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Abstract: Silicone elastomer composites with piezoelectric properties, conferred by incorporated
polyimide copolymers, with pressure sensors similar to human skin and kinetic energy harvester
capabilities, were developed as thin film (<100 micron thick) layered architecture. They are based
on polymer materials which can be produced in industrial amounts and are scalable for large areas
(m2). The piezoelectric properties of the tested materials were determined using a dynamic mode
of piezoelectric force microscopy. These composite materials bring together polydimethylsiloxane
polymers with customized poly(siloxane-imide) copolymers (2–20 wt% relative to siloxanes), with
siloxane segments inserted into the structure to ensure the compatibility of the components. The
morphology of the materials as free-standing films was studied by SEM and AFM, revealing separated
phases for higher polyimide concentration (10, 20 wt%). The composites show dielectric behavior
with a low loss (<10−1) and a relative permittivity superior (3–4) to pure siloxane within a 0.1–106 Hz
range. The composite in the form of a thin film can generate up to 750 mV under contact with a 30 g
steel ball dropped from 10 cm high. This capability to convert a pressure signal into a direct current for
the tested device has potential for applications in self-powered sensors and kinetic energy-harvesting
applications. Furthermore, the materials preserve the known electromechanical properties of pure
polysiloxane, with lateral strain actuation values of up to 6.2% at 28.9 V/µm.

Keywords: polydimethylsiloxane; polyimide; electronic skin; hydrophobic films; piezoelectric prop-
erties; pressure sensor

1. Introduction

The engineering of polymer composite materials at the nanometric level has enabled
the development of materials suitable for advanced applications of interest to both research
and industry [1]. Materials and systems that can harvest energy from the surrounding
environment and can also “sense” different stimuli—pressure, touch, temperature—have
been studied in the last few decades and are critical components of many technologies that
include sensors for consumer applications [2,3], adaptable robotics [4], prosthetics [5], and
health monitoring [6,7]. In this context, systems that can simultaneously function as an
electronic skin with sensory capabilities for specific stimuli and as an energy harvester from
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human kinetic motion (mW to W of power) are quite rare. To date, there are relatively few
classes of materials reported with such properties, and the materials used are included in
classes according to the physical phenomenon employed in its construction, such as resistive
materials, with capacitive behavior, and piezoelectric and piezoresistive behavior [2,8,9].

The most prominent example of an active system with multiple functionalities is the
human skin. It provides a protective barrier which prevents us from the negative effects
of dehydration, toxic substances, and ultraviolet radiation. For mechanical behavior and
sensing, the human skin acts as touch, vibration, compression, and stretching sensor [10].
In addition to these characteristics, an artificial electronic skin should be flexible, scalable,
durable, and low-cost. Also, the materials used in the fabrication of electronic skin should
be three-dimensionally compliant, covering complex areas such as elbows, knees, and
shoulders. Thus, the electronic skin should be stretchable with more than 50% initial length
and it should be possible to cut it in pieces of desired shape and size [11]. Skin has served
as a model for electronic skin sensing devices. The last twenty years have seen great
improvements in pressure sensors for electronic skins, such as being able to react with
ultrahigh sensitivity to minute amounts of external pressure. What is more, the use of
polymers for electronic skin allows it to be ultralight in weight and be camouflaged in any
environment [12].

In order to develop the sense of touch for electronic skin, there are two general ap-
proaches employing matrix arrays of flexible conformal transducers. The first approach
employs Ge/Si-nanowire-array field-effect transistors (FETs) on a polyimide substrate
with a pressure-sensitive layer [13]. The second approach employs microstructured poly-
dimethylsiloxane films for pressure-sensitive capacitors as gate dielectrics of an organic
FET [14]. These approaches have led to pressure sensors sensitive to pressures within
0.5–20 kPa, with response times on the order of milliseconds. The cells in the skin are
self-powered; therefore, an electronic skin self-powered would emulate the natural skin.
So far, multiple mechanisms were employed for self-powered electronic skins, such as
piezoresistive [7], capacitive [15], piezoelectric [16], and triboelectric [17] effects. Such
self-powered sensing devices can function as electronic skin Fitbits that measure multiple
body parameters.

One class of materials intensively studied for multiple areas of use are piezoelectric
ones. Piezoelectric devices based on traditional ceramic materials are rigid, and therefore
are not flexible enough for preparing a conformable electronic skin. Also, such materials
are difficult to arrange with good high-spatial density on thin substrates [18]. Contrariwise,
polymer-based piezoelectric materials are attractive due to their low weight, mechanical
flexibility, ease of scalability and formability, and low cost.

Of greater interest are piezoelectric stretchable polymer materials, as these are light,
scalable, compliant, and low-cost. Piezoelectricity can also be observed in natural poly-
mers [19–22]. Among different categories of piezoelectric polymers, the most studied
are solid bulk polymers, where the molecular structure determines the piezoelectric
properties [23]. Another category contains piezoelectric polymer composites, with in-
tegrated piezoelectric materials, mostly ceramics. Amorphous piezoelectric polymers
are much less well researched than crystalline ones because they do not present re-
sponses at levels of commercial interest. The most studied are those containing the ni-
trile group, such as polyacrylonitrile, polyvinylidene cyanide, polyphenylethernitrile, or
poly(1-bicyclobutanecarbonitrile). Polyimides with polar groups that have been investi-
gated as piezoelectric sensors at high temperature are also of interest [24]. The stretchable
piezoelectric materials enable the use of mass production methods for electronic skin that
can mimic animal skin motions such as wrinkling and eyebrow movement.

In this paper, we introduce and characterize an all-polymer piezoelectric composite
material type, using poly(siloxane-imide) statistical copolymers in elastomer composite
films prepared with a matrix of long chain polysiloxane polymers. The materials are
part of the category of bulk amorphous piezoelectric polymers [25]. The elastomer films
demonstrate excellent functionality as light and flexible piezoelectric materials for potential
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application in low intensity kinetic energy harvesting (such as from human walking) and
for pressure sensors, as well as barrier layer with low water vapor sorption that protects
against moisture and humidity (<0.8% water vapor sorption relative to sample dry weight),
thus fulfilling the material requirements for an artificial electronic skin.

