Acylhydrazones and Their Biological Activity: A Review
Abstract
:1. Introduction
2. Structure
3. Synthesis
4. Spectral Analysis
5. Biological Properties
5.1. Antitumor Action
5.2. Antimicrobial Action
5.2.1. Antibacterial Action
5.2.2. Antifungal Action
5.3. Antiviral Action
5.4. Antiparasitic Action
5.5. Anti-Inflammatory Action
5.6. Immunomodulatory Action
5.7. Antiedematous Action
5.8. Antiglaucomatous Action
5.9. Activity on the Central Nervous System (CNS)
5.10. Antidiabetic Activity
5.11. Antioxidant Action
5.12. Action on the Cardiovascular System
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gao, P.; Wei, Y. Efficient oxidative cyclization of N-acylhydrazones for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles using t-BuOI under neutral conditions. Heterocycl. Commun. 2013, 19, 113–119. [Google Scholar] [CrossRef]
- Başpınar Küçük, H.; Alhonaish, A.; Yıldız, T.; Güzel, M. An efficient approach to access 2,5-disubstituted 1,3,4-oxadiazoles by oxidation of 2-arenoxybenzaldehyde N- acyl hydrazones with molecular iodine. ChemistrySelect 2022, 7, e202201391. [Google Scholar] [CrossRef]
- Pelipko, V.V.; Gomonov, K.A. Formation of five- and six-membered nitrogen-containing heterocycles on the basis of hydrazones derived from α-dicarbonyl compounds (microreview). Chem. Heterocycl. Compd. 2021, 57, 624–626. [Google Scholar] [CrossRef]
- Morjan, R.Y.; Mkadmh, A.M.; Beadham, I.; Elmanama, A.A.; Mattar, M.R.; Raftery, J.; Pritchard, R.G.; Awadallah, A.M.; Gardiner, J.M. Antibacterial activities of novel nicotinic acid hydrazides and their conversion into N-acetyl-1,3,4-oxadiazoles. Bioorganic Med. Chem. Lett. 2014, 24, 5796–5800. [Google Scholar] [CrossRef] [PubMed]
- Ţînţaş, M.L.; Diac, A.P.; Soran, A.; Terec, A.; Grosu, I.; Bogdan, E. Structural characterization of new 2-aryl-5-phenyl-1,3,4-oxadiazin-6-ones and their N-aroylhydrazone precursors. J. Mol. Struct. 2014, 1058, 106–113. [Google Scholar] [CrossRef]
- Wani, M.Y.; Bhat, A.R.; Azam, A.; Athar, F. Nitroimidazolyl hydrazones are better amoebicides than their cyclized 1,3,4-oxadiazoline analogues: In vitro studies and Lipophilic efficiency analysis. Eur. J. Med. Chem. 2013, 64, 190–199. [Google Scholar] [CrossRef]
- Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-Review of the Importance of Hydrazides and Their Derivatives—Synthesis and Biological Activity. Eng. Proc. 2021, 11, 21. [Google Scholar] [CrossRef]
- de Oliveira Carneiro Brum, J.; França, T.C.C.; LaPlante, S.R.; Villar, J.D.F. Synthesis and Biological Activity of Hydrazones and Derivatives: A Review. Mini-Rev. Med. Chem. 2020, 20, 342–368. [Google Scholar] [CrossRef]
- Thota, S.; Rodrigues, D.A.; de Sena Murteira Pinheiro, P.; Lima, L.M.; Fraga, C.A.M.; Barreiro, E.J. N-Acylhydrazones as drugs. Bioorganic Med. Chem. Lett. 2018, 28, 2797–2806. [Google Scholar] [CrossRef]
- Demir, Y.; Tokalı, F.S.; Kalay, E.; Türkeş, C.; Tokalı, P.; Aslan, O.N.; Şendil, K.; Beydemir, Ş. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors. Mol. Divers. 2022. [Google Scholar] [CrossRef]
- Cui, P.; Cai, M.; Meng, Y.; Yang, Y.; Song, H.; Liu, Y.; Wang, Q. Design, synthesis and biological activities of echinopsine derivatives containing acylhydrazone moiety. Sci. Rep. 2022, 12, 2935. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, S.; He, H.; Jiang, W.; Hou, L.; Xie, D.; Cai, M.; Peng, H.; Feng, L. Design and synthesis of highly selective pyruvate dehydrogenase complex E1 inhibitors as bactericides. Bioorganic Med. Chem. 2018, 26, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.A.W.; Lorraine, S.C.; Wilson, K.-A.; Wilson, K. Review: Voltammetric properties and applications of hydrazones and azo moieties. Polyhedron 2019, 173, 114111. [Google Scholar] [CrossRef]
