%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 12.95 (s, 1H), 8.20–8.11 (m, 1H), 7.71–7.65 (m, 1H), 7.64–7.58 (m, 1H), 7.55 (d,
J = 7.7 Hz, 1H), 7.27–7.19 (m, 2H), 7.13–7.07 (m, 2H), 7.05–7.00 (m, 3H), 6.83–6.60 (m, 6H), 5.79
(s, 1H), 5.19 (d, J = 14.6 Hz, 1H), 3.87 (s, 3H), 3.40 (d, J = 14.6 Hz, 1H). 13C NMR (101 MHz,
DMSO-d6) δ 171.5, 162.9, 158.3, 142.0, 137.4, 136.7, 132.8, 132.2, 129.9, 129.7, 128.8, 128.5, 128.5,
128.3, 127.9, 127.4, 127.3, 126.8, 120.8, 111.5, 59.5, 59.2, 56.2, 48.4. HRMS (ESI/Q-TOF) m/z:
[M + H+]+ Calcd for C30H25ClNO4

+ 498.1467; Found 498.1471.

4.3.8. (±)-(3R,4R)-2-Allyl-4-(4-chlorophenyl)-3-(2,4-dimethoxyphenyl)-1-oxo-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9h)

Prepared according to the general procedure GP2 from 10a and N-(2,4-dimethoxybenz
ylidene)prop-2-en-1-amine. Yield 53 mg, 64%. Colorless amorphous solid. 1H NMR
(400 MHz, DMSO-d6) δ 12.95 (s, 1H), 8.11–8.04 (m, 1H), 7.71–7.52 (m, 3H), 7.41–7.31 (m,
2H), 7.18–7.07 (m, 2H), 6.59–6.47 (m, 2H), 6.33–6.26 (m, 1H), 5.81 (s, 1H), 5.28–5.16 (m, 1H),
4.97 (d, J = 10.1 Hz, 1H), 4.88 (d, J = 17.1 Hz, 1H), 4.38 (dd, J = 15.8, 4.8 Hz, 1H), 3.82 (s, 3H),
3.69 (s, 3H), 3.21 (dd, J = 15.2, 7.6 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 171.6, 162.6,
160.7, 159.2, 142.1, 137.7, 133.0, 132.6, 132.3, 130.2, 130.0, 129.7, 128.6, 128.2, 128.1, 118.9,
118.7, 105.2, 98.7, 59.2, 59.0, 56.2, 55.6, 48.2. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for
C27H25ClNO5

+ 478.1416; Found 478.1421.

4.3.9. (±)-(3R,4R)-4-(4-Chlorophenyl)-1-oxo-3-phenyl-2-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9i)

Prepared according to the general procedure GP2 from 10a and N-benzylidene-
4-methylaniline. Yield 62 mg, 77%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 13.48 (s, 1H), 8.17–8.03 (m, 2H), 7.77–7.69 (m, 1H), 7.66–7.59 (m, 1H), 7.50–7.41
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(m, 2H), 7.37–7.30 (m, 2H), 7.27–7.17 (m, 3H), 7.11–7.03 (m, 4H), 6.67–6.49 (m, 2H), 5.75 (s,
1H), 2.25 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 171.1, 162.7, 141.3, 139.5, 138.2, 137.1,
136.8, 132.8, 132.8, 130.6, 130.3, 129.9, 129.1, 128.9, 128.7, 128.7, 126.5, 70.4, 59.7, 21.0. HRMS
(ESI/Q-TOF) m/z: [M + H+]+ Calcd for C29H23ClNO3

+ 468.1361; Found 468.1368.

