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Abstract: Bimetallic nanomaterials (BMNs) composed of two different metal elements have certain
mixing patterns and geometric structures, and they often have superior properties than monometallic
nanomaterials. Bimetallic-based nanomaterials have been widely investigated and extensively used in
many biomedical fields especially cancer therapy because of their unique morphology and structure,
special physicochemical properties, excellent biocompatibility, and synergistic effect. However, most
reviews focused on the application of BMNs in cancer diagnoses (sensing, and imaging) and rarely
mentioned the application of the treatment of cancer. The purpose of this review is to provide a
comprehensive perspective on the recent progress of BNMs as therapeutic agents. We first introduce
and discuss the synthesis methods, intrinsic properties (size, morphology, and structure), and optical
and catalytic properties relevant to cancer therapy. Then, we highlight the application of BMNs in
cancer therapy (e.g., drug/gene delivery, radiotherapy, photothermal therapy, photodynamic therapy,
enzyme-mediated tumor therapy, and multifunctional synergistic therapy). Finally, we put forward
insights for the forthcoming in order to make more comprehensive use of BMNs and improve the
medical system of cancer treatment.

Keywords: bimetallic nanomaterials; synthesis methods; physicochemical properties; multimodal
cancer therapy

1. Introduction

In recent years, metallic nanomaterials (MNs) have made remarkable achievements in
the biomedical field due to their unique optical properties, nano−size effects, and good
biocompatibility [1–4]. Among them, MNs-mediated nanotechnology has attracted a lot of
attention to achievements in tumor therapy and solved the side effects, trauma, and incom-
plete treatment in traditional cancer treatment, such as photothermal therapy (PTT) [5,6],
photodynamic therapy (PDT) [7], gene therapy (GT) [8], and so on. Interestingly, traditional
alloys have been created to obtain better stability and mechanical properties than mono
metals, as well as when scaled down to the nanoscale. It has been shown that bimetallic
nanomaterials (BMNs) perform similar or even better physical and chemical properties
compared with monometallic nanomaterials (MMNs), their excellent photothermal and
photocatalytic properties and enzyme-like activity make them more suitable for tumor
therapy [9]. Therefore, BMNs have attracted extensive attention in the medical field.

In this review, BMNs refer to nano-bimetallic alloys, intermetallic compounds, or the
combination of two kinds of metallic nanoparticles (NPs). BMNs with surface plasmon
resonance (SPR) effect have been used in cancer therapy due to their excellent optical prop-
erties. A typical example is the Pt nanoparticle, a good photothermal agent and enzyme-like
catalyst [10], that performs cascade catalytic activity and more potent therapeutic effects
when combined with another catalytic metal nanoparticle (NP) [11,12]. As demonstrated by
previous studies, compared with MMNs, BMNs have good reusability in heating/cooling
cycles and can realize the adjustment of photothermal conversion efficiency more accurately
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by adjusting the morphology, which solves the problem of low photothermal efficiency in
PTT with MMNs [13]. Meanwhile, due to their unique physical and chemical properties,
especially surface chemistry, BMNs have better biocompatibility, drug loading ability, and
radiosensitization ability, which provides a great help in solving the limitations of MMNs-
mediated cancer therapy [14,15]. In addition, how to realize the advantages of BMNs for
tumor therapy is critical.

Generally, doping with the second metal is considered to possess superior performance
than MMNs, due to the addition of more active sites by the formation of metal polar bonds
and irregular arrangement [16,17]. At the same time, the combination of the two metals is
more likely to form complex structures with enhanced SPR effects such as hollow structures,
porous structures, and core–shell structures [18]. Therefore, regulating the optical, electrical,
chemical, and biological properties by controlling their size, shape, and composition during
synthesis is particularly important in the study of BMNs [19]. In order to achieve the design
and effects, many methods have been extensively tested in the past decades. Among them,
there is an important problem that the ratio of the two metals and the shape of BMNs
are difficult to control [20]. BMNs with controlled composition can be synthesized by the
co-reduction method and hydrothermal method, and their shapes are mostly spherical
and massive. BMNs synthesized by the seed-mediated method usually perform complex
shapes, while the BMNs obtained by electrodeposition are mostly nanowires and nanofilms.
In order to obtain suitable BMNs for cancer therapy, a systematic understanding of the
synthesis methods is required.

Numerous studies have shown that BMNs have been widely used in bioimaging,
biosensing, and tumor treatment due to their diverse structures and excellent physico-
chemical properties. To date, most reviews have focused on the regulation of molecular
composition, crystal structure, and physicochemical properties, or concentrated on the
applications in sensing and imaging, while little attention has been paid to BMNs in cancer
therapy [21]. In view of the promising development prospects of BMNs, this review sum-
marizes and discusses the synthesis methods, physicochemical properties, and applications
of BMNs related to cancer therapy. Ultimately, taking BMNs suitable for tumor therapy as
the point, some insights for the investigation including the existing problems and prospects
for future research on BMNs are brought forward. This review aims to provide a convenient
way for researchers to understand the application of BMNs in cancer therapy and provide
guidance or strategies for future research.

2. Synthesis Methods of BMNs

Many available methods for the synthesis of BMNs are reported, while some products
can be generated by different methods due to similarities in basic mechanics [22,23]. In
this review, we summarized the preparation methods of BMNs commonly used for cancer
therapy, such as the co-reduction method, hydrothermal method, seed-mediated growth
method, and electrodeposition method.

2.1. Co-Reduction Method

Co-reduction is one of the most straightforward and convenient methods to prepare
BMNs due to its simple operation, low cost, and short reaction time. Co-reduction, also
known as the one-pot method, is usually used when two precursors containing metal
elements are mixed, and the metal ions are reduced to form alloys or intermetallic com-
pounds [24,25]. In addition, the BMNs’ morphology and structure can be tailored by the
reaction temperature, the addition of surfactants, the reducing agent, and the nature of
the coordination ligand. Many common BMNs such as gold/silver core–shell structures,
gold/silver nanowires, and gold/platinum NPs are synthesized by this method. For ex-
ample, polyvinylpyrrolidone-platinum-copper nanoparticle clusters (PVP-PtCuNCs) were
developed by a facile method by Liu et al. [26]. In their study, PVP-PtCuNCs were reduced
from H2PtCl6·6H2O solution and CuSO4·5H2O solution by ascorbic acid solution and then
modified with PVP. The as-synthesized PVP-PtCuNCs exhibited excellent multiple enzyme-
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mimicking activities, such as peroxidase (POD)-like, catalase (CAT)-like, and superoxide
dismutase (SOD)-like activities and high ·OH-scavenging ability.

More sophisticated nanomaterials with special shapes and structures can be synthe-
sized by co-reduction in combination with other methods. Joo et al. prepared monodis-
persed Ag cubic to mesh nanostructures embedded with Au nanoparticles (AgCM/AuNPs)
using co-reduction and template-assisted synthesis [27]. The AgCM/AuNPs were com-
posed of six equivalent panels with similar nanostructures, thus possessing highly attractive
plasmonic photocatalysts owing to the large surface area based on the meshed nanostruc-
tures (Figure 1a). Takeuchi et al. presented a combination of galvanic replacement reaction
with a co-reducing agent to synthesize a metallic NPs of Ag-Pt double-shell on Au-core
(Au@Ag@Pt core@multishell) with a hollow-granular shell structure [28].

2.2. Hydrothermal Method

Another widely used method is the hydrothermal method, which is similar to the
co-reduction method. The metal precursors are promoted to decompose and reduce after
heating. The hydrothermal method is generally applicable to reactions with lower reduction
potentials that are not easily reduced directly. Up to date, some BMNs synthesized from
metal precursors with lower reduction potentials have been prepared with this method,
such as CuNi [29,30], Ni-Fe [31], CoNi [32], and NiRe [33]. For example, Gai et al. designed
and prepared NiFe alloy NPs only using hydrochar, Ni(II) nitrate nonahydrate, and Fe(III)
nitrate nonahydrate, as shown in Figure 1b. The as-synthesized NiFe NP has adjustable
morphology size and catalytic properties. Besides, the hydrothermal method is not only
suitable for metal precursors with low reducibility but also widely used in the synthesis of
many BMNs (PtCu, PtPd, et al., for instance) [34,35]. Wang and Yin’s groups investigated
bimetallic CuAux (x = 0.01–0.04) NP catalysts [36]. The NPs in CuAux were around 13 and
5 nm. Liu et al. developed a bimetallic PdCu NP decorated three-dimensional graphene
hydrogel (PdCu/GE) by a simple hydrothermal method [37]. In a word, the hydrothermal
method is simple to operate and easy to synthesize large quantities of BMNs.

