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Abstract: Besides serving as a low-toxicity, inexpensive and easily accessible solvent, dimethyl sulfox-
ide (DMSO) has also been extensively used as a versatile reagent for the synthesis of functionalized
molecules. Dimethyl sulfoxide can not only be utilized as a carbon source, a sulfur source and an
oxygen source, but also be employed as a crucial oxidant enabling various transformations. The
past decade has witnessed a large number of impressive achievements on the direct synthesis of
heterocycles as well as modifications of heterocyclic compounds by applying DMSO as a reagent.
This review summarized the DMSO-based direct heterocycle constructions from 2012 to 2022.

Keywords: cyclization; dimethyl sulfoxide; heterocycle; Kornblum oxidation; methyl(methylene)
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1. Introduction

Dimethyl sulfoxide (DMSO) has long been used as a low-toxicity, inexpensive and
easily accessible solvent [1]. Furthermore, dimethyl sulfoxide can also be applied as
a versatile reagent for the construction of functionalized molecules. Several powerful
DMSO-based transformations, such as Swern oxidation (ClCOCOCl/DMSO), Moffatt
oxidation (DCC/HX/DMSO), Parikn–Doering oxidation (SO3/DMSO), Kornblum oxida-
tion (RX/DMSO), Corey–Chaykovsky reaction (MeI/DMSO) and Pumerer rearrangement
(Ac2O/sulfoxide), have been frequently utilized in organic synthesis [2–7]. Dimethyl sul-
foxide is a valuable synthon for constructing heterocyclic compounds by acting as a carbon
source, sulfur source and oxygen source as well as a key oxidant for various transforma-
tions. A large number of efficient methodologies have been developed in the past decades
for constructing functionalized heterocycles, either by the direct synthesis manner or by
the late-stage modification route.

DMSO-based reaction systems feature good flexibility in designing transformations, a
diversity of intermediates and compatibility of functional groups. For example, as shown
in Figure 1, there are many common intermediates that can be formed in situ in the
DMSO-involved reaction systems, including methyl(methylene)sulfonium, chlorodimethyl-
sulfonium, bromodimethylsulfonium, molecular bromine and arylglyoxal. These active
species could be captured directly or further converted into other reactive intermediates.
Furthermore, other active species such as dimethyl sulfur ylide and imine can also be
formed efficiently for assembling heterocycles. Additionally, DMSO can be employed as
an oxidizing agent for the construction of heterocyclic molecules through the oxidative
formation of key intermediates or products.

In 2016, the groups of Wu and Magolan respectively systematically summarized
and discussed the reactions using dimethyl sulfoxide as a synthon [8,9]. Subsequently,
Mahdavi and coworkers have well reviewed and classified the methodologies with DMSO
as a reagent for organic synthesis [10]. In addition, Procter and Maulide recorded the
developments of transforming sulfoxides, which can offer a good inspiration for exploring
sulfoxide chemistry [11,12]. However, there is no special summary focusing on the DMSO-
based heterocycle synthesis [13]. In order to further extend the applications of DMSO as
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a synthon for heterocycle synthesis and to fully clarify the chemistry of DMSO, it is very
useful to document the achievements in the field of DMSO-based heterocycle synthesis.
This review summarized the direct DMSO-based heterocycle constructions from 2012 to
2022. The review highlighted the unique roles of DMSO in heterocycle synthesis and
showcased some representative reaction pathways. The emphasis on DMSO-derived
active intermediates and mechanistic pathways may be beneficial for understanding the
chemistry of DMSO and the stepwise formation of heterocycles. Since the use of many
DMSO-involved active species and the design of reaction pathways can be further rationally
expanded, this review may provide a source of inspiration for designing novel architectures
and protocols for heterocycle synthesis.
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It should be mentioned that this review only discussed the reports using acyclic
starting materials for heterocycle synthesis. The methods involving direct modifications
of already established heterocyclic architectures will not be included in the review [14].
To clearly understand the role of DMSO in these protocols, this review was divided into
several categories, including DMSO as the source of CH, DMSO as the source of CH2,
DMSO as the source of quaternary C, DMSO as the source of CH and CH3, DMSO as
the source of SCH3, DMSO as the source of CH2SCH3, DMSO as the source of CH2 and
CH2SCH3, DMSO as the source of O, DMSO as the oxidant, and DMSO-based heterocycle
synthesis through halogenation. The reactions using DMSO as the source of CH were
further subdivided by the types of synthesized heterocycles such as pyridines, quinolines,
phenanthridines, pyrimidines, quinazolines, benzothiazoles, benzimidazoles, and furans.

2. DMSO as the Source of CH

A series of heterocycles such as pyridines, quinolines, phenanthridines, pyrimidines,
quinazolines, benzothiazoles, benzimidazoles, and furans can be constructed directly
using dimethyl sulfoxide as the source of C–H. The C–H moiety was always incorporated
into aromatic molecules. Thus, aromatization was involved in most cases. Among these
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approaches, methyl(methylene)sulfonium formed through Pummerer-type rearrangement
and imines generated via the elimination of amino thioethers are common active species.

