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Abstract: In this research, we studied, in detail, the behavior of common PNIPAM microgels, obtained
through surfactant-free precipitation polymerization, in a number of organic solvents. We showed
that many of the selected solvents serve as good solvents for the PNIPAM microgels and that
the size and architecture of the microgels depend on the solvent chosen. Expanding the range of
solvents used for PNIPAM microgel incubation greatly enhances the possible routes for microparticle
functionalization and modification, as well as the encapsulation of water-insoluble species. In this
demonstration, we successfully encapsulated water-insoluble Sudan III dye in PNIPAM microgels
and prepared the aqueous dispersions of such composite-colored microparticles.

Keywords: microgel; thermosensitive; stimuli-responsive; poly(N-isopropylacrylamide); organic
solvent; oil; solubility; water insoluble; Sudan III

1. Introduction

Microgels are swollen polymer gel particles forming colloidally stable dispersions
when dissolved in a solution [1]. Typically, the size of the microgel particles is between
10 and 1000 nm. The microgels can exhibit a response to external stimuli, such as tempera-
ture, pH, flow, magnetic and electric fields, osmotic pressure, or light [2–8]. In many cases,
microgel functionality is based on the chemical composition of the polymer network. It can
be modified during microgel synthesis or by soaking compounds into a polymer network
during a swelling process of dry microgels [2]. There are many applications for microgels
in different areas, such as optics, coating, medicine, agriculture, actuators, etc. [9–17]. Most
of the reports dedicated to microgels prepared via the self-assembly mechanism observed
in precipitation polymerization used poly(N-isopropylacrylamide) (PNIPAM) as a main
component [6,18–22]. PNIPAM-based microgels are of interest for different applications
due to the tunability of their chemical and physical properties. For example, PNIPAM
microgels modified with aminophenylboronic acid show glucose-responsive properties at
a certain temperature, pH, and ionic strength [23–25]. A composite PNIPAM and Calcon
dye microgel shows both pH and H2O responses [26]. Interpenetrating network microgels
based on PNIPAM and acrylic acid show both thermo- and pH-responsive properties,
forming microphase-separated morphologies in certain conditions [27–29]. Optical sensors
for environmental humidity have been constructed from poly(N-isopropylacrylamide-co-
acrylic) acid [30]. Kim et al. demonstrated that poly(N-isopropylacrylamide-co-acrylic acid)
(PNIPAM-AAc) microgels can be used as tunable self-assembled microlenses [31].

Usually, water is used as a solvent for PNIPAM microparticles—both for research
and applications. There are almost no data on the behavior of these species in organic
solvents, except for research on one chosen medium [32,33]. In studies [34,35], the proper-
ties of linear PNIPAM and PNIPAM macrogels soaked in organic solvents were described.
Yet, organic solvents are a powerful tool for the further modification of prepared micro-
gels [36]. For example, an esterification reaction would allow for attachment to common
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PNIPAM-AAc microgels with a number of functional groups [37]. The loading of water-
insoluble active compounds to PNIPAM microparticles is of importance for a variety of
applications. This process is facilitated by the use of non-aqueous solutions. It is known
that PNIPAM microgels are amphiphilic in nature due to the presence of hydrophobic
and hydrophilic groups in each monomer unit. Kawaguchi et al. were the first to report
that PNIPAM microgel particles can absorb hydrophobic species. They investigated the
temperature dependence of human gamma-globulin absorption by PNIPAM microgels [38].
Azobenzene-containing microgels were used to fabricate optical materials whose properties
depend on the wavelength of light irradiation [39]. Semiconductor quantum dots were loaded
into thermo-responsive microgels via reversible transfer from organic solvents to water [40].

A number of applications uses organic liquids as a main operating solvent, such as
non-aqueous redox-flow batteries and solid-state batteries. Crosslinked microparticles
are a promising material for such systems [41–43]. Microgels can be implemented as
stimuli-responsive recyclable catalytic systems for organic synthesis and serve as nanoreac-
tors [44]. For example, in study [32], the horseradish peroxidase enzyme was immobilized
in PNIPAM microgels through the solvent exchange from water to isopropanol. The com-
posite particles showed enhanced specific activity of the biocatalyst. The proposed general
method allows for the transfer of a water-soluble enzyme to an organic phase, reaching
high catalytic activity.