2.3. Seed-Mediated Growth Method

Seed-mediated growth has been proven an effective method for synthesizing plas-
monic noble metal nanocrystals [38]. This method has been applied in the synthesis of
BMNs because the prepared nanocrystals have well-defined morphology, size, and surface
composition. Typically, seed-mediated methods play an important role in the preparation
of anisotropic metal structures and hierarchical epitaxial core/shell structures [39–42].
Xia et al. reported a facile route to the synthesis of Au@Ag core–shell nanocubes in the
aqueous solution [43]. First, very small (2–3 nm) Au nanocrystallites were synthesized
by reducing HAuCl4 with NaBH4 in the solution of cetyltrimethylammonium bromide
(CTAB). Then, HAuCl4, cetyltrimethylammonium chloride (CTAC), and aqueous l-ascorbic
acid (AA) were dissolved in ultrapure water, followed by the addition of the 3 nm Au NPs.
The mixture turned from colorless into red, indicating the formation of larger Au seeds.
Whereafter, CTAC-Au seeds and CTAC aqueous solution were mixed and heated under
magnetic stirring. Finally, a specific volume of aqueous AgNO3 solution and an aqueous
solution of AA and CTAC were simultaneously injected to form the Au@Ag nanocubes. In
this work, the thickness of the Ag shell and the size of Au@Ag could be precisely adjusted,
and the method is supposed to be environmentally friendlier than other methods.

In addition to Au-Ag BMNs, some other novel metal BMNs with high activity can
also be easily synthesized by this method. Cargnello’s group developed a seed-mediated
approach to synthesizing monodisperse PtxCu100-x nanocrystal alloys with controlled
Pt/Cu ratios [44]. They demonstrated that Pt and Cu in individual nanocrystals were
successfully alloyed as well as PtxCu100-x with controlled composition. Seed-mediated
growth method has emerged in the field of synthesizing BMNs due to simple operation,
strong repeatability, and high yield. In particular, the shapes and components of BMNs can
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be accurately regulated by the seed-mediated method, which is difficult to obtain by other
methods. It is believed that this method will be more extensively used in the future.

2.4. Electrodeposition Method

Electrodeposition is a simple and inexpensive synthesis method, which is widely
used in the synthesis of nanotube, nanoporosity, and nanofilm [45–47]. For example, an
innovative technology of striped gold–silver alloy nanowires (Au–Ag alloy NWs) was
presented by Karn-orachai et al. (Figure 1c) [48]. In this work, the NWs were prepared by
electrodeposition of Au–Ag alloy into the pores of etched ion-track membranes. The Au–Ag
alloy NWs with a high surface-to-volume ratio is obtained by electrodeposition, which
combines the advantages of porous Au and 1D nanostructure and has broad application
prospects. In addition, Jia et al. synthesized Au-Pt nanostructures containing nanoporous
Au and Pt nanoparticles by electrodeposition [49]. Briefly, nanoporous Au (NPG) was first
deposited on an electrode by dealloying of commercial alloy film, and then Pt nanoparticles
were decorated on NPG by electrodeposition. In this work, the Au–Pt nanostructures
were constructed to be a label-free immunosensor by directly immobilizing the antibody
of NMP22 on the surface. Meanwhile, the BMNs showed electrocatalytic activity in the
reduction of H2O2. The electrodeposition method also can synthesize other MNs. Downard
et al. used copper foil as a carrier to form Cu and Au NPs by electrodeposition to modify
graphene [50]. The hierarchical nanostructure of various metals can also be synthesized by
electrodeposition. Kim and coworkers presented a vertical growth of Ni-Cu-Se nanoflakes
via the co-electrodeposition technique [51]. This method is rarely used to produce BMNs
for disease treatment, because of its limitations including harsh reaction conditions, low
yield, and difficulty to control.

In conclusion, the co-reduction method, hydrothermal method, and seed-mediated
method have been widely used for the preparation of BMNs suitable for cancer therapy.
Especially the seed-mediated method can precisely control the morphology of BMNs to
obtain unparalleled properties. Although precise porous BMNs can also be obtained by the
electrodeposition method and seed-mediated method, which are difficult to be obtained
by other methods. It is exciting that BMNs with delicate structures can be synthesized
more conveniently with the assistance of two synthesis methods, such as seed-mediated
method and co-reduction [52], template synthesis and co-reduction [27]. Therefore, it is very
important to choose the appropriate method according to the properties and morphology
of BMNs.
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3. Unique Properties of BMNs Relevant to Cancer Therapy
3.1. Intrinsic Properties of BMNs

It is well known that many nanoparticles have excellent properties due to their unique
morphological characteristics and structure. Common nanomaterials used in disease treat-
ment, such as metallic nanoparticles, polymer nanoparticles, and inorganic nanoparticles,
are mainly manifested as nanospheres, nanorods, nanoclusters, nanostars, and nanoflowers,
which have large surface areas and unique optical properties [53–58]. Similarly, BMNs
also exhibit various and complex morphologies based on spatial arrangements, which are
related to abundant physicochemical properties (Figure 2).

Among them, dendritic-like structures endowed with BMNs are more active sites
because of the steps, edges, and corners. For example, Zhou and co-workers prepared the
adenosine 5’-triphosphate @Au-Cu nanoparticle (ATP@Au-Cu NP) with a multiarm shape
structure to destroy the membrane [59]. As we can see from Figure 2a, ATP@Au–Cu NP
performs multiarm shape, successful doping of the bimetal, and a good crystal structure. As
such, the Au–Pt nanodendrites (Au–Pt NDs) with the face-centered cubic (FCC) structure
were created to enhance the electronic interaction to obtain superior catalytic activity
(Figure 2c) [60]. Kohane et al. developed a multifunctional NP, which is a gold nanostar
(AuNS) core coated with a metal-drug coordination polymer (CP) shell, as shown in
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Figure 2d [61]. The nanosystem (AuNS@CP) is considered a good photothermal agent
for PTT and a vehicle to deliver therapeutics due to retaining the original shape of the
AuNS core with SPR and two-photon luminescence (TPL). In addition, many novel BMNs
with exquisite shapes have been created, such as Au@Pt nanodendrites (Au@Pt NDs)
and Cu–Pd alloy tetrapod nanoparticles (TNP), as exhibited in Figure 2b,e [62,63]. All of
them show great potential in cancer treatment because of their high catalytic activity, good
photothermal effect, remarkable biocompatibility, and drug-loading capacity.

Meanwhile, BMNs with alloy and nanocrystalline structures usually perform a wide
range of applications in cancer treatment. Paul’s group reported the Ag–Au alloy nanoparti-
cle with FCC structure as a drug delivery agent for cancer in the pharmaceutical application
(Figure 2f) [19]. Decorating with another metal to form baroque morphologies is a common
way to improve the effectiveness of anticancer therapy, as shown in Figure 2g,h [64,65].
As for nanorods, a common monometallic nanostructure can also be made in this way
(Figure 2i). Liu et al. presented Au@Pt nanorods that were composed of single crystalline Pt
nanodots covered on Au NRs [66]. The photothermal conversions were enhanced and the
cytotoxicity was significantly decreased. In Pavithra’s study, a bimetallic nanofusiform-like
structure doped with carbon nanodots (Co/Mn@CNDs-MOF) was prepared by solvother-
mal treatment (Figure 2j) [67]. What is more, the BMNs can also be distributed as NWs,
and their proportions and sizes are controllable to regulate ferromagnetism [68].

Core–shell structure is universal among the BMNs used in cancer treatment, because
of its unique optical properties, as well as complex surface shape and porous nature. The
most commonly used are Ag–Au alloy and Ag@Au core–shell type NPs (Figure 2k) [69]. In
the study, different anticancer effects can be achieved by adjusting the ratio of Au–Ag and
the shape of the core–shell structure.

Moreover, core–shell nanostructures can coexist with porous structures. For example,
Wang et al. reported a porous Au@Rh bimetallic core–shell nanostructure [70]. As shown
in Figure 2l, the Au core and porous Rh shell exhibited strong broadband absorption and
superior catalytic activity. Besides, porous nanostructures have more active sites because of
their large specific surface area and the abundance of atomic steps, edges, and corner atoms,
thus widely used in tumor therapy. As proven in Figure 2m, the cubic mesh nanostructures
of AgCM/AuNPs enhanced high surface area and photocatalytic activity and performed a
highly elaborate and facile design of nanomaterials [27].