- Purandara, H.; Raghavendra, S.; Foro, S.; Patil, P.; Gowda, B.T.; Dharmaprakash, S.M.; Vishwanatha, P. Synthesis, spectroscopic characterization, crystal structure, Hirshfeld surface analysis and third-order nonlinear optical properties of 2-(4-chlorophenoxy)-N’-[(1E)-1-(4-methylphenyl) ethylidene] acetohydrazide. J. Mol. Struct. 2019, 1185, 205–211. [Google Scholar] [CrossRef]
- Liu, Y.; Di, Y.; Di, Y.; Qiao, C.; Chen, F.; Yuan, F.; Yue, K.; Zhou, C. The studies of structure, thermodynamic properties and theoretical analyses of 2-[(4-nitro-benzoyl)-hydrazone]-propionic acid. J. Mol. Struct. 2019, 1184, 532–537. [Google Scholar] [CrossRef]
- Selvam, P.; Sathiyakumar, S.; Srinivasan, K.; Premkumar, T. A Copper(II) complex of a new hydrazone: A solid-state single source precursor for the preparation of both Cu and CuO nanoparticles. J. Mol. Struct. 2019, 1177, 469–475. [Google Scholar] [CrossRef]
- Sadhukhan, D.; Maiti, M.; Bauzá, A.; Frontera, A.; Garribba, E.; Gomez-García, C.J. Synthesis, structure, physicochemical characterization and theoretical evaluation of non-covalent interaction energy of a polymeric copper(II)-hydrazone complex. Inorg. Chim. Acta 2019, 484, 95–103. [Google Scholar] [CrossRef]
- Tariq, Q.-N.; Malik, S.; Khan, A.; Naseer, M.M.; Khan, S.U.; Ashraf, A.; Ashraf, M.; Rafiq, M.; Mahmood, K.; Tahir, M.N.; et al. Xanthenone-based hydrazones as potent α-glucosidase inhibitors: Synthesis, solid state self-assembly and in silico studies. Bioorganic Chem. 2019, 84, 372–383. [Google Scholar] [CrossRef]
- Kuriakose, D.; Kurup, M.R.P. Crystal structures and supramolecular architectures of ONO donor hydrazone and solvent exchangeable dioxidomolybdenum(VI) complexes derived from 3,5-diiodosalicyaldehyde-4-methoxybenzoylhydrazone: Hirshfeld surface analysis and interaction energy calculat. Polyhedron 2019, 170, 749–761. [Google Scholar] [CrossRef]
- Yang, H.-L.; Dang, Z.-J.; Zhang, Y.-M.; Wei, T.-B.; Yao, H.; Zhu, W.; Fan, Y.-Q.; Jiang, X.-M.; Lin, Q. Novel cyanide supramolecular fluorescent chemosensor constructed from a quinoline hydrazone functionalized-pillar[5]arene. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 220, 117136. [Google Scholar] [CrossRef]
- Gamov, G.A.; Khodov, I.A.; Belov, K.V.; Zavalishin, M.N.; Kiselev, A.N.; Usacheva, T.R.; Sharnin, V.A. Spatial structure, thermodynamics and kinetics of formation of hydrazones derived from pyridoxal 5′-phosphate and 2-furoic, thiophene-2-carboxylic hydrazides in solution. J. Mol. Liq. 2019, 283, 825–833. [Google Scholar] [CrossRef]
- Hincapié-Otero, M.M.; Joaqui-Joaqui, A.; Polo-Cerón, D. Synthesis and characterization of four N-acylhydrazones as potential O,N,O donors for Cu2+: An experimental and theoretical study. Univ. Sci. 2021, 26, 193–215. [Google Scholar] [CrossRef]
- Munir, R.; Javid, N.; Zia-ur-Rehman, M.; Zaheer, M.; Huma, R.; Roohi, A.; Athar, M.M. Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond Conformational Characterization by NMR Spectroscopy. Molecules 2021, 26, 4908. [Google Scholar] [CrossRef] [PubMed]
