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Abstract: A new approach for the synthesis of 2-aminobenzofurans has been described via Sc(OTf)3

mediated formal cycloaddition of isocyanides with the in situ generated ortho-quinone methides
(o-QMs) from o-hydroxybenzhydryl alcohol. Notably, as a class of readily available and highly
active intermediates, o-QMs were first used in the construction of benzofurans. This [4 + 1] cy-
cloaddition reaction provides a straightforward and efficient methodology for the construction of
2-aminobenzofurans scaffold in good yield (up to 93% yield) under mild conditions.
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1. Introduction

Benzofuran core, an important class of structural fragments, is widely distributed
in natural products and biologically active compounds [1–4]. The benzofuran subunit is
also present in a host of medicines, such as amiodarone, methoxypsoralen, dronedarone,
etc [5]. Therefore, various methods for the preparation of benzofurans have been developed.
As a special kind of functionalized benzofurans, 2-aminobenzofurans are of considerable
interest and feature profound bioactivities, such as antifungal, P-glycoprotein inhibitors,
anticancer activities, and tubulin polymerization inhibitors [6–9].

Although such structures are important, only limited methods have been reported for
accessing 2-aminobenzofurans and the structural diversity of the products is insufficient.
For example, in 2005, Ishikawa’s group reported the synthesis of 2-aminobenzofurans from
1-aryl-2-nitroethylenes and cyclohexane-1,3-diones via a one-pot multistep strategy, but
only moderate yield can be obtained. Moreover, unsymmetrical cyclohexane-1,3-diones
have poor regiochemistry (Scheme 1a, Equation (1)) [10]. Soon after, Ohe and co-workers
provided a new method to obtain 2-aminobenzofurans through palladium-catalyzed in-
tramolecular cycloisomerization of 2-(cyanomethyl) phenyl ester; however, the substrate
range is relatively limited (Scheme 1a, Equation (2)) [11]. In addition, Maurya’s group
also demonstrated the synthesis of very similar products (3-acyl-2-aminobenzofurans)
via visible light-triggered intramolecular cyclization of α-azidochalcones (Scheme 1a,
Equation (3)) [12]. In 2013, Cao’s group developed a method for the synthesis of 3-alkyl- or
3-allenyl-2-amidobenzofurans by carbocation-induced electrophilic cyclization of o-anisole-
substituted ynamides (Scheme 1a, Equation (4)) [13]. In this method, the substituent on the
benzene ring is fixed at the 5 position, and at least one electron withdrawing substituent
is required on nitrogen. Finally, Kumar et al. reported strong base (tBuOK) mediated
synthesis of 3-phenylbenzofuran-2-amines (one example) (Scheme 1a, Equation (5)) [14].
While those methods allow 2-aminobenzofurans to be obtained in an efficient way, new
methods that can access a variety of structural skeletons under mild reaction conditions
and from simple starting materials are still highly desired (Scheme 1b).
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In recent years, ortho-quinone methides (o-QMs) [15–22], a versatile class of building
blocks, have been widely used in organic synthesis. o-QMs could be generated from o-
hydroxybenzhydryl alcohol derivatives and directly participate in various [4 + n] (n = 2, 3)
cycloadditions [23–27]. The [4 + 1] cycloadditions involved in o-QMs, however, are only
developed for the construction of 2,3-dihydrobenzofuran skeletons and have never been
used to synthesize benzofurans [28–34], let alone 2-aminobenzofurans.

2. Results

Our continuous interest in cycloaddition [35–40] led us to envision that the reaction
of o-QMs with isocyanides [41–46] would achieve the benzofuran motifs via an inter-
molecular formal [4 + 1] cycloaddition. To test the feasibility of our hypothesis, we chose
o-hydroxybenzhydryl alcohol 1a and p-nitrophenyl isocyanide 2a as the model substrates
to optimize the reaction conditions (Table 1).

The initial experiment was conducted in CH2Cl2 in the presence of various Brønsted
acids, such as benzoic acid, TsOH and TfOH, at room temperature. It was observed that,
except for benzoic acid, which only offered a trace amount of the desired product, both
TsOH and TfOH provided the cycloaddition product 3a in roughly the same yield, even
though the yield was relatively low (entries 1–3). Considering that isocyanide could be
hydrolyzed under fairly strong acidic conditions [47], we replaced Brønsted acids with
Lewis acids to further optimize reaction conditions. A range of Lewis acids, such as
BF3·Et2O, InCl3, and Sc(OTf)3, were then screened (entries 4–6). Among them, the desired
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cycloaddition product 3a could be obtained with 53% isolated yield when 0.5 equiv. of
Sc(OTf)3 was employed. To further improve the yield, different solvents, including THF,
MeCN, and toluene, were also examined (entries 7−10). Toluene proved to be the best
solvent for this transformation.

Table 1. Optimization of reaction conditions a.
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Encouraged by these results, we investigated the effect of the loading of Sc(OTf)3. It
was found that, when we increased the loading of Sc(OTf)3 from 0.5 equiv. to 1.0 equiv.,
the yield of 3a was improved to 75% (entry 11). However, when 1.2 equiv. of Sc(OTf)3 was
used, the yield was reduced slightly (entry 12). It is noteworthy that the cycloaddition
product 3a could be improved to 81% yield (entry 13) when the reaction was performed
at 0 ◦C, but further cooling the temperature to −10 ◦C led to the yield’s reduction to 69%
(entry 14). Lastly, the addition a small number of 4 Å MS could increase the yield of 3a to
87% (entry 15).