In summary, many complex and diverse morphologies can be exhibited in BMNs
that indicate the suitable characteristics for tumor therapy, such as good biocompatibility,
drug-loading capacity, and photothermal and catalytic properties. BMNs have a broad
development prospect in tumor therapy by virtue of these abundant morphologies.
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Figure 2. Morphologies and structures of different BMNs. (a) Characterization of ATP@Au–Cu NP
(TEM, HR-TEM, and EDS). Reprinted with permission from Ref. [59]. Copyright © 2022 American
Chemical Society. (b) TEM image of Au@Pt NDs. Reprinted with permission from Ref. [62]. Copyright
© 2016 American Chemical Society (c) TEM image and HR-TEM of Au-Pt NDs. Adapted with
permission from Ref. [60]. Copyright © The Royal Society of Chemistry 2015. (d) The TEM image
and EDS images of AuNS@CP (space between black and white lines indicates CP layer). Reprinted
with permission from Ref. [61]. Copyright ©2022 Ivyspring International Publisher. (e) TEM image
of Cu–Pd alloy TNP. Reprinted with permission from Ref. [63]. Copyright © 2022 Springer Nature
Limited. (f) HR-TEM of Ag–Au alloy NP. Reprinted with permission from Ref. [19]. Copyright ©
2019 Elsevier B.V. (g) TEM image and EDS image of gold-decorated platinum NPs. Reprinted with
permission from Ref. [64]. Copyright © 2021 MDPI. (h) EDS image of platinum–gold nanoraspberries.
Reprinted with permission from Ref. [65]. Copyright © 2019 Springer Nature. (i) TEM image of
Au@Pt0.05. Adapted with permission from Ref. [66]. Copyright © 2017 Elsevier B.V. (j) TEM image of
Co/Mn@CNDs-MOF. Reprinted with permission from Ref. [67]. Copyright © 2022 American Chemical
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Society. (k) TEM of NanoGS (Au@Ag NPs). Reprinted with permission from Ref. [69]. Copyright ©
2022 Elsevier Ltd. (l) TEM of porous Au@Rh bimetallic core–shell nanostructure. Reprinted with
permission from Ref. [70]. Copyright © 2020 John Wiley & Sons, Inc. (m) TEM of AgCM/AuNPs.
Reprinted with permission from Ref. [27]. Copyright © 2017 John Wiley & Sons, Inc.

3.2. Optical Properties

BMNs, such as gold and silver NPs, have excellent optical properties due to their
localized surface plasmon resonance (LSPR) properties. Meanwhile, BMNs have attracted
much attention because of their visible-to-near-infrared tunable plasmonic features, high
chemical stability, and so on [71]. The LSPR of BMNs caused by that conduction electrons
coherent oscillates in response to incoming light and then released heat or energy, has been
widely used in photothermal conversion, photocatalysis, and biosensors [72]. Furthermore,
the optical properties of BMNs are affected by their structure and shape, so changing
the shape and size of NPs is an effective measure to adjust the optical properties, which
provides more diversities in the applications of BMNs.

3.2.1. Photothermal Properties

BMNs usually have a satisfactory photothermal effect because the original resonance
effect can be improved when integrating two metallic nanomaterials with significant LSPR,
such as Au, Ag, Pt, and Cu, in crystallization or physical means.

In a typical PTT, to ensure maximum tissue penetration and avoid injury to normal
tissues, 808 nm wavelength lasers located in the near-infrared (NIR) region are usually
selected for treatment [73]. Generally, the LSPR of nanomaterials can be generated and the
photothermal performance is better when their absorbance at laser wavelength is stronger.
BMNs have excellent LSPR due to their compositions, special shape, and nano scale. At the
same time, LSPR of BMNs can be controlled by adjusting the component and shape, so as to
obtain a better photothermal effect, as shown in Figure 3. In Sang’s work, dumbbell-shaped
Au–Pt bimetallic nanorods (AuPtNRs) have been formed by depositing Pt on the tips of
gold nanorods (AuNRs) [74]. The UV absorbance in Figure 3a shows that the longitudinal
LSPR peak red-shifted to a longer wavelength with the Pt primarily depositing at the tips
of AuNRs and forming dumbbell−shaped AuPtNRs. In this way, the absorption peak is
closer to 808 nm, resulting in better photothermal conversion and facilitating PTT. After
10 min of laser irradiation, the temperature of AuNRs solution increased by only 27 ◦C
from the initial temperature to 53.6 ◦C. In contrast, the AuPtNRs solution rapidly heated
up to 63.1 ◦C, reflecting a more intense photothermal effect. This is attributed to their LSPR
peaks being closer to 808 nm and having a wider spectral band, which enables them to
absorb more photon energy and release more heat.

For BMNs without an obvious absorption peak of LSPR, the absorbance is larger, the
more energy is absorbed under the same light, and the more heat is released for PTT. Pan
et al. designed PEGylated Au@Pt NDs as a multifunctional and synergistic agent for cancer
therapy [62]. The absorption of Au@Pt NDs was switched to the NIR region with the growth
of Pt nanobranches, thus enhancing the efficacy of PTT. There is no obvious absorption peak
in the spectrum, so the absorbance of Au@Pt NDs solution with a certain concentration
gradient is used to prove the LSPR of Au@Pt NDs and the increasing photothermal effects,
as depicted in Figure 3b. In another study, a type of Cu–Pd alloy tetrapod NPs (TNP-1)
exhibited superior NIR photothermal conversion [63]. By comparing three types of Cu–Pd
alloy NPs, including TNP-1, TNP-2, and spherical nanoparticle (SNP), in the ultraviolet
absorption spectrum, the absorbance of TNP-2 is highest and that of TNP-1 is higher than
SNP; correspondingly, in the test of photothermal effect, TNPs had markedly enhanced
photothermal conversion efficiency (Figure 3c). It is reasonable that the sharp-tip structure
of TNPs could concentrate light at their tips and thus promote more outstanding PTT.
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from Ref. [63]. Copyright © 2022 Springer Nature Limited.

3.2.2. Photocatalytic Properties

In the bimetallic system, the LSPR and catalytic performance of metal materials are
combined to promote each other, showing an attractive photocatalytic effect with laser
irradiation. Energetic charge carriers are generated on the surface of optically excited
plasmonic NPs and then arrive at the adsorbed substance, where they reduce the activation
energy of the reaction and play a catalytic role [72].

BMNs containing catalytic metals (e.g., Pt, Pd, and Cu) and metals with SPR properties
(e.g., Au and Ag) usually have good photocatalytic properties [75,76]. The common
combinations of these metals, the products, and the excitation wavelengths required are
shown in Table 1. In the bimetallic nanosystems, BMNs always act as photosensitizers
to absorb the energy of NIR laser; therefore, it can produce holes (h+) and photoinduced
electrons (e−) pairs, where h+ is a powerful oxidant and e− is a strong reductant [71,72]. A
typical example of a reaction induced by excited h+ and e− pair is the production of H2 [77].
The photocatalytic reduction of Pt-modified Au NRs has been shown in Figure 4a, under
NIR laser irradiation, the hot electrons generated either by LSPR excitation or interband
excitation transfer to the tip-coated Pt, where H+ reduces to H2. The spatial separation of
reduction and oxidation sites in Pt-tipped Au NRs results in an efficient charge separation
(CR) and more production of H2. What is more, the generation of reactive oxygen species
(ROS) such as superoxide anion (•O2

−), singlet oxygen (O•−), hydroxyl radical (•OH),
and hydrogen peroxide (H2O2) under laser irradiation is a brilliant application [78]. For
example, novel silver–copper bimetallic alloy (Ag–Cu) NPs decorated β-NaYF4: Yb3+, Tm3+

@TiO2 (“@” means TiO2 supported on NaYF4: Yb3+, Tm3+, marked as NYFT) microrods
successfully promote formation rate of e− and h+ due to their SPR effect, thus generating
reactive radical •O2

− and degrading Rhodamine B (RhB) to intermediate or CO2 and
H2O, as shown in Figure 4b. The energy level transitions from ground state to excited
state after the sensitizer ion Yb3+ absorbing NIR laser (980 nm), then energy would be
successively transferred to adjacent other higher energy levels. Therefore, it can absorb
three wavelengths of laser (291, 347, and 363 nm) and produce e− and h+. In addition,
photoinduced electrons are easily injected into Ag–Cu alloy particles, and Ag donates e− to
Cu. Then e− abundantly reserved in Cu NPs are trapped by O2 to generate reactive radical
•O2

− with the SPR.
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Table 1. BMNs with photocatalytic properties, suitable laser, and products for application.

Types of BMNS Products Lasers Ref.

Pt−modified Au NPs H2 460 < λ < 820 nm [77]

Ag–Cu alloy NPs
•OH radical, •O2

−

radical λ = 980 nm [78]

Au–Pt alloys H2 λ = 325 nm [79]
Pt@MIL−125/Au H2 380 < λ < 800 nm [80]

Au–Cu/CaIn2S4 composites H2 420 nm ≤ λ ≤ 750 nm [81]
Au/Pd/TiO2 nanoparticles O•− radical 310 < λ < 380 nm [82]

Au–Pd/TiO2/NB nanostructures O•− radical λ = 450 nm [83]
Au@Pd@MOF−74 CO λ = 707 nm [84]

Pt/Au@Pd@MOF−74 CH4 (H• radicals) λ = 523 nm [84]

Au@Ag/TiO2 NP
•OH radical, •O2

−

radical λ = 664 nm [85]

Cu–Au NPs •O2
− radical 620 nm ≤ λ ≤ 670 nm [86]

Ag/Au/TiO2 NPs •O2
− radical λ = 254 nm [87]
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3.3. Enzyme-Like Activity

BMNs have also attracted much attention because of their catalytic activity, which
is known as an enzyme-like activity when they are used in medicine [88]. Many studies
have shown that the BMNs exhibited higher catalytic activities than MMNs due to the
synergistic and electron transfer effect; and its enzyme-like activity is responsive to external
stimuli such as pH [89], temperature [90], laser [70], radiation [91], ultrasound [92], and so
on [93]. BMNs have a relatively mature application in disease diagnosis and environmental
monitoring. However, in this review, we will focus on the use of enzyme-like activities of
BMNs in cancer therapy.