2.1. Synthesis of Pyridine

Pyridine derivatives have been found frequently in organocatalysts, ligands, natural
products, pharmaceuticals and other important molecules. Therefore, the direct synthesis
of substituted pyridines has attracted considerable interest. Yuan and coworkers reported
an ammonium iodide-mediated synthesis of substituted pyridines with ketones, dimethyl
sulfoxide and ammonium acetate in 2015 (Scheme 1) [15]. The C–H moiety can be incor-
porated at the C2 and C4 positions of pyridine. Interestingly, in the cases using methyl
ketones, unsymmetrical pyridines were isolated as the sole products (Pathway A); while
the use of non-methyl ketones yielded unpredictable products including only symmetrical
or nonsymmetrical products, or a mixture of the two (Pathways B and A). An aldol reaction
of dienamine intermediate with formaldehyde occurred in the cases through Pathway A;
while an aldol addition of enamine and formaldehyde was involved in Pathway B. A range
of substituted pyridines bearing aryl and alkyl groups can be prepared with high efficiency
from easily accessible starting materials (25 examples, up to 86% yield).
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The I2/DMSO reaction system can also be used for synthesizing pyridines with
high efficiency. Wu and Gao constructed a variety of substituted pyridines with aryl
and heteroaryl ketones (Scheme 2) [16]. The authors proposed a Claisen condensation,
methylthiomethylenation, C–S cleavage, 6-π electrocyclization and aromatization cascade
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sequence. This process features a wide substrate scope, good functional group compatibility,
excellent regioselectivity and high efficiency. The current methodology represents a novel
strategy for the capture of the in situ-formed methyl(methylene)sulfonium intermediate
from dimethyl sulfoxide.
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Scheme 2. I2/DMSO-promoted synthesis of pyridines [16].

Interestingly, α-substituted aryl ketones would undergo a different reaction pathway
under the same reaction system. Wu and Gao found that when submitting α-substituted
aryl ketones to their HCOONH4/I2/Cu(NO3)2/DMSO reaction system, a series of func-
tionalized pyridines were yielded by forming methylene-bridged 1,5-diketone as a key
intermediate (Scheme 3). In contrast, differently from the reactions using methyl ketones,
C–H moiety was introduced at the C4 position of the pyridine. Subsequently, the Ma group
also synthesized polysubstituted pyridines using a selectfluor/DMSO reaction system [17].
Selectfluor was used as the activator of DMSO. DMSO served as the methine source for
both processes.
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Bronsted acids such as trifluoroacetic acid (TFA) can be used as the activators of
DMSO for the methylenation of 1,3-dicarbonyl compounds. Annulation of in situ-generated
methylene-bridged dicarbonyl compounds could offer substituted pyridines. In 2017, Cui
and Cheng also employed DMSO as the source of methine for the synthesis of Hantzsch-
type pyridines through a three-component reaction of 1,3-dicarbonyl compounds, DMSO
and ammonium salts (13 examples, up to 97% yield). A transition-metal free oxidative
methylenation was proposed as the key step and methylene-bridged bis-1,3-dicarbonyl
compound was suggested as the key intermediate. It should be noted that the methylene-
bridged bis-1,3-dicarbonyl compounds could be readily prepared through an acetic acid
mediated reaction of 1,3-dicarbonyl compounds and dimethyl sulfoxide in moderate to
excellent yields (Scheme 4) [18].
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Scheme 4. Synthesis of pyridines in the presence of TFA/DMSO [18].

In situ -generated enaminones could be used as effective precursors instead of the
direct use of ketone or 1,3-dicarbonyl compound for pyridine synthesis. The Kapur group
explored the unusual reactivity of 4-vinyl isoxazoles in the copper salts-promoted con-
struction of pyridines in 2020. Isoxazoles have always been used as versatile intermediates
for constructing pharmaceutically important heterocycles (Scheme 5) [19]. Particularly,
3,5-diaryl isoxazoles have been employed as masked enaminones as C,N-dinucleophilic
synthons to couple with various building blocks, yielding structurally diverse hetero-
cyclic molecules.

In this study, isoxazole converted into the corresponding enaminone in the presence of
copper salts. Meanwhile, methyl(methylene)sulfonium was formed from DMSO in the pres-
ence of acid as the activator. The reaction of enaminone with methyl(methylene)sulfonium
may produce a conjugated imine for further electrocyclization when using alkenylated
substrates (Pathway A). On the other hand, α,β-unsaturated dicarbonyls may be generated
to undergo Michael addition, giving methylene-bridged 1,3-dicarbonyl compounds. Fur-
ther intramolecular 1,4-addition delivered a Hantzsch pyridine intermediate and a final
aromatization-yielded tetrasubstituted pyridine. It was found that much lower yield was
obtained in the case with a catalytic quantity of copper salts, indicating that the copper
salts may also serve as an oxidant.

A wide range of aryl and alkenyl groups can be introduced into the pyridine skeleton
delivering densely substituted pyridines (Method A, 23 examples, 53–83% yield; Method B,
23 examples, 40–96% yield). Dimethyl sulfoxide was employed as a one-carbon surrogate
in this nicotinate synthesis.
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2.2. Synthesis of Quinoline

As a ubiquitous structural motif present in a large number of natural products and
pharmaceutically important molecules, the efficient synthesis of functionalized quinolines
has drawn much attention. Cheng and coworkers prepared a variety of 4-aryl quinolines
via palladium-catalyzed carbonannulation of ortho-vinylanilines and dimethyl sulfoxide in
2017 (Scheme 6) [20]. By in situ formation of imine from DMSO and primary amine, C–H
moiety can be introduced at the C2 position of the quinoline. 1,4-Diazabicyclo [2.2.2] octane
bis(sulfur dioxide) adduct (DABSO) was applied as the activator of DMSO. The methine
fragment was smoothly incorporated into the quinoline skeleton in the presence of DABSO,
providing 4-substituted quinolines in moderate to good yields (22 examples, 28–94% yield).