2. Results and Discussion
2.1. Synthesis of Poly(siloxane-imide) Copolymers

Three poly(imide-co-siloxaneimide) copolymers, PI1, PI2, and PI5 (Scheme 1), whose
ratios differ between the two sequences, as does the length of the siloxane segment,
were prepared according to a two-step process, following a previously described pro-
cedure [26,27]. In the first step, solutions of polyamic acids, PAA-Silox1-3, were pre-
pared from polycondensation reactions of 4,4′-oxydiphthalic anhydride (ODPA) with
mixtures of two diamines, 2,6-bis(3-aminophenoxy)benzonitrile (DA-CN), and α,ω-bis(3-
aminopropyl)oligodimethylsiloxane (DA-Silox1-3). In the second step PAA-Silox1-3 were
converted to the corresponding imide structure PI1, PI2, and PI5 using chemical imidiza-
tion. The copolymer structures were checked using FTIR spectroscopy (Figure S1) and
1H-NMR (Figure S2), while the molecular weights were estimated by GPC (see below
Section 3.1 Materials).
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Scheme 1. Preparation of poly(siloxane-imide) copolymers containing CN groups, PIa.

2.2. Preparation of Elastomeric Composites

The three PIa copolymers (with a = 1, 2, 5 designating each copolymer prepared),
previously grounded, were incorporated in 2, 5, 10, 20 wt% within a high molecular
weight polydimethylsiloxane-α,ω-diol (Mn = 370,000 g·mol−1) by mixing in a solution
with chloroform (Table 1). The presence of di- or oligodimethylsiloxane fragments in the
structure of the polyimide creates the prerequisites for their better compatibility with the
silicone matrix. Self-assembly in a non-polar environment provided by the PDMS matrix
could lead to aggregates with oligodimethylsiloxane fragments on the outside and the
polar polyimide blocks inside the aggregates. The mixtures were processed into film and
stabilized by cross-linking with TEOS in the presence of DBTDL, which was added to the
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mixture just before casting (Scheme 2). The elastomers prepared with PDMS have high-
durability, which allows for parts with limited operational failures and full operational
uptime [28,29], long running parts without decrease of performance [30,31], and can be
prepared with a variety of other materials for improved electrical and mechanical properties.
This array of properties was compelling for the preparation of new materials that bring
together the elastomeric nature of PDMS with the expected piezoelectric properties of
polyimides, which by themselves form brittle films. The obtained free-standing films
were investigated from the point of view of morphology, surface properties, mechanical,
dielectric, electromechanical, and piezoelectric responses.

Table 1. Composition of the samples tested.

Sample wt% PIa Relative to Siloxane PDMS, g PIa, g TEOS, g

PDMS 0 0.5 0 0.035
PIa-2% 2 0.5 0.0125 0.035
PIa-5% 5 0.5 0.025 0.035
PIa-10% 10 0.5 0.05 0.035
PIa-20% 20 0.5 0.1 0.035
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2.3. Characterization of the Elastomeric Molecular Composites
2.3.1. Scanning Electron Microscopy

The surface and cross-section morphology of composite films was evaluated using
SEM microscopy (Figure 1a,b and Figure S3). The images indicate the presence of micron-
sized, roughly spherical aggregates of PI, and their relatively uniform distribution within
the silicone matrix. This is especially noticeable in the case of the PI1 and PI2 series, which
contain longer siloxane segments, where p is 14.95 and 16.97, respectively, which favors the
self-assembly of the PI copolymer in the hydrophobic silicone matrix. In the case of PI5,
where the silicone sequences, although more in number, are very short, this phenomenon
is diminished.
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Figure 1. SEM images of the PIa-b siloxane-based elastomer films: (a)—on the surface, (b)—in section
(recorded by using Circular Back Scattered Detector, CBS); (c)—film surface of the initial PIa samples
(recorded by using Everhart Thornley Detector, ETD).

2.3.2. Dynamic Water Vapor Sorption

The water vapor sorption capacity of the developed composites was tested to de-
termine the protection ability against humidity necessary to fulfill the requirements of
materials for further application, as an artificial electronic skin, for example. The water
vapors sorption–desorption isotherms recorded in dynamic mode are shown in Figure 2.
In the PIs samples, the existence of polar side groups and highly flexible siloxane chains
interfere with the dense and well-packed polyimide structure. The PDMS reference sample,
presented a water vapor sorption capacity of 0.62 wt% (Figure 2a), while the polyimide
samples had the following maximum sorption values: PI1-4.58 wt%, PI2-2.24 wt%, and
PI5-2.65 wt%, in accordance with the content in siloxane segments and their length. The
sample PI1 shows the highest retention capacity for water vapors; the presence of the
free carboxylic groups and low crosslinking density could explain this behavior [32]. The
presence of the siloxane component does not inhibit the moisture sorption capacity in the
samples containing polyimide [33]. This implies that the siloxane chains are excluded from
the polar polyimide regions, and the local density of polar groups (imide, nitrile, hydroxyl)
can be higher. As can be seen in Figure 2b, the sample PI1s retains 0.41% water in its mass
after the sorption–desorption cycle, while the other samples retain negligible quantities
(0.02–0.04%) (Figure 2c,d). In the three PIa-b series, the water vapor sorption capacity
does not change significantly (0.92–0.98, 0.64–0.77, and 0.51–0.68 wt%, respectively). This
indicates the high hydrophobicity and that the amount of water remaining in the sample
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after the sorption–desorption cycle is negligible in all cases. Thus, all samples show low
values for water sorption, and after desorption, the samples return to their initial state. This
behavior demonstrates that the morphology of the samples is not affected by water vapor
sorption capacity.
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2.3.3. Static Contact Angle and Surface Energy