In cancer treatment, nanozymes with CAT, POD, glucose oxidase (GOx), and glu-
tathione peroxidase (GSH) activities are commonly used [94,95]. Recently, RuCu NPs with
dual enzyme-like activities were used as multifunctional nano-formulations [96]. As shown
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in Figure 5a,b, RuCu NPs performed POD-like activity and CAT-like activity in the tumor
microenvironment, in which RuCu NPs could relieve tumor hypoxia by reacting with
the overexpressed H2O2 to generate O2 and kill tumors by catalyzing H2O2 to produce
highly toxic ·OH. After that, density functional theory (DFT) calculations were conducted
to explore the mechanism of the BMNs’ catalytic reaction. Cu doping created additional
band gaps around the Fermi energy level, and more energy bands near the Fermi level of
RuCu NPs caused stronger electrochemical activities. Analogously, Wang and co-workers
reported an Rh-based core–shell nanosystem (Au@Rh-ICG-CM) exhibiting CAT-like ac-
tivity and used for enhancing PDT (Figure 5c) [70]. As presented in Figure 5d, compared
with Rh NPs and Au@Pt nanostructures, Au@Rh performed superior CAT-like activity
because of the porous Rh shell. The enzyme-like activity of BMNs was also shown in
Zhou’s experiments, they created a CAT-mimicking nanozyme, PdPt@GOx/IR780 (PGI),
that can catalyze H2O2 decomposition into •O2

− under the ultrasound (US) stimulation
(Figure 5e) [97]. It can be seen in Figure 5f,g that there is an obvious generation of ROS un-
der US irradiation. These preliminary findings indicated that PGI NPs had good potential
as sonosensitizers for sonodynamic therapy (SDT). In conclusion, the enzyme-like activity
of BMNs has great potential for application in the treatment of diseases.
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enhanced cancer radiotherapy. Reprinted with permission from Ref. [96]. (b) Dual enzyme-like
activities of RuCu NPs. Reprinted with permission from Ref. [96]. Copyright © 2022 Elsevier Ltd.
(c) The associated major mechanistic pathways of Au@Rh ICG-CM in cancer therapy. Adapted with
permission from Ref. [70]. (d) The velocity of the catalytic reaction. Reprinted with permission from
Ref. [70]. Copyright © 2020 John Wiley & Sons, Inc. (e) Scheme diagram to show the catalytic activity
of PGI. Reprinted with permission from Ref. [97]. (f) Fluorescence spectra of PGI NP dispersion
containing SOSG. Reprinted with permission from Ref. [97]. (g) Fluorescence emission intensity
under US irradiation. Reprinted with permission from Ref. [97]. Copyright © 2022 Elsevier B.V.
**** p < 0.0001.

3.4. Stability

Nanomaterials are inherently unstable due to their extremely high specific surface
area, surface energy, and interfacial energy. However, BMNs can be synthesized to improve
stability. BMNs with stability can be obtained by adjusting the composition, structure, and
shape of the two metal elements, referring to the method of improving stability by forming
alloys in traditional metals [98].

The tendency of bimetallic mixing has been calculated by computer simulations, thus
acquiring the most stable structure [99,100]. In Dean’s study, a database of 5454 low-energy
bimetallic NPs was generated and analyzed, thus they identified thermodynamically stable
NPs [101]. They investigated the alloys Au–Cu, Ag–Au, and Ag–Cu with the structure of
icosahedrons (Ico), cuboctahedrons (Cub), and elongated pentagonal bipyramids (EPBs).
Overall, they reported minimum-energy configurations and illustrated several typical
structures in Figure 6a. The plots for a bimetallic NP made of elements A and B were created,
where each bond type (A–A, B–B, and A–B) was calculated. Through thermodynamic
calculation resulting in Figure 6b, it is concluded that Ag–Au and Au–Cu NPs are more
stable when the mixing degree is high, while Ag–Cu NPs perform unfavorable mixing
behavior. This does not mean that Ag and Cu cannot form BMNs, but guides them to
minimize the number of heteroatomic bonds via forming core–shell structure. In this way,
the formation of BMNs in alloys or core–shell structures could better maintain the stability
of nanomaterials.

The stability of BMNs is also reflected in heat resistance, electrode stability, colloidal
stability, and other aspects, which have important applications in electrochemistry, disease
diagnosis, and treatment. Xu et al. reported the element segregation characteristics and
thermal stability of Ni–Pd bimetallic NPs [102]. In this study, it is confirmed that the
catalytic activity and carbon deposition resistance of the PdxNi1−x NP catalyst can be
improved by doping Pd into Ni NP, while much more dopped-Pd atoms will gradually
reduce sintering resistance. Huang et al. modeled six different Pt–Co NPs and compared
their potential energies, as shown in Figure 6c [103]. The pure Pt and Co NPs are also
measured as a comparison. It can be found in Figure 6d that the potential energy of Co is
the highest, indicating that Co has the least stability and the commixture of Pt–Co greatly
improves the stability of BMNs by reducing potential energy. For both Pt3–Co and Pt–Co
NPs, the potential energy of ordered intermetallic is lower than that of disordered alloy
with the same composition, indicating that the ordered intermetallic has better stability.
Moreover, the Co@Pt core–shell structure is the least stable among the three types of
configurations because that possesses higher energy than other Pt–Co nanoparticles with
the same composition.
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Figure 6. The stability of BMNs. (a) The most stable chemical ordering and composition at the given
size, shape, and metal pair. Reprinted with permission from Ref. [101]. (b) Bond composition plots:
(1) guiding plot illustrating the theoretical mixing limits from no heteroatomic bonds (FA−B = 0) to
no homoatomic bonds (FA−B = 1); (2) (3) and (4) the preferential compositions of AuCu, AgAu, and
AgCu NPs at all sizes and structures in thermodynamics. Reprinted with permission from Ref. [101].
Copyright © 2020 American Chemical Society. (c) Schematic illustration of Pt–Co bimetallic NPs:
(1) disordered Pt3–Co alloy (Pt3Co-DA), (2) disordered Pt–Co alloy (Pt–Co–DA), (3) ordered Pt3Co
L12 intermetallics (Pt3Co–OI), (4) ordered PtCo L10 intermetallics (PtCo-OI), (5) Co–Pt core–shell
structure (Co@Pt), and (6) Pt3Co–Pt core–shell structure (Pt3Co@Pt). Coloring denotes the type of
atom: blue, Pt atom; green, Co atom. Adapted with permission from Ref. [103]. (d) Temperature
dependence of potential energy and specific heat capacity for different Pt–Co bimetallic NPs (the
dashed lines correspond to the heat capacity). Reprinted with permission from Ref. [103]. Copyright
© 2017 American Chemical Society. (e) Pt–Fe bimetallic NPs with different architectures. Reprinted
with permission from Ref. [104]. (f) Polarization curves on different Pt-Fe catalysts. Reprinted with
permission from Ref. [104]. Copyright © The Royal Society of Chemistry 2011. (g) Structures of Ag
NCs and Ag@Au NCs (the hydrocarbon tails and carboxylic groups of the protecting ligands are
omitted). Reprinted with permission from Ref. [105]. (h) UV absorption spectra of (1) [Ag44(SR)30]4−

and (2), (3) [Ag32Au12(SR)30]4− NCs (The arrows indicate the absorption features at 390 and 490 nm).
Reprinted with permission from Ref. [105]. Copyright © 2022 Springer Nature Limited.
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Furthermore, the formation of BMNs is of great help to the recycling of electrocatalytic
properties. Pt–Fe bimetallic NPs with various architectures (Pt–Fe random alloys, Pt3Fe@Pt
core–shells, Pt3Fe intermetallics, and Pt@FexOy core–shell−like systems, as shown in
Figure 6e) have been reported in Liu’s study [104]. Figure 6f shows that the Pt–Fe BMNs
perform great electrochemical properties. To their preliminary studies, the Pt–Fe random
alloy, Pt3Fe intermetallic, and Pt3Fe@Pt core–shell NPs are stable in H2SO4 electrolyte, and
there is no degradation in their catalytic performance after 500 potential cycles. However,
Pt@FexOycatalyst that only has a single metal as a core shows poor stability. What is
more, Yao et al. greatly improved the stability of Ag@Au nanoclusters (NCs) by doping Au
heteroatom into the core of [Ag25(SR)18]− (SR denotes thiolate ligand) to form bimetallic
NCs [105]. It can be seen from Figure 6h that the absorption peak of [Ag44(SR)30]4− NCs
changed significantly after a few hours, while [Ag32Au12(SR)30]4− NCs were stable in
aqueous solution over 30 days at 25 ◦C and did not metamorphose at high temperature.