The authors proposed that methyl(methylene)sulfonium cation can be generated
in situ by activating DMSO with DABSO. A N-methylthiomethylenation, palladium-
catalyzed oxidation, electrocyclization and a final aromatization by the elimination of
bis(methylthio)methane delivered the desired quinolines.

In 2017, the Singh group developed a K2S2O8-mediated oxidative annulation of ani-
lines, aryl ketones and dimethyl sulfoxide for the efficient assembly of 4-arylquinolines
(Scheme 7) [21]. K2S2O8 was employed as the activator of DMSO and DMSO acted as a
methine equivalent. Both anilines and aryl ketones displayed wide substrate scopes.

It was found that FeCl3 has a more pronounced effect on the reactions using electron-
rich acetophenone. No influence on the reaction outcome was observed when adding
FeCl3 to the reactions with acetophenone bearing electron-withdrawing fluorine and the
nitro group. These observations suggested that FeCl3 may be helpful for the enolization
of acetophenones. The authors proposed that a key iminium may be formed from DMSO
and aniline, which would undergo a Mannich addition with iron-activated aryl ketone,
annulation, dehydration and final aromatization to yield the quinoline product.
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Substituted alkynes can be used instead of ketones as reaction partners to react with
the in situ-generated imine for quinoline synthesis. Yi and Zhang reported a direct Co(III)-
catalyzed assembly of quinoline with dimethyl sulfoxide, anilines and alkynes (48 ex-
amples, up to 95% yield). K2S2O8 was utilized as the activator of DMSO for generating
methyl(methylene)sulfonium cation. A mechanistic study suggested that this transforma-
tion was initiated with C–H activation and 2-vinylbenzenamine species may be the active
intermediate for this process. It is worthy of note that the reaction has several advantages
including the utilization of simple and easily accessible materials, privileged framework-
containing products, exclusive regioselectivity, good functional group tolerance and a wide
substrate scope (Scheme 8) [22].
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2.3. Synthesis of Phenanthridine

Phenanthridine can be found as a core substructure in a series of biologically active com-
pounds including Trispheridine, Decarine, Norchelerythrine, Avicine, Nitidine and Fagaro-
nine. Ma and coworkers developed a one-pot synthesis of phenanthridines with arylboronic
acids and o-bromo arylamides through a Suzuki coupling/N-methylthiomethylenation/
elimination/electrocyclization/aromatization cascade sequence (50 examples, 31–78%
yield). Pd(OAc)2 was employed to catalyze the Suzuki reaction delivering biaryls. K2S2O8
was applied as the activator of DMSO to generate meth(methylene)sulfonium, which was
used for the formation of a third cycle in the presence of a copper catalyst (Scheme 9) [23].
The electrocyclization of in situ-formed imine could be an efficient way of constructing
fused rings.
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2.4. Synthesis of Pyrimidine

Amidine is an attractive nitrogen source for pyrimidine and quinazoline synthesis
under a DMSO-involved reaction system. Cheng and coworkers synthesized a range of
2,4,6-triaryl pyrimidines through a base-mediated [4 + 1 + 1] annulation of aldehydes,
N-benzyl amidines and dimethyl sulfoxide. DMSO was activated by a base, rather than
either Lewis acid or electrophile, serving as the methine source. Dioxygen was used as the
sole eco-friendly oxidant in this process. Unfortunately, although aryl aldehydes can be
compatible in this reaction, aliphatic aldehydes failed to yield corresponding pyrimidine.
As proposed by the authors, a 5-(methylsulfinyl)-2,4,6-triarylhexahydropyrimidine may
be generated as an intermediate which would be oxidized by molecular dioxygen and
undergo elimination to yield the desired product (Scheme 10) [24].
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2.5. Synthesis of Quinazoline

Quinazoline as a core-structure is widely distributed in natural products and synthetic
bioactive compounds including protein tyrosine kinase inhibitors, anticancer agents, an-
tiviral agents and antitubercular agents. In 2013, Zhang and Xiong disclosed an efficient
copper-catalyzed synthesis of quinazolines with amidines and dimethyl sulfoxide (24 exam-
ples, 52–93% yields). Unfortunately, cyclic amidine substrates failed to yield corresponding
quinazolines, demonstrating the limitation of this protocol.

On the basis of the results, an iminium was proposed as the key intermediate for this
transformation, which would undergo further electrocyclization and electrophilic addi-
tion to produce dihydroquinazolines. Pleasingly, the authors also successfully employed
DMF, DMA, TMEDA and NMP as the one-carbon synthon for constructing quinazolines
(Scheme 11) [25].

