Optimization of Mulberry Extract Foam-Mat Drying Process Parameters
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Composition of Mulberry
2.2. Foam Formation and Stability
2.3. Effect of Albumin, CMC, Digestion-Resistant Maltodextrin, and Whipping Time on the Properties of the Foam System
2.3.1. Foam Expansion
11.18 A2 + 1.41 AD − 1.78 D2
R2 = 0.9; R2 (adjusted for Df) = 0.9; SEE = 33.67
2.3.2. Foam Stability (%)
2.3.3. Optimized Desirability
2.4. The Effect of Drying Temperature on the Mulberry Powder Quality
2.4.1. Water Content and Water Activity
2.4.2. Anthocyanin Content of the Mulberry Powder
2.4.3. Color (L* and a*) of the Mulberry Powder
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Foam Formation
4.3. Hot-Air Drying
4.4. Foam Properties and Quality Analysis
4.4.1. Foam Expansion
4.4.2. Foam Stability
4.4.3. Total Anthocyanin Content (TAC)
4.4.4. Color
4.4.5. Water Activity
4.4.6. Moisture Content
4.5. Multiple Regression Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Singhal, B.K.; Khan, M.A.; Dhar, A.; Baqual, F.M.; Bindroo, B.B. Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. J. Fruit Ornam. Plant Res. 2010, 18, 83–99. [Google Scholar]
- Sanchez, M.D. Mulberry for Animal Production: Proceedings of an Electronic Conference Carried Out between May and August 2000; Food & Agriculture Organization: Rome, Italy, 2002. [Google Scholar]
- Xie, H.-H.; Wei, J.-G.; Liu, F.; Pan, X.-H.; Yang, X.-B. First report of mulberry root rot caused by Lasiodiplodia theobromae in China. Plant Dis. 2014, 98, 1581. [Google Scholar] [CrossRef]
- Kim, H.-R.; Kwon, Y.-H.; Kim, H.-B.; Ahn, B.-H. Characteristics of mulberry fruit and wine with varieties. Appl. Biol. Chem. 2006, 49, 209–214. [Google Scholar]
- Liu, X.; Xiao, G.; Chen, W.; Xu, Y.; Wu, J. Quantification and purification of mulberry anthocyanins with macroporous resins. J. Biomed. Biotechnol. 2004, 2004, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stintzing, F.C.; Stintzing, A.S.; Carle, R.; Frei, B.; Wrolstad, R.E. Color and Antioxidant Properties of Cyanidin-Based Anthocyanin Pigments. J. Agric. Food Chem. 2002, 50, 6172–6181. [Google Scholar] [CrossRef]
- Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.A.; Bagchi, D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Feliziani, E. Chapter 6—Use of Chitosan to Control Postharvest Decay of Temperate Fruit: Effectiveness and Mechanisms of Action. In Chitosan in the Preservation of Agricultural Commodities; Bautista-Baños, S., Romanazzi, G., Jiménez-Aparicio, A., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 155–177. [Google Scholar]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Sangamithra, A.; Sivakumar, V.; John, S.G.; Kannan, K. Foam Mat Drying of Food Materials: A Review. J. Food Process. Preserv. 2015, 39, 3165–3174. [Google Scholar] [CrossRef]
- Farid, E.; Mounir, S.; Talaat, E.; Elnemr, S.; Siliha, H. Effect of foaming parameters on the physical and phytochemical properties of tomato powder. Food Sci. Biotechnol. 2022, 31, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Yusufe, M.; Mohammed, A.; Satheesh, N. Effect of Duration and Drying Temperature on Characteristics of Dried Tomato (Lycopersicon esculentum L.) Cochoro Variety. Acta Univ. Cibiniensis. Ser. E Food Technol. 2017, 21, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Thuy, N.M.; Tien, V.Q.; Van Tai, N.; Minh, V.Q. Effect of Foaming Conditions on Foam Properties and Drying Behavior of Powder from Magenta (Peristropheroxburghiana) Leaves Extracts. Horticulturae 2022, 8, 546. [Google Scholar] [CrossRef]