Additionally, the colloidal stability of BMNs is crucial for nanomaterials in disease
treatment. In Vareessh’s work, the platinum–gold bimetallic NPs (PtAuBNps) have been
synthesized to achieve intelligent targeted drug delivery, which exhibited excellent physio-
chemical attributes and colloidal stability [106]. Similarly, in Klebowski’s paper, PtAu and
PdAu nanocomplexes possess significant stability compared with Au NPs, Pd NPs, and Pt
NPs, they also show superior therapeutic effects [64].

4. Application of BMNs in Cancer Therapy

BMNs have been widely used in biomedical fields, especially in biosensing and
imaging, due to their unique catalytic and optical properties. In addition, many studies
have shown that BMNs are also promising nanotechnology in cancer therapy. Here, we
outline the applications of BMNs in drug/gene delivery, PTT, PDT, chemodynamic therapy
(CDT), radiotherapy (RT), and multimodal synergistic therapy based on their properties.

4.1. Drug/Gene Delivery

The use of chemotherapy drugs is the most mature and wide modality for cancer treat-
ment. Some pathogenic mechanisms and corresponding drugs have been almost studied
for various cancers [107]. The introduction of nanotechnology has created conditions for the
delivery of multifarious anticancer drugs and improved anticancer efficacy [108]. Among
them, the delivery of drugs by NPs is the most common and effective nano−mediated
chemotherapy. BMNs can be regarded as good drug carriers because of their variety of
shapes, large surface area, and the special interface from two metals combination. A va-
riety of anticancer drugs and target molecules can be attached to BMNs to achieve the
effect of chemotherapy on tumors without harming the normal body. For example, the
addition of folic acid (FA) and doxorubicin (DOX) to PtPd NPs can improve their overall
chemotherapy efficacy [109]. In this experiment, PtPd−ethylene glycol-FA-DOX nanopar-
ticles (PtPd−PEG−FA−DOX) were synthesized. DOX is efficiently loaded on PtPd NPs
and released regularly; meanwhile, it can attack cancer cells under the guidance of the
target molecule FA. Similarly, Wu et al. designed a multifunctional intelligent drug delivery
system to combine targeting, adequate drug loading, and controllable drug release [110].
As shown in Figure 7a, Ag–Au bimetallic NP as the core was coated with poly(ethylene
glycol) (PEG), and loaded surface hyaluronic acid (HA) chains as targeting ligands and
temozolomide (TMZ). As illustrated in Figure 7b,c, more TMZ is released with the increase
in temperature, and according to the detection results of cell viability, the NP with drug
downloaded by NIR irradiation performance stronger toxicity. The NP has a high drug-
loading capacity and can be targeted to tumor cells and intelligently release TMZ at specific
temperatures.

In addition to loading small organic molecules as targeted ligands, the most commonly
effective multifunctional delivery systems are the linking of DNA or RNA. In the study of
Kang et al., a DNA−coated NIR light-responsive drug delivery platform was constructed
based on Au–Ag NRs [111]. Au–Ag NR-based nanogels possess the function of specific
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tumor recognition by concentrating DNA (sgc8c), and achieve the function of temperature-
controlled rapid release by loading DOX in the gel (Figure 7d–f). When exposed to NIR light,
the drug is released rapidly; moreover, adding DOX-loaded sgc8c conjugated core–shell
nanogels (DOX-loaded sgc8c-NGs), Au–Ag NRs can achieve better target tumor-killing
effect, so as to achieve the targeted therapy effect that can be controlled remotely. What is
more, loading with therapeutic suicide genes on the BMNs can directly control the death of
tumor cells in a genetic program to achieve gene therapy. Dutta et al. bounded pDNA to
Au–Ag bimetallic nanocluster to form a composite nanoparticle [112]. Subsequently, the
therapeutic effect was shown to be the suicide gene-mediated killing of cancer cells.

In conclusion, BMNs as nanocarriers for drug/gene delivery have the advantages of
good water solubility, high loading capacity, and stability compared with MMNs, increased
drug accumulation efficiency at the tumor site, and enhanced drug resistance. Moreover,
surface modification of BMNs allows for specific and spatiotemporally controlled release
of drugs for on-demand chemotherapy. It is believed that the BMNs-based nano-delivery
system will obtain more fully applied in the field besides chemotherapy and GT, and
contribute to cancer treatment in the future.
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multifunctional Ag–Au core–shell hybrid nanogels. Reprinted with permission from Ref. [110].
(b) Releasing profiles of TMZ from the PSG hybrid nanogels at different temperatures. Reprinted
with permission from Ref. [110]. (c) Comparison of B16F10 cell viability following different treatments
with PSG as drug carriers (�: empty hybrid nanogels; •: empty hybrid nanogels with 5 min initial
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initial NIR irradiation). Reprinted with permission from Ref. [110]. Copyright © 2010 Elsevier Ltd.
(d) Schematic of core–shell nanogels for targeted drug delivery. Reprinted with permission from
Ref. [111]. (e) Controlled release of the entrapped fluorescein from the core–shell nanogels (10 nM) by
visible and NIR light irradiations. Reprinted with permission from Ref. [111]. (f) Cytotoxicity assays
of CCRF-CEM (target) cells in the absence of nanogels (1) and those incubated with (2) Dox-loaded
sgc8c-NGs (2 nM), at 808 nm laser for 0, 5, and 10 min, respectively (blue, red, and green). Adapted
with permission from Ref. [111]. Copyright © 2011 American Chemical Society.

4.2. Enzyme-Mediated Tumor Therapy

BMNs exhibit excellent enzyme-like activity, which can be used in cancer treatment,
especially in starvation therapy and CDT. Starvation therapy involves starving diseased
cells to death by depleting the substances they need to grow and reproduce, such as
nutrients, energy, and oxygen. Glucose is the main energy provider for cell growth, so
GOx has become the most commonly used enzyme for starvation treatment [113]. When
GOx acts as a catalyst, it consumes both glucose and oxygen, producing gluconic acid and
H2O2, as shown in Figure 8a. This catalytic process blocks energy and oxygen supply to
tumor cells, starving them to death. The H2O2 can significantly increase the oxidative stress
of tumors, and can also produce hydroxyl radicals to kill tumor cells under the light. In
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addition, the production of gluconic acid also enhances the acidity of the microenvironment
around the tumor, which can initiate some pH response processes [114].
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Figure 8. The applications of BMNs in starvation therapy and radiation therapy. (a) Mechanism of
action of glucose oxidase. (b) Nanozyme-mediated starving-enhanced CDT of the Pd@Pt-GOx/HA
nanoreactors. Reprinted with permission from Ref. [115]. (c) Antitumor effects through the nanozyme-
mediated starving-enhanced cancer therapy in the 4T1 model (survival rates, tumor growth curves,
and tumor mass). Reprinted with permission from Ref. [115]. Copyright © 2020 American Chemical
Society. (d) Therapeutic effect toward bacteria-induced wound healing and killing bacteria by the
BMOF-DMR. Reprinted with permission from Ref. [116]. (e) The antibacterial effect of BMOF-DMR
in the wound (fluorescence images of live/dead staining of S. aureus and E. coli; the surviving bacteria
rates). Reprinted with permission from Ref. [116]. Copyright © Royal Society of Chemistry 2022. (f)
Schematic illustration of CoO@AuPt NPs working for augmented CDT. Reprinted with permission
from Ref. [117]. (g) The enzyme-like activity of CoO@AuPt. Adapted with permission from Ref. [117].
(h) Therapeutic effect of CoO@AuPt. Reprinted with permission from Ref. [117]. Copyright © 2022
Elsevier B.V. *** p < 0.001.
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A novel enzymatic cascade nanoreactor Pd@Pt-GOx/HA with controllable enzymatic
activities has been developed in Zheng and co-workers’ study [115]. As shown in Figure 8b,
HA on the surface of Pd@Pt-GOx/HA can actively target tumor cells that overexpress
CD44 and decomposes after phagocytosis to release internal Pd@Pt-GOx. After that, GOx
consumes O2 and glucose to achieve starvation treatment. At the same time, the H2O2
and acidic environment stimulate the activity expression of Pd@Pt nanozyme, which then
catalyzed the generation of abundant highly toxic •OH degradated from H2O2, achieving
the CDT. As validation, Figure 8c shows that after the treatments of Pd@Pt-GOx/HA,
tumors are significantly reduced and the survival rate of tumor-bearing mice is greatly
improved. This treatment strategy is also effective for some pathogenic bacteria. For
example, Peng et al. designed an innovative bimetal metal-organic framework domino
micro-reactor (BMOF-DMR), which can kill Gram-negative (Escherichia coli, E. coli) and
Gram-positive (Staphylococcus aureus, S. aureus) bacteria (Figure 8d) [116]. The antibacte-
rial effect is shown in Figure 8e, which suggested the BMNs perform superior antibacterial
activity against both bacteria. In addition, there are compositions of BMNs themselves
with several kinds of enzyme-like activities, such as the biomimetic CoO@AuPt nanozyme
reported in Fu’s work [117]. This nanozyme can initiate a remarkable CDT in the tumor
microenvironment without any external stimuli by catalyzing a cascade of reactions to
produce ROS (Figure 8f). As proven in Figure 8g, the CoO@AuPt exhibited good glucose
depletion activity, GSH consumption activity, catalase-mimic activity, and ROS generation
capacity. The BMNs’ therapeutic effects have also been demonstrated in animal studies,
where they can effectively eliminate tumors without damaging the body (Figure 8h).