4.3.10. (±)-(3R,4R)-4-(4-Chlorophenyl)-3-(4-methoxyphenyl)-1-oxo-2-(4-(trifluoromethyl)
phenyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylic Acid (9j)

Prepared according to the general procedure GP2 from 10a and N-(4-methoxybenzylidene)-
4-(trifluoromethyl)aniline. Yield 71 mg, 75%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 13.50 (s, 1H), 8.17–8.09 (m, 2H), 7.79–7.73 (m, 1H), 7.73–7.68 (m, 2H), 7.67–7.61 (m,
1H), 7.46–7.40 (m, 2H), 7.37–7.30 (m, 2H), 7.07–7.01 (m, 4H), 6.81–6.77 (m, 2H), 5.92 (s, 1H), 3.69
(s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 170.9, 162.9, 159.5, 145.6, 141.1, 137.4, 133.1, 132.8,
130.4, 130.3, 130.1, 129.6, 128.9, 128.8, 128.7, 127.5 (q, J = 32.3 Hz), 127.2, 126.5 (q, J = 3.6 Hz),
124.4 (q, J = 271.9 Hz), 114.2, 69.0, 59.8, 55.5. 19F NMR (376 MHz, DMSO-d6) δ −60.9. HRMS
(ESI/Q-TOF) m/z: [M + H+]+ Calcd for C30H22ClF3NO4

+ 552.1184; Found 552.1184.

4.3.11. (±)-(3S,4R)-4-(4-Chlorophenyl)-1-oxo-3-(thiophen-2-yl)-2-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9k)

Prepared according to the general procedure GP2 from 10a and 4-methyl-N-(thiophen-
2-ylmethylene)aniline. Yield 55 mg, 67%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 13.55 (s, 1H), 8.26–8.19 (m, 1H), 8.12–8.05 (m, 1H), 7.78–7.70 (m, 1H), 7.67–7.59
(m, 1H), 7.48–7.41 (m, 2H), 7.37–7.33 (m, 1H), 7.30–7.26 (m, 2H), 7.13–7.05 (m, 3H), 6.63–6.51
(m, 3H), 5.88 (s, 1H), 2.27 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 171.2, 162.7, 140.8, 139.6,
139.4, 137.3, 136.7, 132.9, 132.8, 130.7, 130.1, 129.9, 129.8, 128.9, 128.8, 128.8, 128.0, 126.6,
126.3, 125.5, 66.2, 59.2, 21.0. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C27H21ClNO3S+

474.0925; Found 474.0926.

4.3.12. (±)-(3R,4R)-4-(4-Chlorophenyl)-3-(4-fluorophenyl)-2-(4-methoxybenzyl)-1-oxo-
1,2,3,4-tetrahydroisoquinoline-4-carboxylic Acid (9l)

Prepared according to the general procedure GP2 from 10a and N-(4-fluorobenzylidene)-
1-(4-methoxyphenyl)methanamine. Yield 64 mg, 72%. Colorless amorphous solid. 1H NMR
(400 MHz, DMSO-d6) δ 13.38 (s, 1H), 8.16–8.09 (m, 1H), 8.02–7.95 (m, 1H), 7.72–7.64 (m, 1H),
7.62–7.57 (m, 1H), 7.16–6.99 (m, 6H), 6.96–6.87 (m, 4H), 6.77–6.65 (m, 2H), 5.38 (s, 1H), 5.04 (d,
J = 14.3 Hz, 1H), 3.76 (s, 3H), 3.69 (d, J = 14.3 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 171.3,
162.5, 162.3 (d, J = 244.5 Hz), 159.1, 140.9, 136.7, 134.1 (d, J = 3.1 Hz), 132.6, 132.3, 131.2 (d,
J = 8.2 Hz), 130.6, 130.3, 130.0, 129.6, 128.8, 128.6, 128.5, 128.2, 115.4 (d, J = 21.3 Hz), 114.0, 65.5,
58.8, 55.5, 48.2. 19F NMR (376 MHz, DMSO-d6) δ −114.0. HRMS (ESI/Q-TOF) m/z: [M + H+]+

Calcd for C30H24ClFNO4
+ 516.1372; Found 516.1373.