Thereby, in this research, we present practical information about the behavior of
PNIPAM microgels in a number of commonly used organic solvents at room temperature.
Colloidal dispersions of PNIPAM microgels are widely used by many researchers and
engineers; thus, extending our knowledge of linear PNIPAM and macrogels to the case
of spherical microparticles with an uneven polymer density distribution and abundant
hydrophilic initiators is of importance. We show the dependence of the PNIPAM microgel
hydrodynamic radius Rh, radius of gyration Rg, and shape factor Rg/Rh on the type of
solvent at 23 ◦C. Further, we explore the encapsulation of a hydrophobic Sudan III dye
[1-(4-(phenyldiazenyl)phenyl]azonaphthalene-2-ol] into the PNIPAM microgel through
soaking dry particles in colored chloroform. We were the first to demonstrate the ability of
such Sudan III-loaded microgels to form a stable aqueous dispersion. Sudan III dye is a
strongly lipophilic diazo dye. It has long been used as a colorant for fats, oils, textile, waxes,
and other hydrophobic materials [45]. Sudan III dyes, as well as other azo dyes, are water
pollutants due to their widespread use in industries [46,47].

2. Results and Discussion
2.1. Swelling of Microgels in Different Solvents

For this investigation, we chose a number of organic solvents frequently used either
as a medium for chemical modification and the loading of polymer particles or as a part
of the functional material. A list of the solvents is presented in Table 1. We dissolved a
small amount of PNIPAM microgels in the listed chemicals and evaluated the solubility
of the particles at 23 ◦C. In cases where no precipitate was detected, we measured the
hydrodynamic radius Rh and the radius of gyration Rg of the microgels (see Table 1).
Moreover, the shape factor Rg/Rh and the ratio between the hydrodynamic radii in a
solvent and in water Rh/Rh(H2O) were calculated. It should be noted that the behavior of
the microgel could not be evaluated in toluene and benzene due to the close proximity of
the refractive indexes of these solvents and the NIPAM polymer. Examples of the intensity
correlation functions and the angular dependencies of the relaxation time of microgel
solutions are presented in Figures S3 and S4.

We found that microgels form stable colloid solutions and swell in water-miscible polar
organic solvents, such as dioxane and tetrahydrofuran, at room temperature. Moreover,
PNIPAM particles swelled in alcohols, including poorly water-soluble fatty alcohols. The
shape factor Rg/Rh of the particles was found to be lower than 0.5, indicating a “denser
core—looser corona” structure. This structure points to the absence of a compact outer
layer and promotes the accessibility of many polymer units comprising the microparticle.
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In some good solvents, the Rh of the microgels can be bigger or smaller than that in water.
This should be kept in mind when planning size-sensitive applications.

A phase transition of the PNIPAM gel caused by a collapse of its subchains upon
reaching the lower critical solution temperature of 32 ◦C is characteristic only for the case
of a PNIPAM gel being placed in pure water. For other solvents, the conditions of such
transitions would be significantly different or the phase transition may even be absent.

For procedures requiring the loading of active hydrophobic species, the solvents
immiscible with water are of importance. In non-polar solvents, such as cyclohexane
and various oils, for example, tetradecane, the PNIPAM microgels precipitate. We found
only a few water-immiscible (or nearly immiscible) solvents that are good for PNIPAM
microgels, namely chloroform and the fatty alcohols 1-octanol and 1-butanol. The formation
of hydrogen bonds plays a role in the solubility of PNIPAM in chloroform [35,48].

Fatty alcohols, such as 1-octanol, interact with the hydrophobic (isopropyl) side group
carried by each monomer in PNIPAM and establish hydrogen bonds with its amide groups,
modifying its amphiphilic qualities [49]. It is probable that some alcohols with a higher
number of carbon atoms could also serve as a good solvent for PNIPAM microgels. PNIPAM
microgels did not dissolve in mineral oil, hexane, decane, tetradecane, and cyclohexane.