According to these investigations, it can be seen that the BMNs-based enzyme-
mediated CDT strategy shows a potent curative effect on tumors, which is believed to be a
potential hotspot in future research.

4.3. Radiation Therapy

RT is one of the most standardized treatments for unresectable tumors. Radiation
sensitization and X−ray computed tomography imaging resulting from X−ray absorption
and action on the surface of BMNs can be significantly enhanced by changing BMNs’
structure and morphology [118]. The snowflake-like Au nanocarriers (S−AuNC) studied
by Kim et al. promoted the death of immunogenic cells and induced the release of anti-
programmed death ligand 1 (aPD−L1) under radiation [119]. According to the results
of Figure 9b, for HMGB1 cells treated with both S-AuNC and RT, the cell apoptosis was
significantly higher than that treated only with S−AuNC or RT. Meanwhile, it is obvious
from Figure 9c that the expression of PD−L1 in the cells treated with both S−AuNC and
RT is more tempestuous, which confirms that S−AuNC is equipped with the function of
radiosensitization. Finally, in terms of the therapeutic effect on the tumor, the tumor treated
by S−AuNC and RT did not increase significantly and obtained the best therapeutic effect
(Figure 9d). Currently, many tumors unaccommodated for surgical resection are treated
with RT, which involves radioactive laser toward tumors directly. However, there is a critical
problem the ability of normal tissues around the tumor to withstand the radiation intensity
limits the use of RT [120]. Therefore, it is very important to develop radiosensitizers with
highly accurate targeting properties. Certainly, the tumor’s response to radiation can be
enhanced and much more mechanisms of tumor elimination can be stimulated through
radiation by combining other therapies.



Molecules 2022, 27, 8712 18 of 31

Molecules 2022, 27, x FOR PEER REVIEW 18 of 32 
 

 

nanozyme-mediated starving-enhanced cancer therapy in the 4T1 model (survival rates, tumor 
growth curves, and tumor mass). Reprinted with permission from Ref. [115]. Copyright © 2020 
American Chemical Society. (d) Therapeutic effect toward bacteria-induced wound healing and kill-
ing bacteria by the BMOF-DMR. Reprinted with permission from Ref. [116]. (e) The antibacterial 
effect of BMOF-DMR in the wound (fluorescence images of live/dead staining of S. aureus and E. 
coli; the surviving bacteria rates). Reprinted with permission from Ref. [116]. Copyright © Royal 
Society of Chemistry 2022. (f) Schematic illustration of CoO@AuPt NPs working for augmented 
CDT. Reprinted with permission from Ref. [117]. (g) The enzyme-like activity of CoO@AuPt. 
Adapted with permission from Ref. [117]. (h) Therapeutic effect of CoO@AuPt. Reprinted with per-
mission from Ref. [117]. Copyright © 2022 Elsevier B.V. *** p < 0.001. 

4.3. Radiation Therapy 
RT is one of the most standardized treatments for unresectable tumors. Radiation 

sensitization and X−ray computed tomography imaging resulting from X−ray absorption 
and action on the surface of BMNs can be significantly enhanced by changing BMNs’ 
structure and morphology [118]. The snowflake-like Au nanocarriers (S−AuNC) studied 
by Kim et al. promoted the death of immunogenic cells and induced the release of anti-
programmed death ligand 1 (aPD−L1) under radiation [119]. According to the results of 
Figure 9b, for HMGB1 cells treated with both S-AuNC and RT, the cell apoptosis was 
significantly higher than that treated only with S−AuNC or RT. Meanwhile, it is obvious 
from Figure 9c that the expression of PD−L1 in the cells treated with both S−AuNC and 
RT is more tempestuous, which confirms that S−AuNC is equipped with the function of 
radiosensitization. Finally, in terms of the therapeutic effect on the tumor, the tumor 
treated by S−AuNC and RT did not increase significantly and obtained the best therapeu-
tic effect (Figure 9d). Currently, many tumors unaccommodated for surgical resection are 
treated with RT, which involves radioactive laser toward tumors directly. However, there 
is a critical problem the ability of normal tissues around the tumor to withstand the radi-
ation intensity limits the use of RT [120]. Therefore, it is very important to develop radio-
sensitizers with highly accurate targeting properties. Certainly, the tumor’s response to 
radiation can be enhanced and much more mechanisms of tumor elimination can be stim-
ulated through radiation by combining other therapies. 

 

Figure 9. BMNs used in cancer radiotherapy. Reprinted with permission from Ref. [119]. (a) Sche-
matic illustration of the radiation using radiation−responsive splintery metallic nanocarriers. (b) The 
Figure 9. BMNs used in cancer radiotherapy. Reprinted with permission from Ref. [119]. (a) Schematic
illustration of the radiation using radiation−responsive splintery metallic nanocarriers. (b) The ICD
population of the group treated with S−AuNC, RT, and RT + S−AuNC. (c) Enhanced PD−L1
expression of Tramp C1 in response to the radiosensitization with S−AuNC. (d) Tumor growth graph.
Copyright © 2020 American Chemical Society. * p < 0.05.

4.4. Photodynamics Therapy

PDT is an important cancer therapy strategy that uses photosensitizers to catalyze the
production of ROS from tissue oxygen under laser irradiation to kill tumor cells [121]. The
photocatalytic properties of BMNs make them ideal photosensitizers for PDT. In the study of
Bi et al., MnO2−Pt@Au25 nanosheets were established as photosensitizers to enhance PDT
by reducing the concentration of reductive GSH at the tumor site [122]. The consumption
of excessive intracellular GSH by MnO2−Pt@Au25 reduced the consumption of 1O2, thus
improving the efficiency of PDT (Figure 10a). As proven in Figure 10b,c, the production of
ROS increased with time, the growth of tumors treated with MnO2−Pt@Au25 was inhibited
and the volume of tumors was reduced. BMNs used in PDT can also be achieved by
photocatalysis of two metals, respectively. Li et al. encapsulated Au NPs and Ru NPs into
dendritic mesoporous silica (DMSN−Au−Ru NPs) to obtain a cascade catalytic ability
for enhancing PDT (Figure 10d–f) [123]. Au NPs with enzyme−like activity can produce
H2O2, and Ru NPs can further catalyze the decomposition of H2O2 to produce toxic 1O2.
Eventually, tumors treated with DMSN−Au−Ru NPs and laser showed promising results.

In addition to some BMNs with intrinsic photocatalytic properties being photosensitiz-
ers, BMNs can also connect with photosensitive molecules to achieve a photocatalytic effect.
For instance, Wei et al. designed a photosensitizer−Pd@Pt nanosystem (Pd@Pt−PEG−Ce6)
for highly efficient PDT, which effectively solved the aggravation of tumor hypoxia caused
by the consumption of O2 in PDT [124]. As shown in Figure 10g, Pd@Pt−PEG−Ce6 is
composed of Pd@Pt with catalase−like activity and photosensitizer Ce6, which can cat-
alyze H2O2 to produce O2 under laser irradiation to relieve hypoxia of tumor and provide
oxygen for PDT. Figure 10h implied a large production of ROS, and Figure 10i demon-
strated that Pd@Pt−PEG−Ce6 visibly inhibited tumor growth and significantly enhanced
PDT after 808 nm and 660 nm laser irradiation. Figure 10j revealed Mon et al.’s study,
a 5−ALA/Au−Ag−PEG−Ab NC (nanoconjugate combined with PEG functionalized
Au−Ag nanoparticles, 5−aminolevulinic acid, and antibodies) with specific targeting was
established to achieve precise PDT on MCF−7 breast cancer cells [125]. The cells treated
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with both 5−ALA/Au−Ag−PEG−Ab NC and laser showed obvious deformation and
separation in Figure 10k, indicating the superior PDT effect.