With the optimized conditions in hand, a number of 2-aminobenzofurans were suc-
cessfully obtained in moderate to excellent yields within 30 min through the formal [4 + 1]
cycloaddition of o-hydroxybenzhydryl alcohol (1a–1s) and p-nitrophenyl isocyanide 2a
(Scheme 2). As shown in Scheme 2, both electron-donating substituents (3ba–3fa) and
electron-deficient substituents (3ga–3ia) on the phenol were well tolerated in this formal
[4 + 1] cycloaddition reaction and afforded the desired products in 70% to 84% yields. Obvi-
ously, the position of the substituents on phenol moiety had little influence on the reaction
(3ba and 3ca). The structure of products was unambiguously confirmed by single-crystal
X-ray analysis of 3ia (please see Supplementary Materials). Next, different substitutions
on the benzyl phenol moiety were examined. We found that methyl substitution at the
ortho-, meta- and para- of benzyl alcohol moiety can afford the corresponding products (3ja,
3ka, and 3la) good to excellent yields. Strong electron-donating substituent (methoxy) in
a different position was also converted smoothly into the desired 2-aminobenzofurans
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(3na and 3oa). Notably, the benzyl alcohol with high steric hindrance substitutions at
ortho-position also efficiently underwent the formal [4 + 1] addition to provide correspond-
ing products (3ma and 3pa) in 73% and 58% yields, respectively. Electron-withdrawing
substituents, including F, Cl, and CF3, were also suitable for this transformation, providing
the 2-aminobenzofurans with good results (3qa–3sa). From the above results, it can be
concluded that both strong electron-donating substituents and electron-withdrawing sub-
stituents at the benzyl alcohol slightly reduce the yield; the yield of the product decreases
slightly when high steric hindrance substitutions at ortho-position of the benzyl alcohol
take place.
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Scheme 2. Scope of o-hydroxybenzhydryl alcohols. Standard reaction conditions: 1 (0.1 mmol), 2a 
(0.2 mmol), Sc(OTf)3 (0.1 mmol), 4 Å MS (50 mg), dry toluene (1 mL), at 0 °C, 30 min. b 20 min. 

Scheme 2. Scope of o-hydroxybenzhydryl alcohols. Standard reaction conditions: 1 (0.1 mmol), 2a
(0.2 mmol), Sc(OTf)3 (0.1 mmol), 4 Å MS (50 mg), dry toluene (1 mL), at 0 ◦C, 30 min. b 20 min.

We further evaluated the substrate scope of isocyanides (Scheme 3). A series of
phenylisocyanides, with electron-withdrawing substituents at para- and meta-positions
of the benzene ring, were smoothly converted to the corresponding products (4ab–4ad).
However, for methyl substituted phenyl isocyanides, the yield decreased (4ae). Therefore, it
can be inferred that electron-withdrawing substituents on phenyl isocyanides are beneficial
to the formation of the product. β-Naphthyl isocyanide were employed in the transfor-
mation, offering the corresponding 2-aminobenzofurans in 83% yield (4af). Notably, alkyl
isocyanides, including ethyl isocyanoacetate and tert-butyl isocyanide, could also smoothly
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transform to the desired cycloaddition products in 46% and 85% yields, respectively (4ag
and 4ah), which enriched the diversity of structural skeletons.
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According to previous reports on Sc(OTf)3-triggered transformation of
o-hydroxybenzhydryl alcohol [48–51], a plausible mechanism for the [4 + 1] cycloaddition
was proposed (Scheme 4), the nucleophilic addition of the isocyanides to o-QMs (I) gener-
ated in situ from o-hydroxybenzyl alcohol 1a, which formed intermediate II. Subsequently,
II undergoes intramolecular cyclization producing the intermediate III, which isomerised
to the desired 2-aminobenzofurans 3.
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Given that 2-aminobenzofurans have been proven to have a variety of biological
activities, we decide to conduct in silico researches of the synthesized 2-aminobenzofurans
to evaluate their drug-likeness, which were carried out using the SwissADME platform [52].
Satisfyingly, except for compounds 3ea, 3ma, 3pa, and 4ab–4af, other compounds were
found to have good obedience (100%) with two drug-likeness filters (Lipinski [53] and Ve-
ber [54]) (Table 2). In addition, some substituted (Cl, F, Br, CH3, OCH3) 2-aminobenzofurans’
pharmacokinetic properties were predicted through admetSAR [55], and it was found that



Molecules 2022, 27, 8538 6 of 14

these products showed a great range of average ADMET score [56,57] (0.68–0.74) with re-
gard to human intestinal absorption, blood–brain barrier penetration, Caco-2 permeability,
Ames mutagenicity, carcinogenicity, and acute oral toxicity class (Table 3). Finally, taking
4ae as an example, we predicted its possible molecular targets using SwissTargetPredic-
tion [58,59]. The results show that it can act on multiple targets, such as nuclear receptor,
family A-G protein-coupled receptor, etc., and the probability of prediction is around 10%.

Table 2. Physiochemical properties of the compounds predicted using SwissADME.