The hydrophobic character of composite materials is sustained also by static contact
angles and surface energy values. As can be seen in Table 2, the incorporation of longer
siloxane segments in the structure of polyimides has the effect of a slight increase in their
hydrophobicity, the contact angle with water increasing from 93 degrees (as the full organic
polyimide has) to 105 degrees in PI2 with the longest siloxane segments in the structure, but
all of them are below 115◦, which is the PDMS used as a matrix for the prepared composites.
As a result, it would be expected that, by incorporating polyimides in the matrix, their
hydrophobicity would decrease somewhat, which does not happen. Incorporation of
statistical copolymers in small amounts up to 5% has an insignificant influence on static
contact angles, work of adhesion, or interfacial tension for a solid-liquid system, especially
since, as is known, the silicone component, due to its flexibility and low surface tension,
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always migrates to the surface. In the meantime, by increasing the amount of copolymers
incorporated in PDMS matrix, the materials became more hydrophobic, taking into account
the values for parameters of interest. Polymeric surface wettability plays a significant role
in the design of the materials with tailored applicability, for example electronic skin. The
static contact angle was measured and the results are shown in Table 2. The water contact
angle value recorded for the PDMS sample was 115 degrees. All composite films are also
characterized by a hydrophobic surface, with a water contact angle in the range of 112–128
degrees. The inclusion of PIa copolymer into the PDMS matrix has two opposite effects
on the hydrophobicity of the polymeric surface: a low concentration (2–5 wt%) leads to a
slightly lower value of the water contact angle (112–114 degrees) for samples with PI1 and
PI2, and a higher concentration (10–20 wt%) increases the hydrophobicity, with the water
contact angle reaching 127 degrees (PI1-20% and PI2-20%).

Table 2. Water and ethylene glycol contact angle values for composite films.

Sample Contact Angle (Degrees)

Water Ethylene Glycol

PDMS 115 ± 0.37 103 ± 0.53
PI a 93 ± 1.33 69 ± 2.67
PI1 98 ± 1.47 98 ± 2.01
PI2 105 ± 3.32 88 ± 0.71
PI5 91 ± 1.72 71 ± 1.33

PI1

2%
5%

10%
20%

113 ± 1.52
112 ± 0.59
117 ± 0.30
127 ± 4.07

107 ± 0.76
106 ± 1.55
110 ± 0.97
127 ± 2.12

PI2

2%
5%

10%
20%

115 ± 1.84
112 ± 2.23
124 ± 3.43
127 ± 3.19

107 ± 0.58
105 ± 2.98
113 ± 1.32
125 ± 3.82

PI5

2%
5%

10%
20%

116 ± 0.28
114 ± 1.17
114 ± 1.13
116 ± 0.57

110 ± 0.28
109 ± 0.67
109 ± 0.55
109 ± 1.24

a Full organic polyimide (without siloxane diamine, x = z = 1, y = 0 in Scheme 1).

The increase of the contact angle is directly connected with the increase in the surface
roughness of the tested film samples, which in turn is directly correlated with the increase
in the content of polyimide copolymer, as can be seen in the AFM data (see below). Thus, in
the composite samples, the copolymer self-assembles into micron-sized aggregates. On the
outer surface of such aggregates, the siloxane segment of the copolymer is in direct contact
with the PDMS matrix. The number of the aggregates formed increases with increasing
content of polyimide copolymer, which creates a rough surface of the free-standing films of
composite materials. In turn, the nanometer-sized roughness variations impact the contact
angle of each sample of composite material.

PI5 composite films showed a different trend; the water contact angle did not exceed
116 degrees, even for high copolymer concentrations (PI5-20%). The lower values for the
contact angle in this case can be assigned to a lower roughness of the films (see below),
similar to that for pure silicone film.

The surface free energy (SFE) with its components, polar (γp
sv) and dispersive (γd

sv)
contributions, is very important in understanding the chemistry of surface-based phenom-
ena, which are essential in different applications including adhesion, coating, printing,
etc. Based on the Young (Equation (1)) [34], Owens and Wendt (Equation (2)) [35], and
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Fowkes equations (Equation (3)) [36], the SFE of the composite films and its components
were calculated using two reference liquids (water and ethylene glycol) (Figure S4):

γsv = γsl + γlv cos θ (1)

γlv(1 + cos θ) = 2
√

γ
p
lvγ

p
sv + 2

√
γd

lvγd
sv (2)

γsv = γd
sv + γ

p
sv (3)

where θ represents the static contact angle, γsv represents the surface free energy of solid in
equilibrium with the saturated vapor of the liquid, γlv represents the surface free energy of
liquid in equilibrium with its saturated vapor, γsl represents interfacial free energy of solid
to liquid, γ

p
sv, γ

p
lv are the polar component of the surface free energy and γd

sv, γd
lv are the

dispersive component of the surface free energy.
Another parameter that can be calculated based on the contact angle value is the

spreading coefficient (Sc) which will dictate and predict the wettability of the polymer
surface. The spreading coefficient is based on the adhesion (Wa) and cohesion work
(Wc) [37]:

Sc = Wa −Wc (4)

The adhesion work which characterizes the binding between the phases was calculated
based on the Young–Dupré equation [34,38]:

Wa = γlv(1 + cosθ) (5)

where γlv represents the surface tension of the liquid and θ is the static contact angle.
The cohesion work represents the surface resistance to the liquid:

Wc = 2γlv (6)

The calculated values for the adhesion work and spreading coefficient are illustrated
in Figure 3. Based on Equation (5), the work of the adhesion is inversely proportional to
the contact angle, with a lower contact angle leading to a higher adhesion work value.
Low concentration of copolymer filler leads to a higher value of the Wa (43–45 mN/m) for
PI1 and PI2 composite. Further increasing of the filler concentration (20%) into the PDMS
matrix has an opposite effect, with the decreased binding between liquid and polymer
surface leading to a Wa value of 29 mN/m. The values of the adhesion work are not
significantly influenced by the filler concentration for PI5 samples. When Sc > 0, the surface
is completely wetted by the tested liquid and if Sc < 0, the cohesion forces between liquid
molecules are higher, and the liquid partially wets the solid surface [39,40]. All composite
films are characterized by negative values indicating that the liquid did not spread across
the polymer surface (Figure 3). Thus, the low values of the Sc dictate the hydrophobic
character of the composite film surfaces.