4.3.13. (±)-(3R,4R)-4-(4-Chlorophenyl)-1-oxo-2,3-di-p-tolyl-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9m)

Prepared according to the general procedure GP2 from 10a and 4-methyl-N-(4-methylb
enzylidene)aniline. Yield 55 mg, 66%. Colorless amorphous solid. 1H NMR (400 MHz,
DMSO-d6) δ 13.44 (s, 1H), 8.12–8.06 (m, 2H), 7.76–7.68 (m, 1H), 7.66–7.57 (m, 1H), 7.49–7.38
(m, 2H), 7.35–7.29 (m, 2H), 7.12–7.07 (m, 2H), 7.04–6.89 (m, 2H), 6.65–6.58 (m, 2H), 5.72 (s,
1H), 2.25 (s, 3H), 2.22 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 171.1, 162.7, 141.3, 139.6,
137.9, 137.2, 136.7, 135.2, 132.7, 132.7, 130.6, 130.3, 129.8, 129.3, 129.0, 128.8, 128.7, 126.4, 70.1,
59.7, 21.0, 21.0. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C30H25ClNO3

+ 482.1517;
Found 482.1518.

4.3.14. (±)-(3S,4R)-4-(4-Chlorophenyl)-2-(2-(cyclopentylthio)ethyl)-3-(furan-2-yl)-1-oxo-
1,2,3,4-tetrahydroisoquinoline-4-carboxylic Acid (9n)

Prepared according to the general procedure GP2 from 10a and 2-(cyclopentylthio)-N-
(furan-2-ylmethylene)ethanamine. Yield 56 mg, 66%. Colorless amorphous solid. 1H NMR
(400 MHz, DMSO-d6) δ 13.52 (s, 1H), 8.20–8.14 (m, 1H), 8.00–7.94 (m, 1H), 7.73–7.64 (m,
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1H), 7.59–7.50 (m, 1H), 7.48–7.43 (m, 1H), 7.42–7.35 (m, 2H), 7.32–7.23 (m, 2H), 6.27 (dd,
J = 3.3, 1.9 Hz, 1H), 5.87 (d, J = 3.3 Hz, 1H), 5.84 (s, 1H), 3.68 (td, J = 13.2, 11.2, 5.0 Hz, 1H),
3.37 (td, 1H), 3.10 (p, J = 7.1 Hz, 1H), 2.33 (td, J = 12.8, 11.1, 5.0 Hz, 1H), 2.03 (ddd, J = 12.8,
11.1, 5.0 Hz, 1H), 1.92 (dt, J = 13.9, 6.9 Hz, 2H), 1.70–1.57 (m, 2H), 1.60–1.48 (m, 2H), 1.32
(dt, J = 13.9, 6.9 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 171.4, 163.1, 152.4, 143.0, 140.3,
132.8, 132.3, 130.0, 130.0, 129.1, 128.6, 128.5, 128.5, 110.8, 109.0, 61.2, 57.8, 47.7, 43.4, 33.9,
28.2, 24.8, 24.7. HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C27H27ClNO4S+ 496.1344;
Found 496.1344.

4.3.15. (±)-(3R,4R)-4-(4-Chlorophenyl)-2-ethyl-1-oxo-3-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic acid (9o)

Prepared according to the general procedure GP2 from 10a and N-(4-methylbenzylidene)
ethanamine. Yield 34 mg, 47%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6)
δ 13.06 (s, 1H), 8.09–7.97 (m, 1H), 7.86–7.79 (m, 1H), 7.49–7.42 (m, 1H), 7.34–7.26 (m, 4H),
7.25–7.19 (m, 1H), 7.04–6.92 (m, 4H), 5.55 (s, 1H), 3.57 (dq, J = 14.0, 7.1 Hz, 1H), 3.18 (dq,
J = 14.0, 7.1 Hz, 1H), 2.42 (s, 3H), 2.21 (s, 3H), 0.74 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz,
DMSO-d6) δ 171.3, 162.3, 141.5, 137.8, 137.3, 135.7, 132.4, 132.1, 130.4, 130.2, 130.1, 129.1, 128.9,
128.5, 128.4, 128.1, 66.4, 58.9, 42.0, 21.0, 13.1. HRMS (ESI/Q-TOF) m/z: [M + Na+]+ Calcd for
C25H22ClNO3Na+ 442.1180; Found 442.1175.