Compound
Name MW nHetero

Atoms
Rotatable

Bonds
H-Bond
Acceptor

H-Bond
Donor

TPSA
(Å sqr) MlogP

3aa 330.34 5 4 3 1 70.99 4.03
3ba 344.37 5 4 3 1 70.99 3.44
3ca 344.37 5 4 3 1 70.99 3.44
3da 344.37 5 4 3 1 70.99 3.44
3ea 386.45 5 5 3 1 70.99 4.90 *
3fa 360.37 6 5 4 1 80.22 3.71
3ga 348.33 6 4 4 1 70.99 3.60
3ha 364.79 6 4 3 1 70.99 3.71
3ia 409.24 6 4 3 1 70.99 3.82
3ja 344.37 5 4 3 1 70.99 3.44
3ka 344.37 5 4 3 1 70.99 3.44
3la 358.40 5 4 3 1 70.99 3.66

3ma 372.42 5 5 3 1 70.99 4.69 *
3na 360.37 6 5 4 1 80.22 3.71
3oa 360.37 6 5 4 1 80.22 3.71
3pa 380.40 5 4 3 1 70.99 4.73 *
3qa 348.33 6 4 4 1 70.99 3.60
3ra 364.79 6 4 3 1 70.99 3.71
3sa 398.34 8 5 6 1 70.99 4.04
4ab 319.79 3 3 1 1 25.17 4.79 *
4ac 364.24 3 3 1 1 25.17 4.90 *
4ad 319.79 3 3 1 1 25.17 4.79 *
4ae 299.37 2 3 1 1 25.17 4.52 *
4af 335.31 2 3 1 1 25.17 4.99 *
4ag 295.34 4 6 3 1 51.47 2.80
4ah 265.36 2 3 1 1 25.17 3.79

(Lipinski: MW ≤ 500, MlogP ≤ 4.15, N or O ≤ 10, NH or OH ≤ 5; Veber: Rotatable bonds ≤ 10, TPSA ≤ 140).
* The asterisk indicates that it is outside the standard range.

Table 3. ADMET score for human intestinal absorption, Caco-2 permeability, blood–brain barrier,
carcinogenicity, Ames mutagenesis and acute oral toxicity, as predicted using admetSAR.

Compound
Name

Human
Intestinal

Absorption

Blood Brain
Barrier

Caco-2
Permeability

Ames
Mutagenesis Carcinogenicity Acute Oral

Toxicity Average Score

3ba 0.9868 0.7500 0.7184 0.7400 0.5000 0.5118 0.7012
3fa 0.9848 0.7500 0.7869 0.7400 0.6020 0.5636 0.7379
3ga 0.9874 0.7500 0.7567 0.6800 0.5381 0.4706 0.6971
3ha 0.9860 0.7500 0.6451 0.7600 0.5881 0.5396 0.7115
3ia 0.9835 0.7500 0.5890 0.7000 0.5371 0.5325 0.6820
3ka 0.9868 0.7500 0.8320 0.7900 0.5000 0.5118 0.7284
3na 0.9848 0.7500 0.7356 0.7700 0.6020 0.5636 0.7343
3qa 0.9874 0.7500 0.7716 0.7600 0.5381 0.4706 0.7130
3ra 0.9860 0.7500 0.5674 0.8100 0.5881 0.5396 0.7069
4ab 0.9939 0.9000 0.6813 0.5500 0.5419 0.5439 0.7018
4ac 0.9925 0.9000 0.6529 0.6300 0.5929 0.5220 0.7151

In summary, we have developed a novel and efficient method for the acquisition
of 2-aminobenzofuran derivatives via Sc(OTf)3-promoted [4 + 1] cycloaddition reaction
of isocyanides with the in situ generated ortho-quinone methides (o-QMs) under mild
conditions. In addition, o-QMs were first successfully used in this transformation and its
advantage of this transformation is the simplicity of the reaction and the increased variety
of 2-aminobenzofurans. Further exploration of the construction of other heterocyclics from
o-QMs and applications of this product is in progress.
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3. Experimental
3.1. General Procedures

Unless otherwise noted, reagents were commercially available and were used without
further purification. A 4 Å molecular sieve was pre-dried in an oven at 200 ◦C for 3 h
Thin-layer chromatography (TLC) was performed using silica gel GF254 precoated plates
(0.20 mm thickness). Visualization on TLC was achieved by UV light (254 nm). Column
chromatography was performed on silica gel 90, 200–300 mesh. 1H NMR and 13C NMR
spectra were recorded at 25 ◦C on a Bruker Avance 400 spectrometer (1H: 400 MHz and 13C:
101 MHz). 1H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane
(TMS) with the solvent resonance employed as the internal standard (CDCl3, δ 7.26 ppm;
DMSO-d6, δ 2.5 ppm). 13C NMR chemical shifts were determined relative to the signal of
the solvent: CDCl3 at δ 77.00 ppm, DMSO-d6 at δ 39.5 ppm. Data for 1H and 13C NMR were
recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet,
m = multiplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet
of doublets), coupling constants (Hz), and integration. ESI-HRMS spectra were recorded
on a BioTOF Q instrument. Infrared (IR) spectra are obtained by the use of Spectrum One
and expressed in wave number (cm−1). o-hydroxybenzhydryl alcohols 1a–1s [60] and
isocyanides 2a–2f [51] were synthesized according to the previously reported.

3.2. Typical Procedure for Synthesis of 3aa

To a solution of p-nitrophenyl isocyanide 2a (0.2 mmol, 30 mg) in toluene (0.5 mL),
we immediately added the o-hydroxybenzhydryl alcohols 1a (0.1 mmol, 20 mg), Sc(OTf)3
(0.1 mmol, 49 mg) in toluene (0.5 mL) under N2 in a Schlenck tube. The reaction mixture
was stirred at 0 ◦C for 30 min. Upon completion, the reaction mixture was quenched with
water, and then extracted with EtOAc and washed with brine. The combined organic phase
was dried over anhydrous Na2SO4 and the solvent was evaporated under vacuum. The
crude product was purified using flash chromatography column eluting with (petroleum
ether:ethyl acetate = 15:1) to obtain the product 3aa.