2.3.4. Mechanical Tests

The mechanical properties evaluated from the elongation at break tests of the three
series of composite films (PIa-b%) are presented in Figure 4, in comparison with a sample
made of pure PDMS, the reference sample. All PIa-2% samples have a similar behavior
with the PDMS reference; the amount of copolymer incorporated in the PDMS matrix has
an insignificant influence. For all PIa-5% samples, a higher elongation at break (up to
1165%) was obtained as compared to the PDMS sample. In the meantime, for the samples
with 10 and 20 wt%, the strain at break is reduced almost by half, and the Young modulus
increases considerably.
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reference sample, PDMS.

The introduction of larger percentages of polyimides in the PDMS matrix leads to
increased Young modulus values, this effect being most visible for the samples prepared
with PI2, where the Young modulus increases from 0.22 MPa at 2 wt% PI2 content (similar
with reference PDMS) to 6.6 MPa for sample PI2-20% (Table 3). A similar behavior is visible
for the stress at the break (Tnm). The use of polyimides increases the plastic component of
deformation in stress-strain tests. While the samples with 2 or 5 wt% polyimide show an
elastic deformation for up to 20% strain and a reduced hysteresis after the first five cycles
(Figure S5), the samples with 10 and 20 wt% polyimide show a large remanent plastic
deformation and a large hysteresis even after 10 cycles of stress-strain tests (Figure S5).
However, the results of the mechanical stress-strain tests demonstrate that all samples
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behave as elastomers, with large values for the breaking strain of well over 200% strain,
even for the sample with the largest value of the Young modulus (PI2-20).

Table 3. Mechanical properties of the series of samples with PI1, PI2, and PI5.

Sample Sm,% a Y, MPa b Tnm, MPa c UTT, J/m3 d

PDMS 1015 0.23 0.14 9.6

PI1-2% 1075 0.23 0.3 16.3

PI1-5% 1165 0.54 0.27 18.3

PI1-10% 500 0.88 0.3 12.1

PI1-20% 340 2.24 0.48 13.5

PI2-2% 960 0.22 0.29 14.4

PI2-5% 1053 0.3 0.28 16.9

PI2-10% 400 1.4 0.38 12.1

PI2-20% 220 6.6 0.88 17.4

PI5-2% 800 0.19 0.15 7.1

PI5-5% 1032 0.2 0.27 12.5

PI5-10% 623 0.2 0.2 7.8

PI5-20% 425 0.3 0.17 4.9
a elongation at break; b Young’s modulus (calculated at 5% elongation); c stress at break; d tensile toughness
(calculated as the area from the stress—strain curve).

2.3.5. Dielectric Spectroscopy

There is a notable increase in the values of dielectric constants occurring with the
increase in content of polysiloxane-imide copolymers from 0 to 20 wt% (Figure 5). This is
concurrent with the formation of hard domains of polyimide (Figure 1c) due to the phase
separation of the siloxane-imide and imide segments from the copolymers in the composite
films. In this study, each of the three copolymers tested has an average length of the soft
siloxane segment and a defined length of the hard polyimide segment, with three different
ratios of soft/rigid segments. The films are formed from a solution of self-assembled granu-
lar microdomains with isotropic distribution of ~1 µm confining the crystalline piezoelectric
imide-based polymer. Simultaneously, the soft siloxane chain segment can adopt any con-
formation and has high mobility, leading to the formation of a homogeneous composite at
macroscale [41]. Similar to other thermoplastic elastomers, supramolecular interactions
of the hard polyimide segment can take place by π–π stacking between aromatic rings of
3,3′,4,4′-benzophenonetetracarboxylic dianhydride and by hydrogen-bonding interactions
of the nitrile and carbonyl functions [42–44]. The dielectric properties show the influence
of the phase separation, where the composites with 10 and 20 wt% of copolymer have
larger dielectric constant values in comparison with the starting siloxane and polyimide
copolymers, due to the confined microdomains of polyimide segments [45].

There is a relatively small influence on the values of the dielectric properties of interest
(dielectric constant, dielectric loss, conductivity) when samples are subjected to humid
atmosphere or even when they are tested after being immersed in distilled water for
30 min and soaking excess water with clean wipes before measurements (Figure S6). In
the range of frequencies used for tests (100−106 Hz), the dielectric constant is mostly
within the range of 2−3.5, the dielectric loss is between 10−4−100. At low frequencies
(100−101 Hz) the samples prepared with PI5 show a dielectric constant >6 and a dielectric
loss of ε′′~101 for tests performed after wetting the sample in water. This behavior can
be attributed to residues of water in the polyimide phase separated at the surface of the
film. The conductivity of the samples occurs in the region specific to insulating materials
(σ < 10−8 S/cm) on the entire range of frequencies tested. The stability of the properties of
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composite materials to moisture (Figure 2, Table 2) and to water (Figure S6) makes these
suitable candidates for the development of pressure sensors and artificial electronic skin.
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2.4. Evaluation of Some Functional Capabilities of Elastomeric Composites
2.4.1. Electromechanical Actuation