Amino acids as key building blocks have been widely used for preparing hetero-
cyclic compounds through a variety of processes such as an Ugi reaction and a decar-
boxylation reaction. Wu and Wu synthesized substituted quinazolines with carboxylic
acids, aromatic amines and dimethyl sulfoxide, through an HI-mediated amino acid
catabolism/reconstruction together with the insertion/cyclization of DMSO (Scheme 12) [26].
In this process, amino acids were catabolized and served as a carbon and nitrogen source.
Reconstruction with aromatic amines and subsequent insertion/cyclization with DMSO
led to a large number of functionalized quinazolines (35 examples, 52–79% yield).
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2.6. Synthesis of Benzothiazole

In the presence of a sulfur source, benzothiazole can be constructed efficiently under
DMSO-involved protocols. Zhu, Liang and Yu achieved an efficient three-component syn-
thesis of 2-unsubstituted benzothiazoles with o-iodoanilines, K2S and dimethyl sulfoxide
(Method A). A series of o-iodoanilines bearing electron-donating or electron-withdrawing
groups all can be compatible with this process, producing corresponding benzothiazoles in
moderate to good yields (16 examples, 37–98% yield).

Alternatively, electron-rich aromatic amines can be used for the construction of 2-
unsubstituted benzothiazoles in the absence of CuI (Method B: six examples, 30–92% yield).
K2S served as the sulfur source and DMSO acted as the carbon source for both reaction
systems (Scheme 13) [27].
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2.7. Synthesis of Benzimidazole

By applying a strategy of a palladium-catalyzed oxidative formation of the key
iminium intermediate, Cheng and coworkers prepared a variety of N-aryl-1H-benzo[d]
imidazol-1-amines in moderate to good yields (17 examples, 35–85% yields). The 1,4-
Diazabicyclo [2.2.2] octane bis(sulfur dioxide) adduct (DABSO) played dual roles in this
reaction system, including the activation of DMSO to incorporate methine fragment into
benzimidazoles and the oxidation of Pd(0) to Pd(II) (Scheme 14) [28].
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In addition, Zhu, Liang and Yu further extended their methination strategy to the
preparation of benzimidazoles. A variety of 2-unsubstituted benzimidazoles were suc-
cessfully constructed with o-phenylenediamines and dimethyl sulfoxide in the presence of
ammonium acetate (16 examples, 35–86% yield). This process also featured good functional
group compatibility and high efficiency (Scheme 15) [27].
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2.8. Synthesis of Furan

Versatile sulfur ylides are capable of participating in various cycloadditions for syn-
thesizing carbo- and heterocycles. Shu and Wu established a facile synthesis of multisub-
stituted furans with stabilized sulfonium salts and dimethyl sulfoxide (Scheme 16) [29].
α-Methylene sulfonium salt was formed as the key intermediate, which would undergo
a [4 + 1] annulation with the sulfur ylide to yield dihydrofuran. A variety of aryl groups
can be tolerable in this process (16 examples, 55–88% yields). Unfortunately, alkyl groups
failed to produce the desired furans.

Molecules 2022, 27, x FOR PEER REVIEW 13 of 27 
 

 

 

Scheme 16. Synthesis of furans with stabilized sulfonium salts and DMSO [29]. 

3. DMSO as the Source of CH2 

Isoindolinone derivatives have displayed profound physiological and chemothera-

peutic properties. For instance, N-substituted isoindolinone is present in a range of bio-

logically interesting natural products and synthetic drugs such as triazol-isoindolinone 

(MGR-1 antagonist), deoxythalldomide (anti-tumor activity) and indoprofen (anti-inflam-

matory). Shi and coworkers reported a convenient synthesis of isoindolinones with 3,4,5-

trimethoxybenzoic acid, amides and dimethyl sulfoxide through a Pummerer-type rear-

rangement. Various substituted sulfonamides and amides can be applicable in this pro-

cess, allowing access to interesting N-substituted isoindolinones in moderate to good 

yields (31 examples, up to 85% yield).  

An active species, methyl(methylene)sulfonium, was proposed to be generated from 

DMSO in the presence of acid. A subsequent electrophilic addition of methyl(meth-

ylene)sulfonium with 3,4,5-trimethoxybenzoic acid gave a thioether which would be oxi-

dized by DDQ immediately. A following nucleophilic substitution of the sulfoxide with 

amide and a final lactamization yielded the isoindolinone product. Alternatively, the C−S 

bond cleavage may be followed by the formation of a C−O bond in the absence of amide 

yielding lactone 4,5,6-trimethoxyisobenzofuran-1(3H)-one (Scheme 17) [30]. 

Oxadiazines have been regarded as important scaffolds because of their wide occur-

rence in many biologically active compounds which exhibit cardiovascular, antitumor 

and insecticidal activities. The Ma group efficiently synthesized a vast number of 1,3,5-

oxadiazines with amidines. Dimethyl sulfoxide was used as a dual carbon synthon and 

water was utilized as an oxygen donor (33 examples, 41–65% yield). The authors found 

that the positions of substituents on the aryl rings have no significant influence on the 

reaction yield, whereas the electronic nature apparently affected the yield. Unfortunately, 

heteroaryl-substituted amidines failed to yield the desired product. As proposed by the 

authors, a copper-nitrene intermediate would be generated in the presence of copper salts 

and selectfluor. The following coordination with DMSO and nitrene insertion in the 

C(sp3)−H of DMSO led to the formation of a sulfoxide intermediate. Further nucleophilic 

replacement with water, a similar insertion into DMSO, nucleophilic replacement with 

water, and annulation yielded the desired oxadiazine (Scheme 18) [31]. 