4.3.16. (±)-(3S,4R)-4-(4-Chlorophenyl)-1-oxo-2-propyl-3-(pyridin-2-yl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9p)

Prepared according to the general procedure GP2 from 10a and N-(pyridin-3-ylmethylene)
propan-1-amine. Yield 34 mg, 47%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-
d6) δ 13.50 (s, 1H), 8.50–8.37 (m, 2H), 8.13–8.02 (m, 1H), 8.02–7.93 (m, 1H), 7.72–7.65 (m, 1H),
7.64–7.58 (m, 1H), 7.43–7.37 (m, 2H), 7.35–7.26 (m, 3H), 7.24–7.18 (m, 1H), 5.68 (s, 1H), 3.55–3.45
(m, 1H), 3.04–2.93 (m, 1H), 1.32–1.21 (m, 1H), 1.15–1.03 (m, 1H), 0.49 (t, J = 7.3 Hz, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 171.4, 162.6, 150.5, 149.6, 141.1, 136.5, 135.9, 134.7, 132.7, 132.5, 130.4,
130.1, 130.1, 128.9, 128.5, 128.4, 123.6, 64.7, 59.1, 48.2, 20.8, 11.3. HRMS (ESI/Q-TOF) m/z:
[M + H+]+ Calcd for C24H22ClN2O3

+ 421.1313; Found 421.1315.

4.3.17. (±)-(3S,4R)-3-(2-Chlorophenyl)-4-(4-fluorophenyl)-1-oxo-2-propyl-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9q)

Prepared according to the general procedure GP2 from 10e and N-(2-chlorobenzylidene)
propan-2-amine. Yield 45 mg, 56% (dr = 3/1). Colorless amorphous solid. Major isomer:
1H NMR (400 MHz, DMSO-d6) δ 13.34 (s, 1H), 8.17–8.10 (m, 1H), 7.75–7.69 (m, 1H), 7.68–7.60
(m, 2H), 7.51–7.45 (m, 1H), 7.30–7.24 (m, 1H), 7.22–7.07 (m, 5H), 6.80–6.73 (m, 1H), 5.90 (s, 1H),
3.71–3.58 (m, 1H), 2.62–2.54 (m, 1H), 1.28–1.13 (m, 1H), 1.09–0.96 (m, 1H), 0.38 (t, J = 7.5 Hz,
3H). 13C NMR (126 MHz, DMSO-d6) δ 171.3, 161.9, 161.2 (d, J = 244.8 Hz), 158.7, 138.0 (d,
J = 2.9 Hz), 136.2, 131.6, 131.1, 131.1, 130.4 (d, J = 8.2 Hz), 130.1, 130.0, 128.1, 127.7, 114.6 (d,
J = 21.5 Hz), 113.3, 64.1, 59.2, 55.0, 19.9, 19.6. 19F NMR (376 MHz, DMSO-d6) δ -115.5. HRMS
(ESI/Q-TOF) m/z: [M + H+]+ Calcd for C25H22ClFNO3

+ 438.1267; Found 438.1271. Minor
isomer, partial data: 1H NMR (400 MHz, DMSO) δ 7.44 (d, J = 7.9 Hz, 1H), 7.40–7.33 (m, 2H),
7.04 (t, J = 7.3 Hz, 2H), 6.63 (dd, J = 7.9, 1.6 Hz, 1H), 6.32 (t, J = 7.8 Hz, 1H), 5.98 (d, J = 1.9 Hz,
1H). 19F NMR (376 MHz, DMSO) δ −108.77.