Composite materials can act as electrostatic actuators with compliant electrodes de-
posited on the free-standing films when a direct current is applied, thanks to their di-
electric nature. The capability of actuation of the composite samples was investigated in
electromechanical tests using circular actuators, and the lateral actuation displacement
was optically measured using a digital camera in order to evaluate the electrode exten-
sion [46]. An increasing voltage step was applied to the samples until a breakdown through
the material occurred. In the series based on PI1, the largest lateral actuation strain at
20 V/µm was obtained for the material with the lowest wt% of PI1, while the highest maxi-
mum lateral actuation strain of smax= 4% was obtained for PI1-5% at 31 V/µm (Figure 6).
The highest actuation strain at the lowest electric field was observed for PI1-2% with a
smax= 4.7% at 20 V/µm. For PI1-10% the actuation is insignificant. Regarding the series
based on PI2, the highest maximum lateral actuation strain of 4.66% was obtained for
PI2-2% at 27 V/µm. In this series, the actuation strain of the tested materials were lower
than the PDMS ones. In the PI5-based series, the largest lateral actuation strain at 20 V/µm
was obtained for PI5-5%, while the highest maximum lateral actuation strain of 6.12% was
obtained for PI5-2% at 28.9 V/µm. The highest actuation strain at the lowest electric field
was observed for PI5-5% with a smax= 4.69% at 20 V/µm. The samples prepared with 20%
polyimide (PIa-20%) showed an electric breakdown at values below 5 V/µm, thus making
them unsuitable for electrostatic actuation. The variation of values for lateral actuation
strain is overall correlated with the values for the breaking strain (Figure 4). The samples
with the lower Young modulus and the larger values for breaking strain also show larger
values for lateral strain actuation (Figure 6).
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Figure 6. Dielectric actuation of the composite films.

2.4.2. Piezoelectric Response

Different materials, either particulate or solid polymer films, can confer piezoelectric
properties onto composite materials with a siloxane matrix which is not a piezoelectric
material. Polyimides have demonstrated piezoelectric properties [47] as these materials are
non-symmetric, polar, and insulating. The use of such polyimides as filler materials can
confer piezoelectric behavior onto composite films with silicone matrix [48–50].

The piezoelectric behavior of the composite films was studied with a multimode AFM
setup (NT-MDT SolvePro) [51]. The local piezoelectric response was quantified using PFM
imaging in one imaging session, with the same cantilever and the same laser position.
When a localized electric field is applied through the conductive cantilever (with platinum
conductive coating (NT-MDT), with a radius of curvature of R = 35 nm, contact resonance
frequency of f = 250 kHz, and a spring constant of k = 0.2 N/m), it is possible to reduce
the electrostatic contribution to the PFM signal by using a soft cantilever which has the
added benefit of improving the piezoresponse’s sensitivity [47], while avoiding the damage
to the soft siloxane matrix test samples specific for stiff cantilever tips. The samples were
imaged by scanning an area of 20 × 20 µm2, in contact mode with a loading force of
2.72 nN, drive voltage of 1 V, and scan rate of 0.5 Hz, collecting PFM images of surface 2D
and 3D topography, magnitude, and phase; for accuracy, dual calibration was used: first
based on detector sensitivity and second with a lithium niobate test pattern using a known
piezoelectric coefficient [47].

Before recording the piezoelectric response of the samples, calibration with a test
sample of poled lithium niobate was used to calibrate the PFM [51], where the calibration
factor was used to further convert the measured amplitude of the piezoresponse signal (h)
to value for the effective d33, with a known amplitude of the probing AC voltage (A) [47]:

h = γAFMd33A (7)

Figure 7 shows surface 2D topography (a,e,i,m,r), surface 3D topography (b,f,j,n,s),
magnitude (c,g,k,o,t), and phase (d,h,l,p,u) for samples prepared with polyimide copolymer
PI1. The surface area of rough domains (roughness > 10 nm) increases with the content
of polyimide in the sample. Similarly, there is an increase in multiple contrasts both in
magnitude and phase images with increased content of polyimide, which is specific to
an increasingly widespread piezoelectric response and the different domain structures
have different orientations of polarization. Each uniformly polarized region is similar with
topographic features. The morphology features of the samples are significant for their
influence on the piezoelectric properties, since a sample of pure silicone tested under the
same PFM conditions showed no piezoelectric response.
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Figure 7. PFM images: surface 2D topography (a,e,i,m,r), surface 3D topography (b,f,j,n,s), magnitude
(c,g,k,o,t), and phase (d,h,l,p,u) for samples prepared with PI1.

The content of polyimide in the composite samples influences the piezoelectric re-
sponse recorded: the average values of piezoelectric coefficient increase from 0.5 to
1.7 pm/V for samples with PI1, and from 0.4 to 1.5 pm/V for samples with PI5. For
samples with PI2, the value of the piezoelectric coefficient does not change with the poly-
imide content, and it hovers around 2.5 pm/V (Table 4). These values are lower than those
reported for polyimide-based piezoelectric films [52]. However, the materials are not brittle
as is the case for films made from pure polyimide, and furthermore the samples are both
flexible and stretchable (Figure 4 and Figure S5). Compared with samples made from pure
piezoelectric materials, such as polyimides or other classic piezoelectric materials the value
of 2.5 pm/V is extremely favorable, as the samples tested have a content of only 20 wt% or
less of piezoelectric polyimide.
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Table 4. Roughness and piezoelectric coefficient for the samples tested.

Sample R (nm) d33 (pm/V)