Scheme 16. Synthesis of furans with stabilized sulfonium salts and DMSO [29].

3. DMSO as the Source of CH2

Isoindolinone derivatives have displayed profound physiological and chemotherapeu-
tic properties. For instance, N-substituted isoindolinone is present in a range of biologically
interesting natural products and synthetic drugs such as triazol-isoindolinone (MGR-1 antag-
onist), deoxythalldomide (anti-tumor activity) and indoprofen (anti-inflammatory). Shi and
coworkers reported a convenient synthesis of isoindolinones with 3,4,5-trimethoxybenzoic
acid, amides and dimethyl sulfoxide through a Pummerer-type rearrangement. Various
substituted sulfonamides and amides can be applicable in this process, allowing access to
interesting N-substituted isoindolinones in moderate to good yields (31 examples, up to
85% yield).
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An active species, methyl(methylene)sulfonium, was proposed to be generated from
DMSO in the presence of acid. A subsequent electrophilic addition of methyl(methylene)
sulfonium with 3,4,5-trimethoxybenzoic acid gave a thioether which would be oxidized by
DDQ immediately. A following nucleophilic substitution of the sulfoxide with amide and a
final lactamization yielded the isoindolinone product. Alternatively, the C–S bond cleavage
may be followed by the formation of a C–O bond in the absence of amide yielding lactone
4,5,6-trimethoxyisobenzofuran-1(3H)-one (Scheme 17) [30].
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Oxadiazines have been regarded as important scaffolds because of their wide occur-
rence in many biologically active compounds which exhibit cardiovascular, antitumor
and insecticidal activities. The Ma group efficiently synthesized a vast number of 1,3,5-
oxadiazines with amidines. Dimethyl sulfoxide was used as a dual carbon synthon and
water was utilized as an oxygen donor (33 examples, 41–65% yield). The authors found
that the positions of substituents on the aryl rings have no significant influence on the
reaction yield, whereas the electronic nature apparently affected the yield. Unfortunately,
heteroaryl-substituted amidines failed to yield the desired product. As proposed by the
authors, a copper-nitrene intermediate would be generated in the presence of copper
salts and selectfluor. The following coordination with DMSO and nitrene insertion in the
C(sp3)-H of DMSO led to the formation of a sulfoxide intermediate. Further nucleophilic
replacement with water, a similar insertion into DMSO, nucleophilic replacement with
water, and annulation yielded the desired oxadiazine (Scheme 18) [31].



Molecules 2022, 27, 8480 14 of 26

Molecules 2022, 27, x FOR PEER REVIEW 14 of 27 
 

 

 

Scheme 17. DMSO-based synthesis of isoindolinones [30]. 

 

Scheme 18. Cu-catalyzed synthesis of 1,3,5-oxadiazines [31]. 

4. DMSO as the Source of Quaternary C 

Dimethyl sulfoxide can also be used as a carbon source by introducing a quaternary 

carbon into a heterocyclic molecule. Given the great importance of 2-aryl substituted 

quinazolinones such as the potent kinase inhibitor idelalisib as promising biologically ac-

tive compounds, Vishwakarma and Bharate prepared a series of quinazolin-4(3H)-ones 

and pyrazolo [4,3-d]pyrimidi-7(6H)-ones via the iodine-catalyzed oxidative amination of 

the sp3 C−H bond. It was found that the quantity of iodine played a crucial role in the 

selectivity in this reaction (Scheme 19) [32]. When using a stochiometric amount of iodine, 

Scheme 18. Cu-catalyzed synthesis of 1,3,5-oxadiazines [31].

4. DMSO as the Source of Quaternary C

Dimethyl sulfoxide can also be used as a carbon source by introducing a quaternary
carbon into a heterocyclic molecule. Given the great importance of 2-aryl substituted
quinazolinones such as the potent kinase inhibitor idelalisib as promising biologically
active compounds, Vishwakarma and Bharate prepared a series of quinazolin-4(3H)-ones
and pyrazolo [4,3-d]pyrimidi-7(6H)-ones via the iodine-catalyzed oxidative amination of
the sp3 C–H bond. It was found that the quantity of iodine played a crucial role in the
selectivity in this reaction (Scheme 19) [32]. When using a stochiometric amount of iodine,
a 2-benzoyl substituted product was obtained as the major product by forming a glyoxal
intermediate. A broad range of substituted acetophenones and 2-aminobenzamides have
been proven to be tolerable in this process (23 examples, 50–82% yield).
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Additionally, pyrazolo-pyrimidiones can be produced readily by this protocol in
moderate yields. The key steps of this reaction may be the iodination of 2-methyl-2-aryl-2,3-
dihydroquinazolin-4(1H)-one intermediate and further fragmentation by the attack with
DMSO to give quinazolinone, formaldehyde and dimethyl thioether.