4.3.18. (±)-(3R,4R)-4-(4-Fluorophenyl)-2-isopropyl-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9r)

Prepared according to the general procedure GP2 from 10e and N-(4-methoxybenzylidene)
propan-2-amine. Yield 41 mg, 52% (dr = 4/1). Colorless amorphous solid. Major isomer:
1H NMR (400 MHz, DMSO-d6) δ 13.21 (s, 1H), 8.12–8.04 (m, 1H), 7.98–7.88 (m, 1H), 7.66–7.59
(m, 1H), 7.61–7.51 (m, 1H), 7.38–7.30 (m, 2H), 7.18–7.07 (m, 2H), 7.06–7.00 (m, 2H), 6.77–6.66 (m,
2H), 5.51 (s, 1H), 4.27 (hept, J = 6.7 Hz, 1H), 3.67 (s, 3H), 0.83 (dd, J = 20.2, 6.7 Hz, 6H). 13C NMR
(126 MHz, DMSO-d6) δ 171.7, 162.3, 161.6 (d, J = 244.8 Hz), 159.1, 138.4 (d, J = 2.9 Hz), 136.6,
132.0, 131.5, 131.5, 130.8 (d, J = 8.2 Hz), 130.5, 130.4, 128.5, 128.1, 115.0 (d, J = 21.5 Hz), 113.7,
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64.5, 59.6, 55.4, 48.8, 20.3, 20.0. 19F NMR (376 MHz, DMSO-d6) δ −115.1. HRMS (ESI/Q-TOF)
m/z: [M + H+]+ Calcd for C26H25FNO4

+ 434.1762; Found 434.1768. Minor isomer, partial data:
1H NMR (400 MHz, DMSO-d6) δ 7.23 (dd, J = 12.4, 8.1 Hz, 1H), 6.95–6.81 (m, 2H), 5.35 (s, 1H).
19F NMR (376 MHz, DMSO-d6) δ−108.81.

4.3.19. (±)-(3R,4R)-2-Butyl-4-(4-fluorophenyl)-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9s)

Prepared according to the general procedure GP2 from 10e and N-(4-methoxybenzylidene)
butan-1-amine. Yield 61 mg, 75% (dr = 4/1). Colorless amorphous solid. Major isomer: 1H NMR
(400 MHz, DMSO-d6) δ 13.20 (s, 1H), 8.13–7.98 (m, 2H), 7.69–7.62 (m, 1H), 7.59–7.53 (m, 1H),
7.39–7.28 (m, 2H), 7.17–7.08 (m, 2H), 7.07–6.97 (m, 2H), 6.78–6.71 (m, 2H), 5.49 (s, 1H), 3.68 (s,
3H), 3.65–3.52 (m, 1H), 3.04–2.89 (m, 1H), 1.32–1.18 (m, 1H), 1.16–1.05 (m, 1H), 0.96–0.85 (m, 1H),
0.85–0.73 (m, 1H), 0.67 (t, J = 7.2 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 171.6, 162.6, 160.6,
159.3, 138.6 (d, J = 3.1 Hz), 137.3, 132.1, 130.4 (d, J = 5.9 Hz), 130.4, 130.3, 128.5, 128.1, 115.1 (d,
J = 21.2 Hz), 113.8, 66.7, 58.9, 55.4, 46.0, 29.5, 19.8, 14.1. 19F NMR (376 MHz, DMSO-d6) δ −115.7.
HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C27H27FNO4

+ 448.1919; Found 448.1924. Minor
isomer, partial data: 1H NMR (400 MHz, DMSO-d6) δ 7.72 (dd, J = 8.1, 2.9 Hz, 2H), 7.25–7.18 (m,
1H), 7.06 (d, J = 8.2 Hz, 1H), 6.88 (d, J = 8.4 Hz, 2H), 5.31 (s, 1H), 3.24–3.12 (m, 1H). 19F NMR
(376 MHz, DMSO-d6) δ−108.66.