- Kanha, N.; Regenstein, J.M.; Laokuldilok, T. Optimization of process parameters for foam mat drying of black rice bran anthocyanin and comparison with spray- and freeze-dried powders. Dry. Technol. 2022, 40, 581–594. [Google Scholar] [CrossRef]
- Rajkumar, P.; Kailappan, R.; Viswanathan, R.; Raghavan, G.S.V.; Ratti, C. Foam Mat Drying of Alphonso Mango Pulp. Dry. Technol. 2007, 25, 357–365. [Google Scholar] [CrossRef]
- Kadam, D.M.; Wilson, R.A.; Kaur, S. Determination of biochemical properties of foam-mat dried mango powder. Int. J. Food Sci. Technol. 2010, 45, 1626–1632. [Google Scholar] [CrossRef]
- Thuwapanichayanan, R.; Prachayawarakorn, S.; Soponronnarit, S. Drying characteristics and quality of banana foam mat. J. Food Eng. 2008, 86, 573–583. [Google Scholar] [CrossRef]
- Kadam, D.M.; Balasubramanian, S. Foam Mat Drying of Tomato Juice. J. Food Process. Preserv. 2011, 35, 488–495. [Google Scholar] [CrossRef]
- Bag, S.K.; Srivastav, P.P.; Mishra, H.N. Optimization of Process Parameters for Foaming of Bael (Aegle marmelos L.) Fruit Pulp. Food Bioprocess Technol. 2011, 4, 1450–1458. [Google Scholar] [CrossRef]
- Kandasamy, P.; Varadharaju, N.; Shaik, K.; Moitra, R. Production of papaya powder under foam-mat drying using methyl cellulose as foaming agent. Asian J. Food Agro-Ind. 2012, 5, 374–387. [Google Scholar]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef]
- Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B 2010, 11, 973–980. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit—A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Lee, H.S.; Wicker, L. Anthocyanin Pigments in the Skin of Lychee Fruit. J. Food Sci. 1991, 56, 466–468. [Google Scholar] [CrossRef]
- Liang, L.; Wu, X.; Zhu, M.; Zhao, W.; Li, F.; Zou, Y.; Yang, L. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharm. Mag. 2012, 8, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Farahani, M.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M. Chemical characterization and antioxidant activities of Morus alba var. nigra fruits. Sci. Hortic. 2019, 253, 120–127. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Aramwit, P.; Bang, N.; Srichana, T. The properties and stability of anthocyanins in mulberry fruits. Food Res. Int. 2010, 43, 1093–1097. [Google Scholar] [CrossRef]
- Hu, H.; Shen, W.; Li, P. Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. Int. J. Food Sci. Technol. 2014, 49, 399–409. [Google Scholar] [CrossRef]
- Yang, J.-W.; Kim, Y.E. Effect of CaO treatment on quality characteristics and storage of mulberry (Morus alba L.) fruits in Yecheon. Hortic. Sci. Technol. 2015, 33, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, P.; Varadharaju, N.; Kalemullah, S.; Moitra, R. Preparation of papaya powder under foam-mat drying technique using egg albumin as foaming agent. Int. Bio-Res. Stress Manag. 2012, 3, 324–331. [Google Scholar]
- Kampf, N.; Gonzalez Martinez, C.; Corradini, M.G.; Peleg, M. Effect of two gums on the development, rheological properties and stability of egg albumen foams. Rheol. Acta 2003, 42, 259–268. [Google Scholar] [CrossRef]
- Tai, N.V.; Linh, M.N.; Thuy, N.M. Optimization of extraction conditions of phytochemical compounds in “Xiem” banana peel powder using response surface methodology. J. Appl. Biol. Biotechnol. 2021, 9, 56–62. [Google Scholar] [CrossRef]
- Thuy, N.M.; Tan, H.M.; Van Tai, N. Optimization of ingredient levels of reduced-calorie blackberry jam using response surface methodology. J. Appl. Biol. Biotechnol. 2022, 10, 68–75. [Google Scholar]