Apparently, PDT is the most typical application of BMNs’ photocatalytic and enzyme-
like activity, which has shown excellent efficacy in experiments. In addition, the combina-
tion of PDT and other therapies will achieve more perfect results.
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Figure 10. BMNs used in photodynamic therapy of tumors. (a) Scheme of photodynamic and
chemotherapy based on biodegradable MnO2−Pt@Au25 nanosheets. Reprinted with permission from
Ref. [122]. (b) Fluorescence spectra of DCFH solutions treated with MnO2−Pt@Au25. Reprinted with
permission from Ref. [122]. (c) The relative tumor volume was normalized to the initial volume before
treatment. Reprinted with permission from Ref. [122]. Copyright © 2022 Elsevier B.V. (d) Bimetallic
nanozymes achieve synergistic effects of PTT and self−enhanced PDT. Reprinted with permission
from Ref. [123]. (e) O2 generation in different conditions. Reprinted with permission from Ref. [123].
(f) V/V0 values of Kunming tumor−bearing mice within 14 days. Reprinted with permission from
Ref. [123]. Copyright © 2017 John Wiley & Sons, Inc. (g) Scheme showing the preparation and
application of Pd@Pt−PEG−Ce6. Reprinted with permission from Ref. [124]. (h) The 1O2 production
efficiency of Pd@Pt−PEG−Ce6 after different times of irradiation. Reprinted with permission from
Ref. [124]. (i) Changes in tumor volumes of mice treated in different ways. Reprinted with permission
from Ref. [124]. Copyright © 1999–2018 John Wiley & Sons, Inc. (j) The targeted PDT for breast
cancer. Reprinted with permission from Ref. [125]. (k) Light microscopy images for PDT−treated
and non−treated MCF−7 cells with free 5−ALA, the NCs, and laser light irradiation under the
IC50 concentration of 5−ALA at a wavelength of 636 nm and fluency of 5 J/cm2. Reprinted with
permission from Ref. [125]. Copyright © 1996–2022 MDPI (Basel, Switzerland). ** p < 0.01.

4.5. Photothermal Therapy

PTT, involves nanoparticles absorbing irradiated laser and converting optical energy
into heat to ablate tumor cells. Almost all BMNs with photothermal conversion properties
can be regarded as good photothermal agents for PTT. Li et al. prepared Au–Ag core–
shell NPs as photothermal agents to achieve highly efficient (Figure 11a) [126]. Au-Ag
core–shell NPs show excellent photothermal conversion ability, as shown in Figure 9b, the
temperature increases rapidly under laser irradiation; furthermore, in the test of cytotoxicity
in Figure 11c, cells treated with the NPs and laser irradiation died acutely, indicating
excellent PTT.
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Figure 11. BMNs for photothermal therapy. (a) Schematic diagram of composition of Au–Ag@PDA.
Reprinted with permission from Ref. [126]. (b) The temporal temperature variation of the branched
Au–Ag NPs. Reprinted with permission from Ref. [126]. (c) Hela cell viabilities after 808 nm laser
irradiation with different power densities for 10 min. Reprinted with permission from Ref. [126].
Copyright © 2015 American Chemical Society. (d) The photothermal therapeutic of Au@Pt nanos-
tructures. Reprinted with permission from Ref. [127]. Copyright © The Royal Society of Chemistry
2014. (e) Strategy for HAAA-NUs synthesis and functionalization. Reprinted with permission
from Ref. [128]. (f) Photothermal effect of HAAA-NUs. Reprinted with permission from Ref. [128].
(g,h) In vivo photothermal tumor therapy ((g) IR thermal images of tumor-bearing mice with laser
irradiation, L-laser on, LO-laser off. (h) The tumor volumes after different treatments). Reprinted
with permission from Ref. [128]. Copyright © 2014 Elsevier Ltd. (i) Synergistic photothermal-catalytic
therapy of CeO2/Au@Pt-PEG. Reprinted with permission from Ref. [129]. (j) The therapeutic effect
of CeO2/Au@Pt-PEG on tumors in vitro and in vivo (Relative tumor volume: (1) PBS, (2) NIR, (3)
CeO2/Au@Pt-PEG, (4) Au@Pt-PEG + NIR, (5) CeO2/Au@Pt-PEG + NIR). Reprinted with permission
from Ref. [125]. Copyright © 2022 Elsevier B.V. ** p < 0.01, *** p < 0.001.

Bimetallic photothermal agents can achieve better photothermal conversion than
single plasmon resonance metal NPs, which was demonstrated by much work. As an
example, Au NRs coated with a shell of Pt nanodots (Au@Pt nanostructures) were proved
to have a better photothermal effect than Au NRs in Tang and co-workers’ study [127].
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When Au@Pt nanostructures and Au NRs were irradiated with laser for the same power
and time, the temperature of Au@Pt nanostructures group increased faster and higher,
and the cells treated with Au@Pt nanostructures were ablated more than that treated with
Au NRs. At the same time, Au@Pt nanostructures also showed superior PTT than Au
NRs in tumors of mice (Figure 11d). Another BMNs hollow Au–Ag alloy nanourchins
(HAAA-NUs) can also demonstrate it [128]. The NUs resemble a “sea urchin”-like shape in
Figure 11e. HAAA-NUs showed better photothermal conversion ability than Au colloids
(Figure 11f). What is more, HAAA-NUs perform good biocompatibility; they show the
ability to kill cells only under laser irradiation, and the damage to cells increases with
the laser’s power. It is implied from the images that the tumor of the mice injected with
HAAA-NUs (Figure 11g, bottom rows) showed strong ablation after laser irradiation,
while the temperature of that without injection of HAAA-NUs (Figure 11g, top rows)
did not increase significantly. Surprisingly, the tumors injected with HAAA-NUs and
irradiated with laser significantly diminished and were eventually completely eliminated
(Figure 11h). Coincidentally, ceria-loaded gold@platinum nanospheres modified with PEG
(CeO2/Au@Pt-PEG) enabled superior and targeted PTT (Figure 11i) [129]. The results in
Figure 11j show the superior photothermal properties of CeO2/Au@Pt-PEG in aqueous
solution, in vitro and in vivo, and confirm the obvious therapeutic effect of CeO2/Au@Pt-
PEG on tumors.

4.6. Synergistic Therapy

Emerging nano-mediated therapies may offer interesting alternatives to traditional
surgical treatment. There are a number of studies that have shown that combinations of
treatments are much more effective than single treatments [130]. The simplest and easiest
synergistic therapy is a combination of two treatments, especially the combination of PTT
or PDT with another therapy. It can be easily achieved because of the optical properties of
BMNs. In the study of Liu et al., a BMN with two enzyme-like activities was established,
which provides the possibility to realize the combination treatment of PDT and starvation
therapy [12]. As we can see from Figure 12a, porphyrin metal−organic frameworks
(PCN) are used as carriers to adulterate CAT−mimicking Pt NPs and GOx−mimicking
Au nanoparticles at different layers, separately. Finally, a targeted FA is attached to the
BMNs’ surface to form P@Pt@P−Au−FA. The P@Pt@P−Au−FA as dual−nanozymes can
catalyze the production of O2 by decomposing the H2O2 produced in the oxidation of
glucose. The produced O2 can not only promote the catalysis of glucose, thus promoting
starvation treatment, but also assist the production of ROS in PDT. The tumors treated
with P@Pt@P−Au−FA and laser showed obvious reduction and elimination, proving
the superior therapeutic effect on tumors (Figure 12b). Meanwhile, the treated mice
continued to grow normally while eliminating the tumor, indicating there is no harm to
the normal body (Figure 12c). Homoplastically, an ultrathin single−site bimetallic (copper
hexacyanocobaltate) nanosheet (CuCo NS) has been reported and shown in Figure 12d,
which can achieve better synergistic treatment by enhancing the production of ROS in
virtue of PTT [131]. In addition, CuCo NS showed excellent therapeutic effects against
tumors (Figure 12e).

In order to achieve more brilliant therapeutic, collaborative therapy comprised consist
of various treatments has mushroomed. Hollow mesoporous organotantalum nanospheres
modified with Au and Pt dual nanoenzymes (HMOTP@Pt@Au@DOX), for instance in
Figure 13a, were designed to achieve the synergistic therapy of RT, chemotherapy, and
starvation treatment [132]. The HMOTP@Pt@Au@DOX presented chemo−radio sensiti-
zation and could be self−activated under GSH stimulation to release DOX on−demand.
Moreover, the BMNs as nanoenzyme triggered cascade catalytic reactions under radiation,
completing the cycle of consuming glucose and O2, and replenishing O2; producing ROS to
kill cancer cells at the same time. Analogously, Au@Pt−DOX−PCM−PEG nanotherapeu-
tics (adding DOX into the mesopores of Au@Pt nanostructures assisted by phase change
materials) are reported by Sun et al. that combined chemotherapy, PTT, and GT [133]. The
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efficiency of PTT was improved by alleviating tumor hypoxia and reducing tumor heat
tolerance with gene therapy in this study; additionally, genic−enhanced PTT combined
with chemotherapy achieved significant enhancement (Figure 13b,d).
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Figure 12. BMNs used in combination treatment with two therapies. (a) Schematic illustration
of the catalytic cascades−enhanced synergistic cancer therapy. Reprinted with permission from
Ref. [12]. (b) Tumor growth curves and (c) body weight changes of the 4T1 tumor−bearing mice
in six groups. Reprinted with permission from Ref. [12]. Copyright © 2022 American Chemical
Society. (d) Schematic illustration of the synthesis procedure for CuCo NS and proposed therapeutic
mechanism of mutually reinforced PTT−CDT. Reprinted with permission from Ref. [131]. (e) The
therapeutic effect of CuCo NS against tumors. Adapted with permission from Ref. [131]. Copyright
© 2022 Elsevier B.V. * p < 0.05, ** p < 0.01, *** p < 0.001.