4.3.20. (±)-(3R,4R)-4-(4-Fluorophenyl)-3-(2-methoxyphenyl)-1-oxo-2-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (9t)

Prepared according to the general procedure GP2 from 10e and 2-methoxy-N-(4-methylb
enzylidene)aniline. Yield 52 mg, 71% (dr = 3/1). Colorless amorphous solid. 1H NMR
(400 MHz, DMSO-d6) δ 12.98 (s, 1H), 8.22–8.11 (m, 1H), 7.77–7.67 (m, 1H), 7.66–7.58 (m, 1H),
7.48–7.41 (m, 1H), 7.25–7.18 (m, 3H), 7.16–7.09 (m, 2H), 7.05–6.98 (m, 2H), 6.96–6.88 (m, 2H),
6.84–6.65 (m, 1H), 6.49–6.37 (m, 2H), 6.09 (s, 1H), 3.68 (s, 3H), 2.21 (s, 3H). 13C NMR (101 MHz,
DMSO-d6) δ 171.6, 162.9, 161.6 (d, J = 244.7 Hz), 158.0, 140.0, 139.6 (d, J = 2.6 Hz), 137.8, 136.8,
133.0, 130.7 (d, J = 8.3 Hz), 130.3, 130.0, 129.8, 129.6, 128.8, 128.4, 127.7, 127.0, 126.3, 120.7, 115.1
(d, J = 21.2 Hz), 111.3, 65.2, 60.5, 55.9, 21.0. 19F NMR (376 MHz, DMSO-d6) δ −115.5. HRMS
(ESI/Q-TOF) m/z: [M + H+]+ Calcd for C30H25FNO4

+ 482.1762; Found 482.1763. Minor
isomer, partial data: 1H NMR (400 MHz, DMSO-d6) δ 7.37–7.26 (m, 2H), 6.36 (d, J = 8.0 Hz,
2H), 6.27 (d, J = 2.8 Hz, 1H), 3.64 (s, 3H). 19F NMR (376 MHz, DMSO-d6) δ −108.30.

4.3.21. (±)-(3R,4R)-2-Ethyl-4-(4-fluorophenyl)-1-oxo-3-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic acid (9u)

Prepared according to the general procedure GP2 from 10e and N-(4-methylbenzylidene)
ethanamine. Yield 50 mg, 68%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6)
δ 13.25 (s, 1H), 8.17–8.06 (m, 1H), 8.07–8.00 (m, 1H), 7.69–7.59 (m, 1H), 7.58–7.48 (m, 1H),
7.40–7.30 (m, 2H), 7.17–7.06 (m, 2H), 6.98 (s, 4H), 5.58 (s, 1H), 3.59 (dq, J = 13.9, 7.0 Hz, 1H),
3.15 (dq, J = 14.0, 6.8 Hz, 1H), 2.21 (s, 3H), 0.76 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz,
DMSO-d6) δ 171.6, 162.3, 161.5 (d, J = 244.5 Hz), 138.8 (d, J = 3.4 Hz), 137.7, 135.8, 132.0, 130.4,
130.3, 130.2, 130.2, 129.0, 128.9, 128.3, 128.0, 115.2 (d, J = 21.2 Hz), 66.7, 58.7, 42.0, 21.0, 13.1.
19F NMR (376 MHz, DMSO-d6) δ −115.7. HRMS (ESI/Q-TOF) m/z: [M + Na+]+ Calcd for
C25H22FNO3Na+ 426.1476; Found 426.1469.