It is of interest that while homogeneous macrogels usually retain their spatial density
distribution, regardless of the solvent used, PNIPAM microgels, prepared via the precipita-
tion polymerization method, tend to change their radial density distribution depending on
the solvent type. Among the reasons for that effect is the non-uniform crosslinking density
distribution and the presence of dangling end chains [1,19]. For example, in acetonitrile,
the PNIPAM microgel particle appears to be an almost homogeneous sphere (Rg/Rh ratio
is equal to 0.88 ± 0.06, see Table 1), while in t-butanol, the microgel structure transforms
into a strongly pronounced denser-core looser-corona structure (Rg/Rh ratio is equal to 0.34
± 0.04). Thus, not only the overall size and density of the microgel change, but also its
architecture does. It is known, for example, that the ratio between the microgel corona
and core sizes has a significant effect on the particle arrangement on the liquid–liquid
interface [50].

Table 1. Characteristics of solvent solubility parameters (δsol.) [51–53] and sizes of PNIPAM microgels
in different solvents at 23 ◦C.

Name δsol., cal1/2 cm−3/2 Rh, nm Rg, nm Rg/Rh Rh/Rh(H2O)

tetrahydrofuran 9.1 273 ± 6 161 ± 16 0.59 ± 0.05 0.89
chloroform 9.3 293 ± 7 148 ± 14 0.51 ± 0.05 0.95

acetone 9.9 281 ± 7 163 ± 16 0.58 ± 0.05 0.91
dioxane 10.0 277 ± 6 193 ± 19 0.70 ± 0.06 0.90

1-octanol 10.3 345 ± 9 164 ± 16 0.48 ± 0.05 1.12
t-butanol 10.4 462 ± 11 156 ± 15 0.34 ± 0.04 1.50
1-butanol 11.4 362 ± 9 163 ± 16 0.45 ± 0.05 1.18

2-propanol 11.5 337 ± 9 153 ± 15 0.45 ± 0.05 1.09
acetonitrile 11.9 196 ± 5 173 ± 17 0.88 ± 0.06 0.64

ethanol 12.7 401 ± 10 159 ± 15 0.40 ± 0.04 1.30
dimethyl sulfoxide 13 259 ± 5 143 ± 14 0.55 ± 0.05 0.84

water 23.4 308 ± 8 156 ± 15 0.51 ± 0.05 1

mineral oil 7.1 precipitates
hexane 7.3 precipitates
decane 7.7 precipitates

tetradecane 7.9 precipitates
cyclohexane 8.2 precipitates

Yagi at el. [34] investigated the swelling behavior of PNIPAM gels in different organic
solvents. Moreover, they calculated the solubility parameter of the PNIPAM polymer using
Equation (1): [

Q−1 ln(Qmax/Q)
]1/2

=
∣∣∣a1/2(δsol. − δPNIPAM)

∣∣∣, (1)
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where Q = (Rh/Rh(H2O))3, Qmax = (Rh(t-butanol)/Rh(H2O))3— maximum swelling ratio,
δsol.—solubility parameter of the solvent, δPNIPAM—solubility parameter of PNIPAM, and
a—constant.

We generated a plot according to [34] (see Figure 1). The solubility parameter
of the PNIPAM gel was calculated from the plot, δPNIPAM = 11.14 (a = 0.667). This
value for PNIPAM shows good agreement with δPNIPAM = 11.5, which was obtained by
Yagi et al. [34], and with δPNIPAM = 11.18, which was calculated by Ahmad [54].
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Figure 1. Dependence of
[
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]1/2 on the solubility parameter δsol. (THF—tetrahydrofuran,
DMSO—dimethyl sulfoxide).

We showed that the swelling behavior of PNIPAM microgels (synthesized via precipi-
tation polymerization) in organic solvents can be described by the Gee theory [55].