5. DMSO as the Source of CH and CH3

DMSO has served as a dual synthon by introducing both CH and CH3 moieties
into 5-methyl pyrimidine derivatives. In 2018, Wu and Jia developed a four-component
oxidative annulation of methyl ketones, amidine hydrochlorides and dimethyl sulfoxide
in the presence of K2S2O8 and DABCO (Scheme 20) [33]. Wide substrate scopes of both
methyl ketones and amidines were observed in this process (R1 = aryl, heteroaryl, alkenyl,
alkyl; R2 = aryl, heteroaryl, H, alkyl; 33 examples, 43–89% yield).
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A mechanistic study implied that an in situ-formed α,β-unsaturated enone, which
may be generated from the addition of methyl ketone with methyl(methylene)sulfonium
and a following elimination of MeSH, should be an important intermediate. Two possible
routes might be involved in the formation of the annulated (methylthio)methyl substituted
dihydropyrimidine intermediate. Sequential demethylthiolation and tautomerization gave
the desired pyrimidine. K2S2O8 was employed as the activator of DMSO for generating an
active methyl(methylene)sulfonium species.

6. DMSO as the Source of SCH3

Wu and Wu achieved an efficient I2/Cu(NO3)2·3H2O-promoted triple C(sp3)-H func-
tionalization for the assembly of 2,4,5-trisubstituted furans in 2016 (Scheme 21) [34]. Ron-
galite (sodium hydroxymethanesulfinate) was employed as a C1 unit and DMSO was used
as the source of SMe and the oxidant. This process was applicable to the preparation of a
broad range of (2-acyl-4-methylthio-5-aryl)-furans (21 examples, 35–85% yield).
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Scheme 21. I2/Cu(NO3)2·3H2O promoted synthesis of furans [34].

A mechanistic study revealed that the in situ-formed dimethyl(phenacyl)-sulfonium
iodine and formaldehyde were the key intermediates in this reaction. The formation of
dimethyl(phenacyl)-sulfonium iodine was the probable way of introducing the SMe group
into the final furan product. Copper nitrate hydrate was proposed as the catalyst for
promoting the condensation of dimethyl(phenacyl)-sulfonium iodine with formaldehyde.
It is worth noting that the obtained (2-acyl-4-methylthio-5-aryl) furans in this study are
difficult to prepare by the documented procedures.

A temperature-dependent switchable DMSO/SOCl2 promoted C(sp2)-H amination
of 2-alkenylanilines for the synthesis of 3-unsubstituted indoles and 3-methylthioindoles
was established by Du and coworkers (Scheme 22) [35]. 3-Unsubstistituted indoles were
obtained at room temperature through intramolecular cyclization and elimination; while
higher temperature (70 ◦C) yielded 3-methylindoles through further electrophilic methylth-
iolation. Given the wide occurrence of 3-methylthioindole moieties in pharmaceutically
important molecules due to their interesting biological activities, the authors prepared a
range of functionalized 3-methylthioindoles (14 examples, 31–82% yield). Various func-
tional groups can be well tolerated at the positions of R1 (F, Br, Me), R2 (aryl, heteroaryl)
and R3 (Ts, Ms, Ac, Boc).

On the basis of their results, the authors proposed that the active species MeSCl
would be generated in situ by the reaction of dimethyl sulfoxide with thionyl chloride. A
MeSCl-triggered cyclization, the elimination of MeSH, electrophilic methylthiolation and
aromatization delivered the desired 3-methylindoles.

Imidazopyridine as a privileged framework is a nitrogen-bridged heterocycle widely
present in biologically interesting compounds including Olprinone, Saripidem, Zolimi-
dine, Zolpidem, Alpidem and Necopidem. The Maity group reached a molecular iodine-
mediated facile synthesis of 3-sulfenylated imidazo[1,2-a]pyridines through the genera-
tion of iminyl radicals as active intermediates from oximes (Scheme 23) [36]. 2-Iodo-1-
phenylethan-1-imine was generated through a radical pathway and then reacted with
pyridine, yielding imidazopyridine. A further methylthiolation in the presence of dimethyl
sulfoxide and molecular iodine yielded the desired product.
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7. DMSO as the Source of CH2SCH3

Sulfur-containing triazole as a class of pharmaceutically interesting agents may show
mPGES-1 inhibition activity and anti-inflammatory activity. The Jiao group reached a novel
copper-catalyzed synthesis of sulfur-containing triazoles with DPPA (diphenylphosphoryl
azide), DMSO and alkynes/alkenes. Aromatic, aliphatic, and even internal alkynes could
all be compatible in this process providing corresponding triazoles efficiently (27 examples,
48–90% yield) [37]. α,β-Unsaturated ketones can also be used as suitable substrates for
synthesizing triazoles in moderate yields with high regioselectivity (four examples, 45–55%
yield). Notably, the late-stage modification of natural product derivatives such as estrone
and estradiol has been achieved successfully by the incorporation of sulfur-containing
moiety. A key intermediate, (azidomethyl) (methyl)sulfane, was suggested to be yielded
by the reaction of in situ-generated methyl(methylene)sulfonium and azide ion. A further
click reaction yielded the functionalized triazoles (Scheme 24).
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8. DMSO as the Source of CH2 and CH2SCH3

The introduction of both CH2 and CH2SCH3 moieties was realized stepwise through
the efficient transformations of methyl(methylene)sulfonium intermediate. Guo and cowork-
ers achieved an efficient DABCO-promoted construction of chroman-4-one derivatives with
o-hydroxyacetophenones and dimethyl sulfoxide (Scheme 25) [38]. As proposed by the au-
thors, methyl(methylene)sulfonium cation would be generated firstly by activating DMSO
with K2S2O8. Methylthiomethylenation and a following demethylthiolation resulted in the
formation of enone. A further α-methylthiomethylenation and a final annulation led to the
formation of the desired chroman-4-one.
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9. DMSO as the Source of O