Detailed physicochemical properties of novel 2-aminobenzofuran derivatives:

N-(4-Nitrophenyl)-3-phenylbenzofuran-2-amine (3aa): Petroleum ether: ethyl acetate = 10:1,
Rf = 0.5, yield: 87%, red solid, mp 123 ◦C.IR: 3309, 1639, 1589, 1494, 1393, 1311, 1242, 1190,
1114. 1H NMR (400 MHz, Chloroform-d) δ 8.16 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 7.0 Hz,
1H), 7.58 (d, J = 7.3 Hz, 2H), 7.50 (q, J = 7.4 Hz, 3H), 7.37 (dt, J = 13.6, 6.9 Hz, 3H), 7.02 (d,
J = 8.8 Hz, 2H), 6.66 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 151.2, 148.3, 145.3, 141.0, 131.2,
129.6, 128.2, 128.1, 127.6, 126.0, 124.3, 123.6, 119.5, 114.6, 111.1, 108.1. ESI-HRMS: m/z calcd
for C20H15N2O3 [M + H]+: 331.1077, found: 331.1075.

5-Methyl-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3ba): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 84%, red solid, mp 108 ◦C. IR: 3368, 2922, 1586, 1492, 1323, 1239, 1192,
1110. 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 9.1 Hz, 2H), 7.58–7.51 (m, 2H), 7.51–7.42
(m, 3H), 7.41–7.33 (m, 2H), 7.18–7.12 (dd, J = 8.4 Hz, 0.8Hz, 1H), 7.03–6.95 (m, 2H), 6.54 (s,
1H), 2.47 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 149.6, 148.3, 145.3, 141.1, 133.1, 131.4, 129.2,
128.2, 128.0, 127.6, 126.0, 125.4, 119.4, 114.5, 110.6, 108.0, 21.5. ESI-HRMS: m/z calcd for
C21H17N2O3 [M + H]+: 345.1234, found: 345.1239.

6-Methyl-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3ca): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 86%, red solid, mp 109 ◦C. IR: 3360, 2920, 1596, 1496, 1322, 1304,
1248, 1188, 1109. 1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 9.1 Hz, 2H), 7.56 (dd, J = 11.8,
7.7 Hz, 3H), 7.46 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.31 (s, 1H), 7.14 (d, J = 7.9 Hz,
1H), 6.99–6.91 (m, 2H), 6.53 (s, 1H), 2.51 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.7, 148.7,
144.4, 141.0, 134.8, 131.4, 129.2, 128.1, 127.6, 126.0, 125.3, 124.8, 119.2, 114.4, 111.4, 109.0, 21.7.
ESI-HRMS: m/z calcd for C21H17N2O3 [M + H]+: 345.1234, found: 345.1234.
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7-Methyl-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3da): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 79%, red solid, mp 141 ◦C. IR: 3364, 2923, 1591, 1501, 1385, 1325,
1248, 1183, 1110. 1H NMR (400 MHz, CDCl3) δ 8.19–8.11 (m, 2H), 7.59–7.51 (m, 3H), 7.47
(t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.3 Hz, 1H),
7.03–6.96 (m, 2H), 6.60 (s, 1H), 2.56 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 150.2, 148.4,
144.9, 141.0, 131.4, 129.2, 128.2, 127.6, 127.5, 126.0, 125.4, 123.6, 121.4, 117.1, 114.5, 108.6, 15.0.
ESI-HRMS: m/z calcd for C21H17N2O3 [M + H]+: 345.1234, found: 345.1255.

5-(tert-butyl)-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3ea): Petroleum ether: ethyl
acetate = 15:1, Rf = 0.7, yield: 80%, red solid, mp 97 ◦C. IR: 3356, 2960, 1591, 1503, 1340,
1285, 1186, 1111. 1H NMR (400 MHz, Chloroform-d) δ 8.13 (d, J = 9.0 Hz, 2H), 7.68 (s, 1H),
7.56 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.43 (s, 2H), 7.38 (d, J = 7.2 Hz, 1H), 6.98
(d, J = 9.0 Hz, 2H), 6.62 (s, 1H), 1.41 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 149.5, 148.5,
146.8, 145.3, 141.0, 131.4, 129.3, 128.3, 127.6, 126.0, 122.2, 115.7, 114.5, 110.5, 108.7, 34.9, 31.9.
ESI-HRMS: m/z calcd for C24H23N2O3 [M + H]+: 387.1703, found: 387.1704.

5-Methoxy-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3fa): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.4, yield: 75%, red solid, mp 165 ◦C. IR: 3371, 2931, 1586, 1479, 1322, 1296, 1225,
1191, 1152, 1110. 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 9.1 Hz, 2H), 7.56–7.51 (m, 2H),
7.48 (t, J = 7.6 Hz, 2H), 7.42–7.34 (m, 2H), 7.12 (d, J = 2.5 Hz, 1H), 7.05–6.97 (m, 2H), 6.92
(dd, J = 8.9, 2.6 Hz, 1H), 6.62 (s, 1H), 3.85 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 156.6, 148.1,
146.0, 146.0, 141.1, 131.3, 129.3, 128.7, 128.2, 127.6, 126.0, 114.6, 112.3, 111.6, 107.9, 102.5, 56.0.
ESI-HRMS: m/z calcd for C21H17N2O4 [M + H]+: 361.1183, found: 361.1187.