As seen in Figure 1, the swelling of PNIPAM microgels in acetonitrile solvent deviated
from the general trend (see red line in Figure 1). This may be explained by the fact
that acetonitrile is a solvent capable of poor hydrogen bonding interactions, unlike other
solvents in this study that are capable of moderate and strong hydrogen bonding [34,35,51].

2.2. Investigation of the Water Solution of PNIPAM Microgels Loaded with Sudan III Dye

The water dispersions of the microgels loaded with the fat-soluble dye were prepared
in a manner described below (see Section 3.4). Figure 2a shows a picture of the aqueous
solution of microgels colored with water-insoluble dye Sudan III (3), in comparison to that
with pure water (1) and the microgel aqueous solution (2). Below, we will find out why the
water solution of Sudan III has a uniform pink color.
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Figure 2. Panel (a) shows the flasks filled with: 1—pure water, 2—the water solution of PNIPAM
microgels, 3—the water solution of colored PNIPAM microgels. Panel (b) shows the UV-visible
spectra of the water solution of PNIPAM microgels (black curve) and the water solution of colored
PNIPAM microgels (red curve) at 23 ◦C.

2.2.1. UV-Vis Spectrophotometry

It is well known that the color of dyes depends on their ability to absorb light in a
visible range of 400–800 nm. We studied the UV-visible absorption spectrum of Sudan III
incorporated in microgels and dispersed in pure water. Figure 2b shows that PNIPAM
microgels, having swollen in water, did not contain any active group, and there were no
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absorption peaks in the UV-visible region from 400 nm to 800 nm. However, the aqueous
solution of microgels with incorporated Sudan III dye exhibited an absorption peak in
the UV-visible region at about 530 nm. This result corresponds to that obtained in a
previous paper [56], where it was found that Sudan III dye shows a bathochromic shift in
the absorption band with an increase in solvent polarity. Thus, the fat-soluble dye can be
homogeneously dispersed in the water solution. The dye molecules are adsorbed onto the
polymer chains of the microgels.

It should be noted that the Sudan III used in our experiments is completely insoluble
in water. We did not achieve the solubility of the dye in water, even at a concentration of
0.00026 mg/mL.

2.2.2. Ultracentrifugation

As a result of centrifugation, we obtained a pink-colored pellet and a colorless su-
pernatant. The pellet was dried at ambient temperature and was a red polymer film (see
Figure 3a). The supernatant was investigated with spectrophotometry. The Sudan III dye
was not detected in the water solution (see Figure 3b). It can be concluded that Sudan III
was adsorbed onto the polymer network of microgels. Similar observations were made for
the PNIPAM macrogel (see Figures S1 and S2).
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of the stained microgels.

2.2.3. Determination of Sizes of PNIPAM Microgels Loaded with Sudan III Dye

Multi-angle dynamic light scattering was used to obtain the hydrodynamic radius
Rh and radius of gyration Rg of the microgels. We determined the Rh and Rg of standard
PNIPAM microgels and microgels with incorporated dye molecules at 20 ◦C and 45 ◦C (see
Table 2). It was determined that the Rh of microgels with Sudan III is larger than the size of
standard microgels at 20 ◦C, namely 351 nm vs. 308 nm. The microgels, having absorbed
the dye molecules, increased their own size after swelling in water.

The thermo-sensitive property of microgels was investigated. It is shown in Table 2
that the Rh and Rg of microgels loaded with the hydrophobic dye at 45 ◦C were almost the
same as those for “standard” microgels. Thus, the microgels with Sudan III dye keep their
thermo-sensitivity.

Table 2. Characteristics of the sizes of PNIPAM microgels loaded with Sudan III dye in pure water at
20 ◦C and 45 ◦C.