4.4. 2-(Carboxy(4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzoic Acid (15)

Ethyl 2-(1-azido-2-methoxy-2-oxoethyl)benzoate[20] 16 (526 mg, 2 mmol, 1 equiv.) and
phenylacetylene (206 mg, 1 equiv.) were added to a suspension of CuI (27 mg, 7 mol. %)
in dry toluene. The reaction mixture was stirred at 85 ◦C overnight. The solvent was
evaporated, and the title compound was extracted with ethyl acetate (30 mL). The organic
layer was washed with water (20 mL × 2) and brine (20 mL × 1) and then dried over
Na2SO4. The solvent was evaporated and the resulting compound (ethyl 2-(2-ethoxy-2-oxo-
1-(4-phenyl-1H-1,2,3-triazol-1-yl)ethyl)benzoate) was used in the next step without further
purification. The obtained ester and KOH (560 mg, 5 equiv.) were dissolved in 30 mL of
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30% aq.THF and stirred for 1 h at room temperature. Activated charcoal (12g) (powder -100
particle size (mesh)) was added to the resulting mixture and intensively stirred at room
temperature for 0.5 h. Next, the solution was filtered through a layer of zeolite, and 3 N
HCl was added to it until pH = 1. The target compound (15) was extracted into diethyl
ether, and the organic layer was combined and dried over Na2SO4 and was evaporated.

Yield 601 mg, 93% (2 steps). Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6) δ
13.55 (s, 2H), 8.72 (s, 1H), 8.07–8.00 (m, 1H), 7.94–7.82 (m, 2H), 7.71–7.61 (m, 1H), 7.60–7.51 (m,
2H), 7.50–7.42 (m, 2H), 7.39–7.30 (m, 1H), 7.29–7.20 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ
169.0, 168.5, 146.6, 135.7, 133.1, 131.4, 130.9, 130.6, 129.5, 129.4, 129.2, 128.5, 125.7, 122.9, 63.7.
HRMS (ESI/Q-TOF) m/z: [M + H+]+ Calcd for C17H14N3O4

+ 324.0979; Found 324.0974.

4.5. (±)-(3R,4S)-2-Ethyl-1-oxo-4-(4-phenyl-1H-1,2,3-triazol-1-yl)-3-(p-tolyl)-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic Acid (18)

The diacid 15 (50 mg, 0.15 mmol) was dissolved in DMF (0.5 mL, dry) in a screw-cap,
and DCC (1.1 equiv.) was added with stirring. After 3 h, N-(4-methylbenzylidene)ethanamine
(1.1 equiv.) was added, and the reaction mixture was kept for a day at room temperature.
The solution was then filtered through celite, EtOAc (15 mL) and 10 mL of brine were added
to the filtrate, the precipitate formed was filtered off, and then organic layer of the filtrate
was washed with brine (10 mL × 3), dried over sodium sulfate and evaporated. The residue
was treated with diethyl ether (1 mL), after which pentane (3 mL) was added and the solid
was thoroughly ground. After cooling to −20 ◦C for 20 min, the liquid was decanted. The
resulting solid was dried in vacuo to give pure title compound. The substance undergoes
decarboxylation easily and is therefore unstable in solutions even at room temperature.

Yield 35 mg, 50%. Colorless amorphous solid. 1H NMR (400 MHz, DMSO-d6) δ 14.25
(s, 1H), 8.83–8.72 (m, 1H), 8.17–8.07 (m, 1H), 7.88–7.79 (m, 3H), 7.75–7.62 (m, 2H), 7.50–7.40
(m, 2H), 7.39–7.31 (m, 1H), 7.16–6.90 (m, 4H), 6.05 (s, 1H), 3.69 (dq, J = 14.0, 7.0 Hz, 1H), 3.18
(dq, J = 14.0, 7.0 Hz, 1H), 2.24 (s, 3H), 0.90 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO-d6)
δ 167.7, 161.6, 146.2, 138.4, 133.3, 132.4, 131.5, 130.9, 130.4, 130.0, 129.4, 129.4, 128.8, 128.5,
127.9, 125.6, 122.1, 72.2, 65.6, 42.1, 21.1, 13.3. HRMS (ESI/Q-TOF) m/z: [M + Na+]+ Calcd
for C27H24N4O3Na+ 475.1741; Found 475.1730.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238462/s1. Copies of NMR and HRMS spectra.
X-ray data [23–25].
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