5-Fluoro-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3ga): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 70%, red solid, mp 141 ◦C. IR: 3343, 1586, 1502, 1476, 1325, 1311, 1242,
1195, 1140, 1110. 1H NMR (400 MHz, DMSO-d6) δ 10.05 (s, 1H), 8.10 (d, J = 9.0 Hz, 2H), 7.62
(dd, J = 10.3, 5.9 Hz, 3H), 7.53–7.41 (m, 3H), 7.36 (t, J = 7.3 Hz, 1H), 7.17 (td, J = 9.2, 2.3 Hz,
1H), 7.04 (d, J = 9.1 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ159.6 (d, J = 232.3 Hz), 150.0,
148.1, 147.3, 140.1, 131.0, 129.5, 129.3, 128.4, 127.9, 126.2, 115.1, 112.7, 118.0 (d, J = 20.2 Hz),
108.3, 105.6, 105.3. 19F NMR (376 MHz, DMSO-d6) δ −119.35. ESI-HRMS: m/z calcd for
C20H14FN2O3 [M + H]+: 349.0983, found: 349.0992.

5-Chloro-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3ha): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 74%, red solid, mp 198 ◦C. IR: 3366, 1588, 1500, 1384, 1325, 1234,
1109. 1H NMR (400 MHz, DMSO-d6) δ 10.08 (s, 1H), 8.10 (d, J = 9.1 Hz, 2H), 7.67 (d, J = 2.0
Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.37 (td,
J = 6.3, 5.5, 2.7 Hz, 2H), 7.05 (d, J = 9.2 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 149.9,
149.6, 147.9, 140.1, 130.8, 129.9, 129.6, 128.5, 128.5, 128.0, 126.2, 124.4, 118.9, 115.1, 113.2,
107.6. ESI-HRMS: m/z calcd for C20H14ClN2O3 [M + H]+: 365.0687, found: 365.0678.

5-Bromo-N-(4-nitrophenyl)-3-phenylbenzofuran-2-amine (3ia): Petroleum ether: ethyl acetate =
10:1, Rf = 0.6, yield: 80%, red solid, mp 210 ◦C. IR: 3367, 1585, 1504, 1468, 1324, 1232, 1109.
1H NMR (400 MHz, DMSO-d6) δ 10.08 (s, 1H), 8.09 (d, J = 9.1 Hz, 2H), 7.88 (d, J =1.2 Hz,
1H), 7.59 (d, J = 7.3 Hz, 3H), 7.54–7.44 (m, 3H), 7.36 (t, J = 7.3 Hz, 1H), 7.04 (d, J = 9.1 Hz, 2H).
13C NMR (101 MHz, DMSO-d6) δ 149.9, 149.9, 147.7, 140.1, 130.8, 130.5, 129.6, 128.5, 128.0,
127.1, 126.2, 121.8, 116.4, 115.1, 113.6, 107.4. ESI-HRMS: m/z calcd for C20H13BrN2NaO3
[M + Na]+: 431.0002, found: 430.9998.

N-(4-Nitrophenyl)-3-(o-tolyl)benzofuran-2-amine (3ja): Petroleum ether: ethyl acetate = 10:1,
Rf = 0.6, yield: 93%, red solid, mp 145 ◦C. IR: 3347, 2925, 1593, 1503, 1327, 1248, 1169,
1112. 1H NMR (400 MHz, CDCl3) δ 8.17–8.11 (m, 2H), 7.54–7.49 (m, 1H), 7.37–7.27 (m, 7H),
7.08–7.02 (m, 2H), 6.44 (s, 1H), 2.24 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.0, 147.6, 145.8,
141.1, 137.6, 130.9, 130.5, 129.8, 129.1, 128.4, 126.4, 125.9, 123.8, 123.4, 119.6, 114.7, 110.9,
106.2, 20.2. ESI-HRMS: m/z calcd for C21H17N2O3 [M + H]+: 345.1234, found: 345.1234.
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N-(4-Nitrophenyl)-3-(p-tolyl)benzofuran-2-amine (3ka): Petroleum ether: ethyl acetate = 10:1,
Rf = 0.6, yield: 91%, red solid, mp 138 ◦C. IR: 3359, 2920, 1591, 1524, 1384, 1248, 1175, 1109.
1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 9.1 Hz, 2H), 7.72–7.64 (m, 1H), 7.49 (d, J = 7.4 Hz,
1H), 7.45 (d, J = 8.0 Hz, 2H), 7.37–7.30 (m, 2H), 7.28 (d, J = 7.9 Hz, 2H), 6.99 (d, J = 9.1 Hz,
2H), 6.58 (s, 1H), 2.41 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.2, 148.4, 145.0, 141.0, 137.5,
130.0, 128.1, 128.1, 128.1, 126.0, 124.2, 123.5, 119.6, 114.5, 111.1, 108.3, 21.3. ESI-HRMS: m/z
calcd for C21H16N2NaO3 [M + Na]+: 367.1053, found: 367.1054.