The HBr/DMSO reaction system has been extensively used for the functionaliza-
tion of alkenes and arenes through bromination and hydroxybromination. Additionally,
HBr/DMSO can also be utilized for preparing epoxides through a one-pot procedure.
Jiao and coworkers realized a one-pot conversion of secondary bromides or olefins into
epoxides employing dimethyl sulfoxide as a cheap oxidant and oxygen source as well as a
solvent (Scheme 26) [39].
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(DMSO)nBr+ was proposed to be the key active brominating species in this reaction
system. The electrophilic addition of Br+ with alkene yielded bromonium intermediate,
which was followed by a nucleophilic attack of DMSO and hydrolysis. The epoxidation
of bromohydrin yielded the final product. This process features easy operability, readily
available and cheap reagents and simple reaction conditions.

10. DMSO as the Oxidant

In DMSO-based reaction systems for heterocycle synthesis, DMSO can be used as a
crucial oxidant through a Kornblum oxidation, the oxidative formation of disulfides, and
oxidative aromatization.

Oxazole derivatives are biologically interesting compounds as well as being valuable
building blocks. Wu and coworkers realized a convergent integration of two self-assembly
domino sequences for synthesizing oxazole derivatives with methyl ketones, benzoins
and ammonium acetate (Scheme 27) [40]. Aldehydes bearing aryl, heteroaryl and alkenyl
groups can be compatible in this process (18 examples, 50–85% yield). This methodology
features simple starting materials, mild conditions and easy operation. Arylglyoxal was
obtained through the iodination of aryl methyl ketone and a following Kornblum oxidation
in the presence of DMSO. Intramolecular proton-transfer of the adduct of 2-imino-1,2-
diphenylethan-1-one with arylglyoxal and a final dehydration yielded the desired oxazole.

The Dai group established a one-pot synthesis of 2-aroyl-(4 or 5)-aryl-1H-imidazoles
with aryl methyl ketones, hydrobromic acid, dimethyl sulfoxide and an ammonium source
in 2014 (Scheme 28) [41]. A series of imidazoles were prepared efficiently (22 examples, 11–
86% yield). The reaction was proposed to undergo a HBr/DMSO mediated α-bromination,
Kornblum oxidation and Debus–Radziszewski imidazole synthesis. Interestingly, pyrazines
can be obtained when switching to ammonium acetate as a nitrogen source. This process
features easily available materials, mild reaction conditions and easy operation. DMSO
served as the oxidant in the Kornblum oxidation.
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Scheme 28. Synthesis of imidazoles in the presence of HBr and DMSO [41].

Shah and coworkers established a metal-free oxidative amidation of terminal alkanes
in the presence of molecular iodine and dimethyl sulfoxide in 2015 (Scheme 29) [42].
The key steps for the synthesis of benzothiazoles and quinazolines were the I2/DMSO-
mediated formation of α-iodoacetophenone and a following Kornblum oxidation to give a
2-oxoaldehyde. Corresponding benzothiazoles and quinazolines can be formed in moderate
to good yields through subsequent condensation, annulation and aromatization.
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Scheme 29. I2/TMSOTf mediated synthesis of benzothiazoles and quinazolines [42].

The DMSO-involved oxidative formation of imine and oxidative aromatization can
be employed for heterocycle synthesis. Deng and Liang reported an efficient protocol for
the facile synthesis of benzothiazoles and naphtho [2,1-d]yhiazoles with N-substituted
arylamines and elemental sulfur (Scheme 30) [43]. Dimethyl sulfoxide was used as the
oxidizing reagent for the oxidation of N-substituted arylamine into imine and the final
oxidative aromatization as well as the solvent. The electrophilic addition of the in situ-
generated imine with elemental sulfur (S8) was followed by an elimination of elemental
sulfur (S7) and proton. A subsequent intramolecular cyclization yielded thiazoline interme-
diate and a DMSO-mediated oxidative aromatization delivered the desired product. This
approach was capable of producing a broad range of highly functionalized benzothiazoles
and naphtho [2,1-d]yhiazoles (33 examples, up to 98% yield).
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Scheme 30. DMSO-involved synthesis of benzothiazoles and naphtho [2,1-d]yhiazoles [43].

A facile synthesis of Hantzsch 1,4-dihydropyridines utilizing a HBr/DMSO reaction
system was established by Ranjbar and coworker (Scheme 31) [44]. A variety of substituted
benzyl alcohols could be compatible to produce 1,4-dihydropyridines in excellent yields
(14 examples, 92–97% yield). A (benzyloxy)dimethylsulfonium was suggested as a key
intermediate to undergo a nucleophilic substitution reaction with a 1,3-dicarbonyl deriva-
tive. The in situ-formed bromodimethylsulfonium bromide may also be responsible for the
oxidative generation of a conjugated imine for further electrocyclization.
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Scheme 31. DMSO-involved synthesis of Hantzsch 1,4-dihydropyridines [44].