PDMS 0.5 0

PI 2.1 2.4 ± 0.5

PI1 6 6.1 ± 1.5

PI1-2% 4 0.5 ± 0.1

PI1-5% 59 1.0 ± 0.2

PI1-10% 150 1.5 ± 0.4

PI1-20% 157 1.7 ± 0.3

PI2 2.6 5.5 ± 1

PI2-2% 9 2.5 ± 0.5

PI2-5% 11 2.5 ± 0.5

PI2-10% 33 2.0 ± 0.5

PI2-20% 68 2.5 ± 0.4

PI5 2.2 2.0 ± 0.5

PI5-2% 6 0.4 ± 0.1

PI5-5% 8 0.5 ± 0.1

PI5-10% 9 1.6 ± 0.3

PI5-20% 12 1.5 ± 0.3

2.4.3. Pressure Sensors and Energy Harvesting Data Analysis

One of the main objectives of this study was to put together polysiloxane as the
dielectric and polyimide as the piezoelectric component, in a new composite elastomer-
type material [47]. Each sample was tested as free-standing film (thickness < 100 microns)
by dropping a 30 mm diameter ball onto the sample’s surface from a height of 10 cm, as
shown in Figure 8.
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The kinetic energy of the ball was directly converted by the composite piezoelectric
films into an electric current, and the value of the voltage of the signal represents the
amount of energy harvested from the tested sample as a direct current. The setup (Figure 8)
operates under an applied direct voltage of 1 V and has a response time between 50–100 ms.
The samples tested in this setup showed a response for an applied force of 0.005 N, cor-
responding to the films being touched with a 0.5 g weight. The maximum value of the
harvested voltage is approximately 600 mV for samples of pure PI1, 800 mV for samples
of pure PI2, and 450 mV for samples of pure PI5, 100% being films made from pure PI1,
PI2, and PI5, respectively (Figure 9). The value of the voltage for the harvested current is
around 50 mV for samples of pure PDMS. With the addition of a low concentration (2 wt%)
of polyimide copolymer, it is noticeable that the values of the harvested current are similar
to pure PDMS. Overall, the values of the voltage recorded for the composite materials are
lower than the voltage recorded for samples made of pure polyimide copolymer. However,
increasing the concentration of polyimide copolymer in composites drives the values of the
voltage signal higher (Figure 9). For samples prepared with 20 wt% polyimide copolymer
(PI1-20%, PI2-20%, and PI5-20%), the values of the voltage are close to 90% of the voltage
for the specific pure PIa polyimide copolymer, making the elastomer films useable for
energy harvesting from walking and as a pressure sensor.
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3. Materials and Methods
3.1. Materials

A polydimethylsiloxane-α,ω-diol (PDMS) with molecular weight Mn = 370,000 g·mol−1

and polydispersity index PDI = 1.73 was used as a matrix. The polymer was synthesized
using cationic ring-opening polymerization of octamethylcyclotetrasiloxane in the presence
of sulfuric acid, following the procedure previously described in [53]. Tetraethylorthosili-
cate (TEOS) was purchased from Merck and was used as received. Dibutyltin dilaurate
(DBTDL) was supplied by Sigma–Aldrich and was used as received. For the synthesis and
characterization of the poly(siloxane-imide) copolymers PI1, PI2, and PI5 see Section 3.3.

3.2. Methods of Characterization

The IR spectra were registered on Bruker Vertex 70 FT-IR equipment in transmission
mode, in the 400–4000 cm−1 range, with a resolution of 2 cm−1 and 32 scans, at room
temperature. The NMR spectra were recorded on a 400 MHz Bruker spectrometer in CDCl3
at room temperature. Chemical shifts are reported in δ units (ppm) and refer to the internal
deuterated solvent CDCl3 calibrated at 7.26 ppm. GPC measurements were made in CHCl3
on a PL-EMD 950 chromatograph—evaporative mass detector. The calibration was per-
formed with polystyrene standards. SEM images were taken using a Quanta 200 scanning
electron microscope (FEI Company) by using a large-field detector (LFD) and a Verios G4
UC scanning electron microscope (Thermo Fisher Scientific) with circular back scattered
(CBS), and Everhart Thornley (ETD) detectors, in a low vacuum mode. The moisture sorption
behavior of the samples was studied in a dynamic regime at 25 ◦C, in the 0–90% relative
humidity (RH) range, using the fully automated gravimetric analyzer IGAsorp fabricated
by Hiden Analytical, Warrington (UK). The vapor pressure was increased in 10% humidity
steps, with a pre-established equilibrium time between 15 and 30 min. For each step, the
increase of the weight was measured by electromagnetic compensation between tare and
sample when equilibrium was achieved. The cycle was ended by decreasing the vapor
pressure in steps, which permitted us to obtain the desorption isotherms. The drying of
the samples before sorption measurements was realized at 25 ◦C in flowing nitrogen (250
mL/min) until the weight of the sample reached equilibrium at RH < 1%. Dielectric spec-
troscopy measurements were carried out with a Novocontrol Concept 40 broadband dielectric
spectrometer device equipped with an Alpha-A high performance frequency analyzer. The
samples, as free-standing films, were placed between two plated electrodes. Measurements
were performed in dry nitrogen atmosphere and the amplitude of the external electrical
field was equal to 1 V. The dielectric spectra were recorded under isothermal conditions,
in broad frequency (100−106 Hz) and temperature ranges (from −150 ◦C to 220 ◦C). The
temperature was controlled with a standard Novocontrol Quatro Cryosystem device. The
mechanical stress–strain tests were conducted on an Instron 3365 test instrument, Norwood
MA, USA, at an extension rate of 20 mm min−1 at ambient temperature. Actuation measure-
ments were made on circular films of 50 mm in diameter, 20% equiaxially prestrained [54]
and fixed between two circular frames. Circular electrodes of carbon black powder (8 mm
in diameter) were deposited concentrically on both sides of the polymeric film. The lateral
actuation displacement was optically measured using a digital camera and software in
order to evaluate the electrode extension [46]. Static contact angle measurements were carried
out using the sessile drop method at room temperature on a CAM-101 contact angle system
from KSV Instruments, Helsinki, Finland. The contact angle instrument was equipped
with a liquid dispenser of 1 mL Hamilton syringe (Hamilton Company Reno Nevada)
and a video camera. A drop of liquid (1 µL) was placed on the polymer surface and the
contact angle was measured immediately. Ten photos were recorded at an interval of 0.016
s. At least five measurements were performed for each liquid to obtain the contact angle
value and the average values were reported. The standard deviation between the values
obtained from all performed tests was less than 4%. The deposition of a conductive metal
layer for the signal recording was done with the technique of Al film deposition through
pulsed laser ablation, PLD (pulsed laser deposition). The experimental arrangement of
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the PLD technique uses a classic configuration, which involves placing the target and the
substrate face to face in parallel planes. The conductive materials obtained are thin metallic
layers of Al deposited on a polymeric substrate (Figure 8). The experimental parameters
for obtaining conductive thin films by PLD are as follows: KrF laser with a wavelength of
248 nm, pulse duration 25 ns, pulse repetition frequency 20 Hz, laser fluence 1.5, 2 J/cm2