3-(3,5-Dimethylphenyl)-N-(4-nitrophenyl)benzofuran-2-amine (3la): Petroleum ether: ethyl
acetate = 12:1, Rf = 0.6, yield: 89%, red solid, mp 92 ◦C. IR: 3342, 2922, 1592, 1502, 1384,
1326, 1182, 1111. 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 9.1 Hz, 2H), 7.67 (dd, J = 6.0,
2.7 Hz, 1H), 7.49 (dd, J = 6.5, 2.2 Hz, 1H), 7.33 (dt, J = 6.6, 4.7 Hz, 2H), 7.16 (s, 2H), 7.03 (d,
J = 9.2 Hz, 3H), 6.64 (s, 1H), 2.37 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 151.1, 148.2, 145.3,
141.0, 138.9, 131.0, 129.4, 128.2, 126.0, 124.0, 123.5, 119.6, 114.7, 111.0, 107.7, 21.5. ESI-HRMS:
m/z calcd for C22H18N2NaO3 [M + Na]+: 381.1210, found: 381.1206.

3-(2-Isopropylphenyl)-N-(4-nitrophenyl)benzofuran-2-amine (3ma): Petroleum ether: ethyl
acetate = 12:1, Rf = 0.6, yield: 73%, red solid, mp 170 ◦C. IR: 3319, 2961, 1642, 1592, 1499,
1384, 1323, 1306, 1237, 1186, 1112. 1H NMR (400 MHz, Chloroform-d) δ 8.14 (d, J = 9.0 Hz,
2H), 7.52 (d, J = 8.0 Hz, 1H), 7.50–7.40 (m, 2H), 7.32–7.28 (m, 5H), 7.05 (d, J = 9.0 Hz, 2H),
6.49 (s, 1H), 3.02 (hept, J = 6.6 Hz, 1H), 1.18 (d, J = 6.8 Hz, 3H), 1.06 (d, J = 6.8 Hz, 3H). 13C
NMR (101 MHz, CDCl3) δ 150.9, 148.9, 147.9, 146.0, 141.1, 130.9, 129.8, 129.0, 128.3, 126.3,
126.3, 125.9, 123.8, 123.5, 119.3, 114.6, 110.9, 106.3, 30.1, 24.5, 24.1. ESI-HRMS: m/z calcd for
C23H21N2O3 [M + H]+: 373.1547, found: 373.1547.

3-(4-Methoxyphenyl)-N-(4-nitrophenyl)benzofuran-2-amine (3na): Petroleum ether: ethyl ac-
etate = 10:1, Rf = 0.4, yield: 74%, red solid, mp 177 ◦C. IR: 3358, 2950, 1594, 1502, 1307, 1231,
1152, 1114. 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 9.0 Hz, 2H), 7.70–7.63 (m, 1H), 7.48 (t,
J = 7.1 Hz, 3H), 7.37–7.28 (m, 2H), 6.99 (dd, J = 11.2, 8.9 Hz, 4H), 6.50 (s, 1H), 3.85 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 159.1, 151.2, 148.5, 144.7, 141.0, 129.4, 128.2, 126.0, 124.3,
123.4, 123.3, 119.6, 114.7, 114.4, 111.1, 108.4, 55.4. ESI-HRMS: m/z calcd for C21H17N2O4 [M
+ H]+: 361.1183, found: 361.1183.

3-(3-Methoxyphenyl)-N-(4-nitrophenyl)benzofuran-2-amine (3oa): Petroleum ether: ethyl ac-
etate = 10:1, Rf = 0.4, yield: 77%, red solid, mp 107 ◦C. IR: 3315, 2920, 1591, 1501, 1325, 1309,
1239, 1183, 1110. 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 9.1 Hz, 2H), 7.69 (dd, J = 6.5,
2.2 Hz, 1H), 7.50 (dd, J = 6.9, 1.9 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.36–7.28 (m, 2H), 7.13
(d, J = 7.7 Hz, 1H), 7.10 (t, J = 2.0 Hz, 1H), 7.03 (d, J = 9.1 Hz, 2H), 6.91 (dd, J = 8.2, 2.3
Hz, 1H), 6.63 (s, 1H), 3.81 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 160.2, 151.1, 148.1, 145.4,
141.1, 132.5, 130.4, 128.0, 126.0, 124.2, 123.6, 120.5, 119.5, 114.7, 114.0, 112.8, 111.1, 107.5, 55.3.
ESI-HRMS: m/z calcd for C21H16N2NaO4 [M + Na]+: 383.1002, found: 383.1004.

3-(Naphthalen-1-yl)-N-(4-nitrophenyl)benzofuran-2-amine (3pa): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 58%, red solid, mp 194 ◦C. IR: 3309, 2920, 1637, 1587, 1498, 1322, 1305,
1242, 1183, 1110. 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 9.1 Hz, 2H), 7.99–7.91 (m, 2H),
7.83 (d, J = 8.4 Hz, 1H), 7.51–7.61 (m, 4H), 7.44 (t, J = 7.5 Hz, 1H), 7.36–7.31 (m, 1H), 7.29 (d,
J = 6.7 Hz, 1H), 7.24 (d, J = 7.4 Hz, 1H), 7.06 (d, J = 9.1 Hz, 2H), 6.46 (s, 1H). 13C NMR (101
MHz, CDCl3) δ 151.0, 147.4, 146.8, 141.1, 134.1, 131.7, 129.6, 128.8, 128.8, 128.2, 128.1, 126.7,
126.4, 125.8, 125.8, 125.4, 123.7, 123.6, 119.7, 114.9, 110.9, 104.1. ESI-HRMS: m/z calcd for
C24H17N2O3 [M + H]+: 381.1234, found: 381.1225.