- Tsai, C.-W.; Tong, L.-I.; Wang, C.-H. Optimization of multiple responses using data envelopment analysis and response surface methodology. J. Appl. Sci. Eng. 2010, 13, 197–203. [Google Scholar]
- Spigno, G.; De Faveri, D.M. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng. 2007, 78, 793–801. [Google Scholar] [CrossRef]
- Mleko, S.; Kristinsson, H.G.; Liang, Y.; Gustaw, W. Rheological properties of foams generated from egg albumin after pH treatment. LWT—Food Sci. Technol. 2007, 40, 908–914. [Google Scholar] [CrossRef]
- Affandi, N.; Zzaman, W.; Yang, T.A.; Easa, A.M. Production of Nigella sativa Beverage Powder under Foam Mat Drying Using Egg Albumen as a Foaming Agent. Beverages 2017, 3, 9. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Paridhi, G.; Bosco, J.D.; Kadam, D.M. Optimization of process conditions for the development of tomato foam by box-behnken design. Food Nutr. Sci. 2012, 7(3), 925–930. [Google Scholar] [CrossRef] [Green Version]
- Sangamithra, A.; Sivakumar, V.; Kannan, K.; John, S.G. Foam-mat drying of muskmelon. Int. J. Food Eng. 2015, 11, 127–137. [Google Scholar] [CrossRef]
- Intipunya, P.; Bhandari, B.R. 22—Chemical deterioration and physical instability of food powders. In Chemical Deterioration and Physical Instability of Food and Beverages; Skibsted, L.H., Risbo, J., Andersen, M.L., Eds.; Woodhead Publishing: Sawston, UK, 2010; pp. 663–700. [Google Scholar]
- Jeong, S.-M.; Kim, S.-Y.; Kim, D.-R.; Jo, S.-C.; Nam, K.C.; Ahn, D.U.; Lee, S.-C. Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef]
- Franceschinis, L.; Salvatori, D.M.; Sosa, N.; Schebor, C. Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Dry. Technol. 2014, 32, 197–207. [Google Scholar] [CrossRef]
- Fracassetti, D.; Del Bo’, C.; Simonetti, P.; Gardana, C.; Klimis-Zacas, D.; Ciappellano, S. Effect of Time and Storage Temperature on Anthocyanin Decay and Antioxidant Activity in Wild Blueberry (Vaccinium angustifolium) Powder. J. Agric. Food Chem. 2013, 61, 2999–3005. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.M.; Han, L.N.; Tai, N.V. Thermal stability of anthocyanin in mixed raspberry-pomegranate-banana nectar in the presence of ascorbic acid and citric acid. J. Appl. Biol. Biotechnol. 2021, 10, 189–195. [Google Scholar]
- Abbasi, E.; Azizpour, M. Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT—Food Sci. Technol. 2016, 68, 105–110. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, S. Analysis of Anthocyanin, Flavonoids, and Phenolic Acids in Tropical Bignay Berries. Int. J. Fruit Sci. 2008, 8, 15–34. [Google Scholar] [CrossRef]
- Franco, T.S.; Ellendersen, L.N.; Fattori, D.; Granato, D.; Masson, M.L. Influence of the Addition of Ovalbumin and Emulsifier on the Physical Properties and Stability of Yacon (Smallanthus sonchifolius) Juice Foams Prepared for Foam Mat Drying Process. Food Bioprocess Technol. 2015, 8, 2012–2026. [Google Scholar] [CrossRef]
- Azizpour, M.; Mohebbi, M.; Khodaparast, M.H.H. Effects of foam-mat drying temperature on physico-chemical and microstructural properties of shrimp powder. Innov. Food Sci. Emerg. Technol. 2016, 34, 122–126. [Google Scholar] [CrossRef]
- Brar, A.S.; Kaur, P.; Kaur, G.; Subramanian, J.; Kumar, D.; Singh, A. Optimization of Process Parameters for Foam-Mat Drying of Peaches. Int. J. Fruit Sci. 2020, 20, S1495–S1518. [Google Scholar] [CrossRef]
- Kato, A.; Takahashi, A.; Matsudomi, N.; Kobayashi, K. Determination of Foaming Properties of Proteins by Conductivity Measurements. J. Food Sci. 1983, 48, 62–65. [Google Scholar] [CrossRef]
- Marinova, K.G.; Basheva, E.S.; Nenova, B.; Temelska, M.; Mirarefi, A.Y.; Campbell, B.; Ivanov, I.B. Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocoll. 2009, 23, 1864–1876. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00, F1.1.1–F1.1.11. [Google Scholar] [CrossRef]