for a constant target-subtracted 7 cm distance, total number of pulses 18,000, Al target,
purity 99.99% (GoodFellow), deposition pressure 0.001 Pa. Piezoelectric force microscopy
(PFM) was employed to investigate the local electromechanical (piezoelectric) properties
of the polysiloxane–polyimide films using a multimode AFM setup (NT-MDT SolvePro).
Essentially, PFM technique is based on the detection of the local electromechanical vibra-
tion of the sample caused by an external alternating current (AC) voltage. The voltage is
applied to a conductive (platinum covered) AFM probing tip, which is used as a movable
top electrode. The external driving voltage with frequency υ generates a sample surface
vibration with the same frequency due to the converse piezoelectric effect. The modulated
deflection signal from the cantilever, which oscillates together with the sample, is detected
using the lock-in technique. The amplitude of the first harmonic signal from the lock-in am-
plifier is a function of the magnitude of piezoelectric displacement and phase shift between
the AC electric field and the cantilever displacement. Thus, during AFM scanning of the
sample surface, the magnitude of the AFM tip displacement is recorded simultaneously
with the phase of the displacement (orientation of the piezoelectric response). This means
that regions with opposite piezoelectric orientation will vibrate in the counter phase with
respect to each other under the applied electric field [55]. The amplitude of displacement
allows us to estimate the magnitude of the piezoelectric response, while the phase image
provides information on the sequence of the mechanical oscillation that is related to the
orientation of the polarization, allowing the identification of domain structures. In this
study, all images were taken during one imaging session with the same cantilever (nominal
spring constant 0.1 N m−1 and free resonant frequency of 245.9 kHz) and laser position in
order to allow for quantitative comparison across the samples investigated. PFM images
(surface topography, magnitude, and phase) were obtained in contact mode at a vertical
deflection setpoint of 2 nm, drive voltage of 1 V, scan rate of 0.5 Hz, and surface area of
20 × 20 mm2.

3.3. Procedures
3.3.1. Synthesis of Poly(siloxane-imide) Copolymers PI1, PI2, and PI5

The statistical copolymers polyimide–polydimethylsiloxane with nitrile functional
groups (Scheme 1) were prepared following a previously described procedure [26,27]. Both
4,4′-Oxydiphthalic anhydride (ODPA) and other reagents were provided by Aldrich and
used as received; 2,6-Bis(3-aminophenoxy)benzonitrile (DA-CN) was synthesized by a nu-
cleophilic displacement reaction of 2,6-dichlorobenzonitrile and 3-aminophenol, following
a method previously reported [26]. DA-Silox1 and DA-Silox2 were synthesized by equili-
bration of the cyclic siloxane tetramer, [(CH3)2SiO]4 (octamethylcyclotetrasiloxane), with
1,3-bis(3-aminopropyl)tetramethyldisiloxane in a pre-established ratio to obtain the desired
molecular weight [27]. Then, PI1, PI2, and PI5 were obtained in two steps. In the first step,
solutions of PAA-Silox1,2,5 were prepared from polycondensation reactions of ODPA with
mixtures of two diamines, DA-CN and DA-Silox1,2,5. In the second step, PAA-silox1,2,5
were converted to the corresponding imide structure PI1,2,5 using chemical imidization.

The poly(amic acid)s were synthesized at room temperature, under nitrogen atmo-
sphere. ODPA (0.310 g, 1 mmol), N-methy-2-pyrrolidone (NMP) (2 mL), and tetrahydrofu-
ran (0.5 mL) were introduced into a three necked flask. An amine-terminated oligodimethyl-
siloxane DA-Silox1 (0.109 g, 0.108 mmol) solution in THF (0.5 mL) was added and the
reaction was continued under stirring for 1.5h. Then, a solution of DA-CN (0.2825 g,
0.891 mmol) in NMP (1.5 mL) was added and the stirring was continued for 10 h. A yellow
viscous solution of PAA-Silox1 was thus obtained. The imide structure PI1 was performed
by chemical imidization of PAA-Silox1 by adding acetic anhydride (2 mL) and pyridine



Molecules 2022, 27, 8524 18 of 22

(1 mL) to the viscous solution of PAA-Silox1. The THF was distilled off under vacuum
at 50 ◦C and then the reaction mixture was heated under stirring at 130 ◦C for 4 h. After
cooling to room temperature the solution was precipitated in a large quantity of water. The
resulting precipitate was filtered, washed again with water, and dried at 80 ◦C for 4 h and
at 110 ◦C for 5 h (Yield = 87%).

PI2 and PI5 were prepared following the same procedure, by using ODPA (0.310 g,
1 mmol), DA-Silox2 (0.140 g, 0.098 mmol), DA-CN (0.286 g, 0.902 mmol) for PI2, and ODPA
(0.310 g, 1 mmol), DA-Silox5 (0.112 g, 0.45 mmol), DA-CN (0.174 g, 0.55 mmol) for PI5.