3-(4-Fluorophenyl)-N-(4-nitrophenyl)benzofuran-2-amine (3qa): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 81%, red solid, mp 126 ◦C. IR: 3332, 2920, 1587, 1500, 1472, 1325,
1108. 1H NMR (400 MHz, DMSO-d6) δ 9.93 (s, 1H), 8.10 (d, J = 9.2 Hz, 2H), 7.72–7.58 (m,
4H), 7.40–7.28 (m, 4H), 7.00 (d, J = 9.2 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 161.7
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(d, J = 252.5 Hz), 151.2, 150.5, 146.3, 139.9, 130.5, 130.4, 128.0, 127.8, 126.3, 124.8, 124.0,
119.7, 116.4 (d, J = 20.2 Hz), 114.8, 111.6, 108.0. 19F NMR (376 MHz, DMSO-d6) δ -114.37.
ESI-HRMS: m/z calcd for C20H14FN2O3 [M + H]+: 349.0983, found: 349.0977.

3-(4-Chlorophenyl)-N-(4-nitrophenyl)benzofuran-2-amine (3ra): Petroleum ether: ethyl acetate
= 10:1, Rf = 0.6, yield: 70%, red solid, mp 177 ◦C. IR: 3312, 2920, 1638, 1588, 1491, 1390, 1308,
1241, 1114. 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 9.0 Hz, 2H), 7.64 (d, J = 7.1 Hz, 1H),
7.53–7.47 (m, 3H), 7.44 (d, J = 8.4 Hz, 2H), 7.39–7.29 (m, 2H), 7.00 (d, J = 9.0 Hz, 2H), 6.54
(s, 1H). 13C NMR (101 MHz, CDCl3) δ 151.2, 148.0, 145.3, 141.3, 133.5, 129.7, 129.5, 129.5,
127.7, 126.0, 124.5, 123.7, 119.3, 114.6, 111.2, 107.3. ESI-HRMS: m/z calcd for C20H14ClN2O3
[M + H]+: 365.0687, found: 365.0687.

N-(4-Nitrophenyl)-3-(4-(trifluoromethyl)phenyl)benzofuran-2-amine (3sa): Petroleum ether:
ethyl acetate = 10:1, Rf = 0.6, yield: 74%, red solid, mp 226 ◦C. IR: 3311, 2967, 1590,
1311, 1307, 1272, 1239, 1112, 1066. 1H NMR (400 MHz, DMSO-d6) δ 10.09 (s, 1H), 8.13 (d,
J = 9.2 Hz, 2H), 7.85 (s, 4H), 7.75 (dd, J = 6.6, 2.2 Hz, 1H), 7.63 (dd, J = 6.9, 1.8 Hz, 1H),
7.43–7.32 (m, 2H), 7.08 (d, J = 9.2 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 151.1, 149.9,
147.5, 140.1, 136.0, 129.1, 128.0, 127.7, 127.6, 126.4, 126.3, 126.3, 126.1, 124.8, 124.2, 123.4,
119.5, 115.2, 111.7, 106.5. 19F NMR (376 MHz, DMSO-d6) δ −60.99. ESI-HRMS: m/z calcd
for C21H13F3N2NaO3 [M + Na]+: 421.0770, found: 421.0766.

N-(4-Chlorophenyl)-3-phenylbenzofuran-2-amine (4ab): Petroleum ether: ethyl acetate = 15:1,
Rf = 0.6, yield: 83%, white solid, mp 102 ◦C. IR: 3371, 1636, 1594, 1479, 1384, 1238, 1183. 1H
NMR (400 MHz, CDCl3) δ 7.62–7.67 (m, 1H), 7.58 (d, J = 7.2 Hz, 2H), 7.51–7.44 (m, 3H),
7.35 (t, J = 7.4 Hz, 1H), 7.28 (t, J = 3.6 Hz, 1H), 7.25 (d, J = 5.0 Hz, 1H), 7.25–7.20 (m, 2H),
7.00–6.93 (m, 2H), 6.13 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 150.9, 147.9, 140.8, 132.0, 129.3,
129.2, 128.6, 128.1, 127.1, 126.1, 123.3, 123.2, 118.8, 117.3, 110.8, 104.5. ESI-HRMS: m/z calcd
for C20H15ClNO [M + H]+: 320.0837, found: 320.0822.

N-(4-Bromophenyl)-3-phenylbenzofuran-2-amine (4ac): Petroleum ether: ethyl acetate = 15:1,
Rf = 0.6, yield: 74%, white solid, mp 137 ◦C. IR: 3360, 1636, 1590, 1489, 1379, 1241, 1174. 1H
NMR (400 MHz, CDCl3) δ 7.65 (dd, J = 5.4, 3.3 Hz, 1H), 7.57 (d, J = 7.4 Hz, 2H), 7.51–7.43
(m, 3H), 7.40–7.32 (m, 3H), 7.30–7.26 (m, 2H), 6.91 (d, J = 8.6 Hz, 2H), 6.12 (s, 1H). 13C NMR
(101 MHz, CDCl3) δ 150.9, 147.7, 141.3, 132.2, 132.0, 129.12, 128.5, 128.1, 127.1, 123.3, 123.2,
118.8, 117.7, 113.3, 110.8, 104.7. ESI-HRMS: m/z calcd for C20H15BrNO [M + H]+: 364.0332,
found: 364.0323.