Items | Content |
---|---|
Moisture content (%) | 89.7 * ± 0.9 |
Total soluble solid (°Brix) | 5.00 ± 0.1 |
Anthocyanin (mg/g) | 6.4 ± 0.4 |
pH | 3.6 ± 0.3 |
Color | L* = 69.5 ± 0.6; a* = 18.6 ± 1.9 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
A: Egg albumin | 629,068 | 1 | 629,068 | 554.96 | 0.0000 |
B: CMC | 45,669.1 | 1 | 45,669 | 40.29 | 0.0000 |
C: DRM | 42,696.9 | 1 | 42,697 | 37.67 | 0.0000 |
D: Whipping time | 1.03 × 106 | 1 | 1.03 × 106 | 906.21 | 0.0000 |
A2 | 108,004 | 1 | 108,004 | 95.28 | 0.0000 |
AB | 39.12 | 1 | 39.12 | 0.03 | 0.8529 |
AC | 1267.59 | 1 | 1267.59 | 1.12 | 0.2919 |
AD | 21,533 | 1 | 21,533 | 19.00 | 0.0000 |
B2 | 266.67 | 1 | 266.67 | 0.24 | 0.6283 |
BC | 144.68 | 1 | 144.68 | 0.13 | 0.7214 |
BD | 2503.7 | 1 | 2503.7 | 2.21 | 0.1392 |
C2 | 66.67 | 1 | 66.67 | 0.06 | 0.8087 |
CD | 2800.93 | 1 | 2800.93 | 2.47 | 0.1179 |
D2 | 106.67 | 1 | 106.67 | 94.10 | 0.0000 |
Lackoffit | 22,440 | 66 | 340.01 | 0.30 | 1.0000 |
Pure error | 183,633 | 162 | 1133.54 | ||
Total (corr.) | 2.2 × 106 | 242 | |||
R2 = 90.61% | R2 (adjusted for Df) = 90.03% | Standard error of est. = 33.67 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
A: Egg albumin | 533.56 | 1 | 533.56 | 589.34 | 0.0000 |
B: CMC | 148.30 | 1 | 148.30 | 163.81 | 0.0000 |
C: DRM | 30.25 | 1 | 30.25 | 33.41 | 0.0000 |
D:Whipping time | 1083.71 | 1 | 1083.71 | 1197.01 | 0.0000 |
A2 | 103.24 | 1 | 103.24 | 114.04 | 0.0000 |
AB | 2.68 | 1 | 2.68 | 2.96 | 0.0875 |
AC | 2.37 | 1 | 2.37 | 2.62 | 0.1076 |
AD | 81.81 | 1 | 81.81 | 90.37 | 0.0000 |
B2 | 0.59 | 1 | 0.59 | 0.66 | 0.4189 |
BC | 1.12 | 1 | 1.12 | 1.24 | 0.2676 |
BD | 14.08 | 1 | 14.08 | 15.56 | 0.0001 |
C2 | 0.03 | 1 | 0.03 | 0.04 | 0.8490 |
CD | 8.90 | 1 | 8.90 | 9.83 | 0.0020 |
D2 | 162.47 | 1 | 162.47 | 179.46 | 0.0000 |
Lackoffit | 75.36 | 66 | 1.14 | 1.26 | 0.1215 |
Pure error | 146.67 | 162 | 0.91 | ||
Total (corr.) | 2395.14 | 242 | |||
R-squared = 90.73% | R-squared (adjusted for Df) = 90.16% | Standard error of est. = 0.95 |
Predicted Value | Actual Value | |
---|---|---|
Foam expansion (%) | 467.88 | 453.94 ± 3.12 |
Foam stability (%) | 97.02 | 95.3 ± 0.98 |
Temp. (°C) | Time (Hour) | Moisture Content (%) | aw | Anthocyanin (mg/g) | Color | |
---|---|---|---|---|---|---|
L* | a* | |||||
60 | 5 | 5.31 ± 0.22 | 0.324 ± 0.01 | 3.87 ± 0.13 | 59.93 ± 0.33 | 4.55 ± 0.35 |
65 | 4 | 4.57 ± 0.01 | 0.30 ± 0.003 | 5.40 ± 0.11 | 62.65 ± 0.69 | 5.97 ± 0.42 |
70 | 4 | 4.30 ± 0.26 | 0.29 ± 0.001 | 5.29 ± 0.12 | 64.13 ± 1.10 | 6.00 ± 0.33 |
75 | 3.5 | 4.11 ± 0.07 | 0.24 ± 0.001 | 4.66 ± 0.10 | 59.21 ± 0.86 | 5.95 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuy, N.M.; Tien, V.Q.; Tuyen, N.N.; Giau, T.N.; Minh, V.Q.; Tai, N.V. Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules 2022, 27, 8570. https://doi.org/10.3390/molecules27238570
Thuy NM, Tien VQ, Tuyen NN, Giau TN, Minh VQ, Tai NV. Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules. 2022; 27(23):8570. https://doi.org/10.3390/molecules27238570
Chicago/Turabian StyleThuy, Nguyen Minh, Vo Quoc Tien, Nguyen Ngoc Tuyen, Tran Ngoc Giau, Vo Quang Minh, and Ngo Van Tai. 2022. "Optimization of Mulberry Extract Foam-Mat Drying Process Parameters" Molecules 27, no. 23: 8570. https://doi.org/10.3390/molecules27238570
APA StyleThuy, N. M., Tien, V. Q., Tuyen, N. N., Giau, T. N., Minh, V. Q., & Tai, N. V. (2022). Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules, 27(23), 8570. https://doi.org/10.3390/molecules27238570