Microgels Rh, nm Rg, nm Rg/Rh

“Standard” at 20 ◦C 308 ± 9 156 ± 15 0.51 ± 0.03
Loaded with Sudan III at 20 ◦C 351 ± 10 141 ± 14 0.40 ± 0.02

“Standard” at 45 ◦C 114 ± 5 90 ± 9 0.79 ± 0.06
Loaded with Sudan III at 45 ◦C 119 ± 5 90 ± 9 0.76 ± 0.06
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3. Materials and Methods
3.1. Materials

All materials for microgel synthesis were acquired from Sigma-Aldrich (Munich,
Germany) unless stated otherwise. N-isopropylacrylamide (NIPAM—monomer,), N,N’-
methylenebisacrylamide (BIS—crosslinking agent), ammonium persulfate (APS—initiator) were
used as received. The organic solutions 1-octanol, 1-buthanol, decane, and tetradecane were
purchased from Acros organics (Geel, Belgium). Tetrahydrofuran and acetone were received
from PanReac AppliChem (Darmstadt, Germany). Chloroform, dioxane, 2-propanol, t-
butanol, ethanol, hexane, dimethyl sulfoxide, acetonitrile, and cyclohexane were received
from Chimmed (Moscow, Russia). Mineral oil was purchased from VWR (Darmstadt,
Germany). The fat-soluble dye Sudan III (analytical standard) was obtained from Sigma-
Aldrich (Munich, Germany). Water was purified using a Millipore Milli-Q system.

3.2. Synthesis of Microgels

The synthesis of PNIPAM homopolymer microgels was carried out through the classi-
cal and most-often-used method of radical thermo-initiated emulsifier-free precipitation
polymerization of NIPAM in water in the presence of the crosslinking agent. The NIPAM
monomer concentration in the reaction mixture was 1 wt. %; the cross-linker BIS concentra-
tion was 1 mol % in terms of the monomer; the initiator APS concentration was 0.07 wt. %.
Polymerization was carried out in a glass reactor in an argon atmosphere at a temperature
of 80 ◦C under continuous stirring at a rate of 600 rpm for 24 h. The aqueous dispersion of
the synthesized microgels was gradually cooled to room temperature and purified through
dialysis (the dialysis bag pore size was 20 kDa) for two weeks. The purified dispersion was
dried via lyophilization using a FreeZone 2.5 freeze dryer (Labconco, Kansas City, MO, USA).

3.3. Preparation of Solvent Solutions of Microgels

We investigated the dependence of microgel size on the nature of the organic solvent
at 23 ◦C. The following organic solvents were used: pure water, dioxane, chloroform, 1-
octanol, 1-butanol, t-butanol, 2-propanol, ethanol, acetone, acetonitrile, dimethyl sulfoxide,
tetrahydrofuran, decane, hexane, mineral oil, cyclohexane, and tetradecane. The organic
solvent was poured into a glass flask. Some amount of the dry microgels was added to
the solvent. Then, the solution was stirred with a magnetic stirrer for two days to obtain a
homogenous solution. The concentration of microgels in the solutions was 0.43 mg/mL
throughout all experiments.

3.4. Loading of Microgels with Sudan III Dye

A solution of water-insoluble Sudan III dye in pure chloroform was prepared. The
concentration of Sudan III in chloroform was 6·× 10−5 M. Then, 0.0064 g of dry PNIPAM
microgels was added to 1 g of colored chloroform. After that, the solution was mixed with
a magnetic stirrer for two days at 100 rpm to obtain a homogenous solution. The flask with
microgels and colored chloroform was left with a lid open for two days until the chloroform
had completely evaporated. To remove all chloroform molecules, the flask was placed in a
vacuum drying cabinet at 23 ◦C for 24 h. As a result of these manipulations, we obtained
colored dry microgels. After that, 3 mL of pure water was added and the solution was
mixed with a magnetic stirrer to obtain a homogenous microgel solution.