N-(3-Chlorophenyl)-3-phenylbenzofuran-2-amine (4ad): Petroleum ether: ethyl acetate = 15:1,
Rf = 0.6, yield: 81%, white solid, mp 134 ◦C. IR: 3359, 1637, 1593, 1492, 1378, 1242, 1173.
1H NMR (400 MHz, Chloroform-d) δ 7.68 (dd, J = 6.1, 2.9 Hz, 1H), 7.59 (d, J = 7.2 Hz, 2H),
7.48–7.52 (m, 3H), 7.37 (t, J = 7.4 Hz, 1H), 7.32–7.29 (m, 2H), 7.20 (t, J = 8.1 Hz, 1H), 7.05 (t,
J = 1.9 Hz, 1H), 6.99–6.86 (m, 2H), 6.15 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 151.0, 147.3,
143.6, 135.1, 131.9, 130.4, 129.2, 128.4, 128.2, 127.2, 123.4, 123.3, 121.1, 119.0, 115.9, 114.1,
110.9, 105.5. ESI-HRMS: m/z calcd for C20H13ClNO [M − H]−: 318.0680, found: 318.0685.

3-Phenyl-N-(p-tolyl)benzofuran-2-amine (4ae): Petroleum ether: ethyl acetate = 15:1, Rf = 0.6,
yield: 56%, white solid, mp 92 ◦C. IR: 3380, 2925, 1608, 1517, 1384, 1196, 1071. 1H NMR
(400 MHz, Chloroform-d) δ 7.69–7.56 (m, 3H), 7.52–7.42 (m, 3H), 7.33 (t, J = 7.4 Hz, 1H),
7.29–7.22 (m, 2H), 7.11 (d, J = 8.2 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.12 (s, 1H), 2.33 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 150.8, 149.2, 139.5, 132.5, 129.9, 129.2, 128.9, 128.1, 126.8,
123.1, 122.6, 118.4, 116.7, 110.7, 102.6, 20.7. ESI-HRMS: m/z calcd for C21H18NO [M + H]+:
300.1383, found: 300.1380.
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N-(Naphthalen-2-yl)-3-phenylbenzofuran-2-amine (4af): Petroleum ether: ethyl acetate = 15:1,
Rf = 0.6, yield: 73%, White solid, mp 124 ◦C. IR: 3377, 1629, 1600, 1454, 1381, 1220, 1184.
1H NMR (400 MHz, DMSO-d6) δ 9.19 (s, 1H), 7.77 (d, J = 6.2 Hz, 1H), 7.75 (d, J = 5.3 Hz,
1H), 7.72–7.69 (m, 1H), 7.68–7.65 (m, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.56–7.60 (m, 1H), 7.45 (t,
J = 7.7 Hz, 2H), 7.39–7.34 (m, 1H), 7.33–7.27 (m, 3H), 7.27–7.24 (m, 1H), 7.22–7.25 (m, 1H),
7.19 (d, J = 2.0 Hz, 1H). ESI-HRMS: m/z calcd for C24H16NO [M − H]−: 334.1226, found:
334.1239.

Ethyl-(3-phenylbenzofuran-2-yl) glycinate (4ag): Petroleum ether: ethyl acetate = 6:1, Rf = 0.5,
yield: 46%, White solid, mp 96 ◦C. IR: 3349, 2927, 1734, 1612, 1463, 1393, 1206, 1122. 1H
NMR (400 MHz, CDCl3) δ 7.62 (d, J = 7.2 Hz, 2H), 7.45–7.55 (m, 3H), 7.33 (d, J = 8.0 Hz,
1H), 7.30 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.12–7.06 (m, 1H), 5.05 (t, J = 5.6 Hz, 1H),
4.24 (q, J = 7.1 Hz, 2H), 4.18 (d, J = 5.9 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz,
CDCl3) δ 170.7, 153.7, 150.0, 133.2, 130.2, 129.2, 127.6, 126.0, 123.1, 120.6, 117.1, 109.9, 93.9,
61.6, 45.4, 14.2. ESI-HRMS: m/z calcd for C18H18NO3 [M + H]+: 296.1281, found: 296.1281.

N-(tert-butyl)-3-phenylbenzofuran-2-amine (4ah): Petroleum ether: ethyl acetate = 20:1, Rf = 0.6,
yield: 85%, White solid, mp 108 ◦C. IR: 3367, 2967, 1606, 1458, 1379, 1210, 1015. 1H NMR
(400 MHz, CDCl3) δ 7.53 (d, J = 7.0 Hz, 2H), 7.51 –7.45 (m, 3H), 7.37 (d, J = 7.9 Hz, 1H),
7.30 (t, J = 7.2 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.10 (t, J =7.2 Hz, 1H), 4.39 (s, 1H), 1.43 (s,
9H). 13C NMR (101 MHz, CDCl3) δ 155.2, 150.4, 133.7, 129.6, 129.2, 127.8, 125.9, 122.8, 120.6,
117.0, 110.0 97.0, 53.5, 30.6. ESI-HRMS: m/z calcd for C18H20NO [M + H]+: 266.1539, found:
266.1537.

3.3. X-ray Crystallographic Data of 3ia

The crystal of 3ia for XRD analysis was prepared by recrystallization from the DMSO
(see the supporting information for details). CCDC 1914402 containing the supplementary
crystallographic data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on 5 July 2019). (remarks:
The unit cell contains several 3ia and DMSO, which are weakly clustered together, but this
does not affect the structural characterization of compound 3ia.)

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238538/s1, Figure S1: X-ray molecular structure of
3ia; Table S1: Crystal data and structure refinement for 3ia; Figures S2–S56: NMR spectra of the
products (3aa–3sa, 4ab–4ah).
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