In addition, using BMNs as biosensors has realized the detection of tumor biomarkers
and living tumor cells, which has solved the problem of early diagnosis of cancer and
has been well−developed [134,135]. Ding et al. reported an ultrasensitive cytosensor
based on Cu2O@PtPd, in which accurate recognition of cancer markers and monitoring
of drug concentration can demonstrate the effect of tumor therapy, and further targeted
therapy can be conducted according to the results [136]. Meanwhile, the performance
of BMNs in biological imaging is also very attractive. Therefore, the strategy of integrat-
ing diagnosis and treatment used BMNs becomes particularly significant. For example,
collaborative therapy and imaging can be combined to achieve visual precision treat-
ment and achieve the integration of diagnosis and therapy. The cRGD−modified the
DOX−loaded Au@Pt NPs (DOX/Au@Pt−cRGD) can not only achieve excellent chemo-
photothermal co-therapy without damaging normal tissues but also realize fluorescence
imaging by the optical properties of BMNs (Figure 13c,e) [137]. Another classic example
is the core–shell Au@Cu3(BTC)2 NPs designed for multifunctional Raman imaging and
chemo-phototherapy [138]. The Au@Cu3(BTC)2 NPs exhibited high stability in the complex
physical environment and performed Raman and NIR dual-responsive, hence regarded as
potential theranostic nanoplatforms.

In a word, using BMNs as nanocarriers to achieve chemotherapy and GT is the most
basic application, and there is no obvious advantage of therapeutic effect over traditional
chemotherapy. The starvation treatment and CDT mediated by the enzyme-like activity are
novel and can achieve better results by combining with other therapies. In addition, BMNs
as radiosensitizers, photothermal agents, and photosensitizers are the most concerned
applications in nanotechnology−mediated tumor therapy, which have demonstrated re-
markable therapeutic effects. Moreover, BMNs-based multimodal cancer therapy can
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integrate the advantages of different therapies to achieve better therapeutic effects, which
heralds a new era of synergistic therapy.
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Society. (d) Time-resolved size change of the MDA−MB−231 tumors in nude mice after various
treatments. Reprinted with permission from Ref. [133]. Copyright © 2022 American Chemical Society.
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5. Conclusions and Prospects

There is no doubt that BMNs possess many advantages, such as exceptional catalytic
activity and optical properties, which make them quickly develop into an ideal therapeu-
tic option in cancer therapy. Especially, the attractive activities of BMNs are due to the
synergistic effects between different metals, which make them have broader applications
than MMNs. However, thoroughly exploring the growth, catalytic, and pharmacokinetics
mechanism of BMNs and building reliable clinical devices are still urgently needed to be
addressed. Based on the above situations, this review summarizes the synthesis methods,
properties, and practical applications of BMNs associated with the treatment of tumors.
The main motivation for the study comes from the remarkable properties, including com-
plex morphologies, diverse enzyme-like activities, superior stability, and perfect optical
properties. In addition, BMNs truly achieve the effect that one plus one is greater than
two, and the properties of the two metals can be enhanced by each other. Thanks to the
exploration and research of BMNs by many scholars, we can put forward conclusions and
suggestions in the medical field, especially in the treatment of cancer for the future.
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First of all, it is still challenging to find suitable synthetic methods from many methods
that can be used to produce BMNs for cancer therapy. It has been found that BMNs with
zero dimensions, such as spheres, rods, stars, and flowers, are usually used in cancer
treatment. These structures are usually synthesized by seed-mediated and hydrothermal
methods, where the regulation of BMNs’ morphology has been well studied. In addition, we
suggest that the growth pattern and mechanisms of all BMNs can be thoroughly explored
by molecular simulation to establish a material library so that nanostructures with specific
properties and shapes can be designed more clearly to reply to complex environments and
various therapeutic applications.

Secondly, BMNs have extensive applications in cancer therapy, but there are still many
properties that remain unexplored. Many BMNs show good catalytic activity and high
sensitivity that can act as enzymes in the tumor microenvironment. However, most of the
current studies on the enzyme-like activities of BMNs are catalase, GOx, and glutathione
peroxidase, and the development of BMNs with more enzyme-like activities would be
beneficial to further expand its application in biological fields. It is still a big challenge at
the moment, but it is fascinating and worth solemn attention.

Thirdly, BMNs have been shining in synergistic therapy and made considerable
achievements. In view of the mature capabilities of BMNs in intelligent drug delivery
and cancer diagnosis, we suggest that using BMNs as smart nanoplatforms creates more
diversified treatment strategies as well as automatically assesses the status of the tumor
to adjust the level of treatment. Therefore, it is of great significance to make full use of
BMNs’ sensing and imaging capabilities, loading capacity, catalytic performance, and
photothermal properties to construct a multifunctional intelligent nanosystem.

Last but not least, it is crucial to establish an effective and authoritative evaluation
system to judge the therapeutic effect of BMNs. In the investigation, it is found that no
matter which nanocarrier is used for tumor treatment, it only represents the volume and
weight of tumors and the weight of mice. What is a veritably “effective” treatment in
clinical application, this is a worthy direction for all medical material researchers and
physicians to work together.
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Abbreviations

BMNs Bimetallic nanomaterials
MNs Metallic nanomaterials
PTT Photothermal therapy
PDT Photodynamic therapy
GT Gene therapy
SPR Surface plasmon resonance
POD Peroxidase
CAT Catalase
SOD Superoxide dismutase
AgCM Monodispersed Ag cubic to mesh nanostructures



Molecules 2022, 27, 8712 25 of 31

NPs Nanoparticles
Au@Ag@Pt core@multishell Ag-Pt double-shell on Au-core with a hollow-granular shell structure
ATP@Au-Cu NP Adenosine 5′-triphosphate @Au-Cu nanoparticle
NDs Nanodendrites
FCC Face-centered cubic
AuNS Gold nanostar
CP A metal–drug coordination polymer
TPL Two-photon luminescence
TNP Cu-Pd alloy tetrapod nanoparticles
MOF Metal–organic framework
CNDs Carbon nanodots
NWs Nanowires
NIR Near-infrared
LSPR Localized surface plasmon resonance
AuPtNRs Dumbbell-shaped Au-Pt bimetallic nanorods
AuNRs Gold nanorods
SNP Spherical nanoparticle
CR Charge separation
ROS Reactive oxygen species
•O2

− Superoxide anion
O•− Singlet oxygen
•OH Hydroxyl radical
RhB Rhodamine B
GOx Glucose oxidase
GSH Glutathione peroxidase
DFT Density functional theory

Au@Rh-ICG-CM
Porous Au@Rh core–shell nanostructures loaded indocyanine green
in the pores and coating with cancer cell membrane

US Ultrasound
SDT Sonodynamic therapy
PGI PdPt@GOx/IR780
Ico Icosahedrons
CDT Chemodynamic therapy
RT Radiotherapy
FA Folic acid
DOX Doxorubicin
PEG Polyethylene glycol
HA Hyaluronic acid
TMZ Targeting ligands and temozolomide
DOX-loaded sgc8c NGs DOX-loaded sgc8c conjugated core–shell nanogels
BMOF-DMR Bimetal metal-organic framework domino micro-reactor
E. coli Escherichia coli
S. aureus Staphylococcus aureus
S-AuNC Snowflake-like Au nanocarriers
aPD-L1 Anti-programmed death ligand 1
DMSN Dendritic mesoporous silica

5-ALA/Au-Ag-PEG-Ab NC
Nanoconjugate combined with PEG functionalized
Au-Ag nanoparticles, 5-aminolevulinic acid and antibodies

Au@Pt nanostructures Au nanorods coated with a shell of Pt nanodots
HAAA-NUs Hollow Au-Ag alloy nanourchins

CeO2/Au@Pt-PEG
ceria-loaded gold@platinum nanospheres modified with
polyethylene glycol

PCN Porphyrin metal–organic frameworks
CuCo NS Single-site bimetallic (copper hexacyanocobaltate) nanosheet

HMOTP@Pt@Au@DOX
Hollow mesoporous organotantalum nanospheres modified with
Au and Pt dual nanoenzymes

DOX/Au@Pt-cRGD cRGD-modified DOX-loaded Au@Pt nanoparticles
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