3.5. Dynamic and Static Light Scattering Methods

Static light scattering (SLS) and dynamic light scattering (DLS) measurements were
performed with a static/dynamic compact goniometer (DLS/SLS-5000, ALV, Langen,
Germany). A HeNe laser with a power of 22 mW, emitting a polarized light at λ = 633 nm,
was used as the incident beam. DLS measurements and SLS intensity functions were taken
at 23 ◦C at scattering angles from 30◦ to 150◦ with a step of 10◦. The mass concentration
of the samples was 0.4 g/L. Distributions over decay time τ were obtained by means of a
nonlinear regularized inverse Laplace transformation method (CONTIN) [57]. Apparent
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self-diffusion coefficients D were determined from the angular dependence of the relaxation
time τ in accordance with the equation D = 1/τq2, where q = (4πn/λ)sin(θ/2) is the wave
vector magnitude. The corresponding hydrodynamic radii Rh presented in Table 1 were
calculated from the Stokes–Einstein equation: Rh = kT/6πηD, where k is Boltzmann’s
constant and η is the solvent viscosity. The radii of gyration Rg presented in Table 1
were calculated from the plots of the reciprocal excess intensity normalized to the relative
contribution of I(q) vs. q2 using the Guinier equation [58]:

ln(Kc/Rθ) = ln

 1

Mw exp
(
− 1

3 R2
gq2
) + 2A2c

, (2)

where K = 4π2(dn/dc)2n0
2/N0λ4, n0 is the medium refractive index, N0 is the Avogadro

number, dn/dc is the refractive index increment, c is concentration, Rθ is the Rayleigh ratio
at the angle θ, Mw is the molecular weight, and A2 is the 2nd virial coefficient. Solvent
viscosity η and solvent refractive index n table values were taken accordingly to the solvent
used in the experiment and incorporated into ALV software.

3.6. Spectrophotometry

We used UV-Vis spectrophotometry for the qualitative determination of Sudan III
dye in the PNIPAM microgels. A quartz cuvette with a 1 cm path length was used.
The UV-visible absorbance spectra in a range of 400–800 nm in steps of 1 nm on an SF-
2000 spectrophotometer were obtained. The quartz cuvette and spectrophotometer were
purchased from OKB-Spectr (St. Petersburg, Russia). Microgel concentrations in water
were 2.1 mg/mL. The concentration of Sudan III in water solution was 0.0046 mg/mL.

3.7. Ultracentrifugation of Microgel Water Solution

Ten milliliters of the solution of microgels loaded with Sudan III was placed in a
centrifuge tube and subjected to centrifugation at 14,000 rpm for 10 min to separate the
solution into fractions. The laboratory centrifuge PE-6926 was received from Ecohim
(St. Petersburg, Russia). The pellet was removed from the tube and the supernatant
was centrifuged again. The newly separated pellet was removed and collected. The
twice-separated supernatant was investigated via UV-Vis spectrophotometry. Microgel
concentrations in water were 2.1 mg/mL. The concentration of Sudan III in the water
solution was 0.0046 mg/mL.

4. Conclusions

In this research, we studied, in detail, the behavior of common PNIPAM microgels,
obtained via surfactant-free precipitation polymerization, in a number of organic solvents.
We showed that many of the selected solvents serve as good ones for PNIPAM microgels,
and the size and architecture of the microgels depend on the solvents chosen. It was
demonstrated that the Gee theory can be applied to describe the solubility of PNIPAM
microgels, synthesized through precipitation polymerization, in organic solvents. Moreover,
the solubility parameter of PNIPAM was obtained. We successfully encapsulated fat-
soluble Sudan III dye in PNIPAM microgels and prepared the aqueous dispersion of such
composite-colored microparticles. It was shown that the dye molecules adsorb to the
polymer network of the PNIPAM microgels. In perspective, such microgel-dye composites
could be used as coloring agents that are easily removable from water.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238549/s1, Synthesis of PNIPAM macrogel; Visual
observation of Sudan III behavior inside the macrogel; Figure S1: Pictures of dry colored PNIPAM
gel and colored PNIPAM hydrogel having swelled in water; Figure S2: UV-visible spectrum of the
outer water solution in which the colored PNIPAM hydrogel was immersed; Figure S3: Normalized
intensity correlation functions of PNIPAM microgel solution for different solvents; Determination
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of the radius of gyration; Figure S4: The angular dependencies of the relaxation time of PNIPAM
microgel solutions.
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