Disulfide can be formed in the presence of in situ-generated molecular bromine. The
Maddani group developed an efficient catalytic construction of sulfenylated chromones
in the presence of aqueous HBr and DMSO (Scheme 32) [45]. A range of substituted
enaminones and aryl thiols can be compatible in this process producing excellent yields in
most cases (16 examples, 42–99% yield). DMSO served as an oxidizing agent responsible
for the in-situ generation of molecular bromine. Disulfide was yielded from thiol under the
catalysis of bromine. A subsequent electrophilic addition of o-hydroxyphenyl N,N-dimethyl
enaminone with disulfide delivered sulfenylated chromone.
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Scheme 32. HBr-catalyzed synthesis of sulfenylated chromones [45].

Disulfide formation can be realized under a I2/DMSO reaction system for further
heterocycle construction. The Pramanik group reached a one-pot four-component construc-
tion of 5-sulfenyl-2-iminothiazolines through cross-dehydrogenative C–S coupling in the
presence of I2 and DMSO (Scheme 33) [46]. A large number of 5-sulfenyl-2-iminothiazoline
derivatives were assembled efficiently with various arylacyl bromides, thioureas and aro-
matic and heterocyclic thiols (38 examples, 62–82% yield). Significant features of this
methodology include metal-free open air reaction conditions, a broad substrate scope,
high efficiency and good reaction yields. A disulfide intermediate can be generated by
the treatment of thiol with iodine and dimethyl sulfoxide. An active aryl hypoiodothioite
species was then generated in the presence of iodine which would undergo electrophilic
sulfenylation. DMSO served as the oxidizing agent in this process.
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Scheme 33. I2-catalyzed synthesis of 5-sulfenyl-2-iminothiazolines [46].

Substituted indoles were prepared through a DMSO/SOCl2-mediated oxidative C(sp2)-
H amination strategy by Du and coworkers (Scheme 34) [35]. The intramolecular annulation
of 2-alkenylanilines can be reached by the combination of DMSO and SOCl2 at room tem-
perature. This reaction has been proved to be quite general allowing the facile introduction
of functional groups into the indole skeleton (30 examples, 65–98% yield). The authors pro-
posed that an active MeSCl intermediate generated from DMSO and thionyl chloride would
initialize an intramolecular cyclization and a following elimination led to the formation of
indole (Scheme 22).
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11. DMSO-Based Heterocycle Synthesis through Halogenation

Besides the oxidative transformations such as the halogenation of arenes, dihalo-
genation of arenes, benzylic oxidation, oxidation of ketones, the haloacid/DMSO reaction
system can also be used for the direct construction of heterocycles. Maddani and cowork-
ers disclosed a metal-free and efficient synthesis of halogenated chromenone derivatives
with (E)-3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-ones, haloacids and dimethyl
sulfoxide (Scheme 35) [47].

As suggested by the authors, haloacid would react with dimethyl sulfoxide, resulting
in the generation of DMS·X2. The halogenation of enaminone and subsequent cyclization
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led to the formation of a chromone product. While direct halogenated products would be
yielded when using N-aryl enaminones without the phenolic hydroxy group.
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12. Conclusions and Outlook

In conclusion, various heterocycles including pyridines, quinolines, phenanthridines,
pyrimidines, quinazolines, benzothiazoles, benzimidazoles, indoles, imidazoles, triazoles,
imidazopyridines, oxazoles, oxadiazines, chromenones, and furans were successfully con-
structed with acyclic starting materials under dimethyl sulfoxide-based reaction systems.
Dimethyl sulfoxide was utilized efficiently in these direct syntheses of N- and O- heterocycle
as a carbon source, oxygen source, and sulfur source as well as an oxidizing agent. A variety
of fragments and functional groups, such as C, CH, CH2, CH3, SCH3, CH2SCH3, and O,
can be introduced into the target molecules. Methyl(methylene)sulfonium, chlorodimethyl-
sulfonium, bromodimethylsulfonium, molecular bromine, arylglyoxal, and imine have
been suggested as the key active species enabling these transformations. As a synthon for
methodology development, DMSO has many advantages: low toxicity, easy accessibility,
good compatibility in many reaction systems, high flexibility in its reaction design and
diverse choices of activator.

However, to further explore potential applications of DMSO in the synthesis of het-
erocyclic molecules as well as other useful compounds, more efforts should be made in
this research field. Firstly, novel effective activators for DMSO should be developed in
order to create new reaction pathways and/or active species. Since Bronsted acids, Lewis
acids, Bronsted bases, oxidants, acyl halides, and acyl anhydrides, etc. all can be used
for the activation of DMSO, there are many options for developing different activating
pathways. Secondly, the combination of other powerful catalysts or catalytic systems with
DMSO-derived active species would be another possible way to realize a new chemistry. A
logical reaction design could be inspired by synergistic catalysis and bifunctional catalysis
reaction systems. Other controlling parameters including photoinduced and electrochemi-
cal ones on reaction systems can also be added into the methodology development. Thirdly,
the DMSO-involved modification of already established heterocyclic architectures may
be a rapid and easy way of producing highly functionalized molecules. There are two
possible extensions for this strategy: a one-pot or cascade reaction system design for func-
tionalizing the in situ-generated heterocycles, and a modification reaction design using
heterocyclic substrates. For instance, as proved by the methods discussed in this review,
temperature-controlled or substrate-controlled approaches were able to produce different
types of functionalized molecules.
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