The structures (Scheme 1) were checked using FTIR spectroscopy (Figure S1) and 1H-
NMR (Figure S2) spectroscopy and GPC analysis. The molecular weight of the oligomers (α,ω-
bis(aminopropyl)oligodimethylsiloxane) was as follows: for PI1 it was Mn = 1280 g mol−1,
for PI2 Mn = 1430 g mol−1, and for PI5 Mn = 248 g mol−1. The molecular weight of the
final polyimide–polydimethylsiloxane copolymers determined with GPC measurements
was Mn,PI1 = 21,200 g mol−1, Mn,PI2 = 12,015 g mol−1, and Mn,PI5 = 20,090 g mol−1. The
specific IR absorption bands (KBr, cm−1): PI1: 744 m (C=O bending), 798 s (C–H from
Si–CH3 stretching), 1099–1026 s (Si–O–Si stretching), 1261 s (C–H deformation in Si–CH3),
1371 s (C–N stretching of imide), 1605 m (C=O from CONH stretching vibration), 1722 vs.
(C=O symmetric stretching), 1780 m (C=O asymmetric stretching), 2232 w (C≡N from the
nitrile group), 2962 m (C–H from Si−CH3 asymmetric stretching), 3200–3700 m (OH and
NH from COOH and CONH stretching vibration), PI2: 743 m (C=O bending), 797 s (C–H
from Si–CH3 stretching), 1099–1026 s (Si–O–Si stretching), 1261 vs. (C–H deformation in Si–
CH3), 1371 s (C–N stretching of imide), 1571 s (C–NH), 1724 s (C=O symmetric stretching),
1781 s (C=O asymmetric stretching), 2232 m (C≡N from the nitrile group), 2962 s (C−H
from Si–CH3 asymmetric stretching), 3000–3500m (OH and NH from COOH and CONH
stretching vibration), PI5: 744m (C=O bending), 780m (C–H from Si–CH3 stretching), 1098–
1026 s (Si–O–Si stretching), 1274 s (C–H deformation in Si–CH3), 1368 s (C–N stretching of
imide), 1715 vs. (C=O symmetric stretching), 1778 m (C=O asymmetric stretching), 2232 w
(C≡N from the nitrile group), 2952 m (C–H from Si–CH3 asymmetric stretching), 3000–
3600 m (OH and NH from COOH and CONH stretching vibration). 1H-NMR (CDCl3-d6,
ppm) of PI1 and PI2: 6.8–8.0 (aromatic protons), 3.5 (–CH2–CH2–CH2–Si–), 1.6 (–CH2–
CH2–CH2–Si–), 0.5 (–CH2–CH2–CH2–Si–), 0 (CH3–Si); PI5: 6.6–8.2 (aromatic protons), 3.54
(–CH2–CH2–CH2–Si–), 1.6 (–CH2–CH2–CH2–Si–), 0.5 (–CH2–CH2–CH2–Si–), 0.0 (CH3–Si).

3.3.2. Preparation of Elastomeric Composites

A pre-established amount of grounded polyimide-polydimethylsiloxane statistical
copolymer was added to the PDMS solution in chloroform, followed by stirring, in order to
obtain a homogenous mixture (Table 1). In the next step, the crosslinker agent (TEOS) and
catalyst for condensation and crosslinking (DBTDL) were added to each reaction mixture,
continuing the stirring for 1 h at room temperature. The solution mixture was poured into
Teflon molds in the fume hood and left for crosslinking at room temperature for 24 h. For
each sample preparation, 9 mL CHCl3 were used as solvent for the PDMS matrix and 0.01 g
DBTDL as a catalyst. The films were removed from the Teflon molds and left standing for
aging in the atmosphere on the lab bench for ten days before testing. Films were named
PIa-b%, where a is the type of statistical copolymers polyimide–polydimethylsiloxane (PI1,
PI2, PI5), and b the wt% PIa relative to siloxane matrix—in this paper 0, 2, 5, 10, and 20 wt%
relative to siloxane weight were used (Table 1).

3.3.3. Preparation of Electroactive Piezoelectric Surfaces and Humidity Sensors

A novel laboratory-scale single step process for producing low-cost, scalable film-
shaped sensors with piezoelectric properties without poling and with potential application
as pressure sensors in smart surfaces and “smart skin” was developed. The stretchable
films (<100 µm thick) with a surface area of 50 × 50 mm were covered with a thin layer
(<20 nm thick) of conductive metal (Al) using PLD. Due to the surface metal, there is no
stray capacitance between the metal layer as electrode and the polymer as dielectric, which
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could hamper the measurements for sensor capabilities. The pressure sensors are ready for
immediate use after the metal layer deposition. The tests were performed in atmospheric
conditions (25 ◦C and 60% RH). The pressure was simulated by the fall of a steel ball with a
mass of 30 g from a height of 10 cm (Figure 8) [56]. The resulting recorded voltage spike is
a function of the piezoelectric properties of each film tested.

4. Conclusions

New composite materials based on PDMS incorporating different percentages of
poly(imide-co-siloxaneimide) copolymers with different segment ratios have been devel-
oped. They have been shown to have pressure-sensing and energy-harvesting properties
for self-powered applications. The devices in the form of thin films show a combination of
properties specific to the two classes of polymers: flexibility and elasticity specific to silox-
anes and piezoelectric behavior specific to polyimides. The electrical currents generating
capabilities of the composites are similar to those of traditional piezorezistive materials
at d33~2.5 pm/V, with a limit of detection of 0.005 N and a maximum voltage of 750 mV
harvested. Also, the dielectric properties of the samples allow such materials to function as
electrostatic actuators with maximum lateral strains of ~4.7% for samples with polyimide
copolymers PI1 and PI2, and 6.12% for samples with polyimide copolymer PI5. The thin
films of piezoelectric composites are intrinsically ready for scalable production and integra-
tion with any irregular surfaces for simultaneous pressure-sensing and energy-harvesting
from any type of kinetic and/or pressure action. Therefore, the materials presented in this
paper could enable lightweight portable, wearable devices, working as both sensing and
energy source materials, although these applications need a further step of optimization of
the piezoelectric properties of the materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238524/s1, Figure S1. FTIR spectra for the polyimide–
polydimethylsiloxane copolymers PI1, PI2, and PI5; Figure S2. 1H NMR spectra for the polyimide–
polydimethylsiloxane copolymers PI1, PI2, and PI5; Figure S3. Cryofracture SEM images of the
composite films; Figure S4. Surface energy parameters of the composite films; Figure S5. Elastoplastic
behavior of the composite films under cyclic stress loads; Figure S6. Dielectric properties of the
composite samples with 5 wt% polyimide compared with reference samples in normal conditions at
room temperature (a), atmosphere saturated with water vapors (b), and after immersion in distilled
water (c) [57–61].
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