- García-Ramírez, V.G.; Suarez-Castro, A.; Villa-Lopez, M.G.; Díaz-Cervantes, E.; Chacón-García, L.; Cortes-García, C.J. Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease. Chem. Proc. 2020, 3, 1. [Google Scholar] [CrossRef]
- Aneja, B.; Khan, N.S.; Khan, P.; Queen, A.; Hussain, A.; Rehman, M.T.; Alajmi, M.F.; El-Seedi, H.R.; Ali, S.; Hassan, M.I.; et al. Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur. J. Med. Chem. 2019, 163, 840–852. [Google Scholar] [CrossRef]
- Salum, L.B.; Mascarello, A.; Canevarolo, R.R.; Altei, W.F.; Laranjeira, A.B.A.; Neuenfeldt, P.D.; Stumpf, T.R.; Chiaradia-Delatorre, L.D.; Vollmer, L.L.; Daghestani, H.N.; et al. N-(1’-naphthyl)-3,4,5-trimethoxybenzohydrazide as microtubule destabilizer: Synthesis, cytotoxicity, inhibition of cell migration and in vivo activity against acute lymphoblastic leukemia. Eur. J. Med. Chem. 2015, 96, 504–518. [Google Scholar] [CrossRef]
- Govindaiah, P.; Dumala, N.; Mattan, I.; Grover, P.; Jaya Prakash, M. Design, synthesis, biological and in silico evaluation of coumarin-hydrazone derivatives as tubulin targeted antiproliferative agents. Bioorganic Chem. 2019, 91, 103143. [Google Scholar] [CrossRef]
- Sreenivasulu, R.; Reddy, K.T.; Sujitha, P.; Kumar, C.G.; Raju, R.R. Synthesis, antiproliferative and apoptosis induction potential activities of novel bis(indolyl)hydrazide-hydrazone derivatives. Bioorganic Med. Chem. 2019, 27, 1043–1055. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, R.; Bua, S.; Supuran, C.T.; Sharma, P.K. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorganic Chem. 2019, 85, 198–208. [Google Scholar] [CrossRef]
- Chivers, P.R.A.; Smith, D.K. Shaping and structuring supramolecular gels. Nat. Rev. Mater. 2019, 4, 463–478. [Google Scholar] [CrossRef]
- Rezki, N.; Al-Sodies, S.A.; Ahmed, H.E.A.; Ihmaid, S.; Messali, M.; Ahmed, S.; Aouad, M.R. A novel dicationic ionic liquids encompassing pyridinium hydrazone-phenoxy conjugates as antimicrobial agents targeting diverse high resistant microbial strains. J. Mol. Liq. 2019, 284, 431–444. [Google Scholar] [CrossRef]
- Avila, C.M.; Lopes, A.B.; Gonçalves, A.S.; da Silva, L.L.; Romeiro, N.C.; Miranda, A.L.P.; Sant’Anna, C.M.R.; Barreiro, E.J.; Fraga, C.A.M. Structure-based design and biological profile of (E)-N-(4-Nitrobenzylidene)-2-naphthohydrazide, a novel small molecule inhibitor of IκB kinase-β. Eur. J. Med. Chem. 2011, 46, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Rohane, S.H.; Chauhan, A.J.; Fuloria, N.K.; Fuloria, S. Synthesis and in vitro antimycobacterial potential of novel hydrazones of eugenol. Arab. J. Chem. 2020, 13, 4495–4504. [Google Scholar] [CrossRef]
- Siddique, M.; Bin Saeed, A.; Dogar, N.A.; Ahmad, S. Biological Potential of Synthetic Hydrazide Based Schiff Bases. J. Sci. Innov. Res. 2013, 2, 651–657. [Google Scholar]
- Xia, L.; Xia, Y.-F.; Huang, L.-R.; Xiao, X.; Lou, H.-Y.; Liu, T.-J.; Pan, W.-D.; Luo, H. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure–microbicidal activity relationship. Eur. J. Med. Chem. 2015, 97, 83–93. [Google Scholar] [CrossRef]
- dos Santos, N.M.; Pereira, N.C.; de Albuquerque, A.P.S.; Dias Viegas, F.P.; Veloso, C.; Vilela, F.C.; Giusti-Paiva, A.; da Silva, M.L.; da Silva, J.R.T.; Viegas, C., Jr. 3-Hydroxy-piperidinyl-N-benzyl-acyl-arylhydrazone derivatives reduce neuropathic pain and increase thermal threshold mediated by opioid system. Biomed. Pharmacother. 2018, 99, 492–498. [Google Scholar] [CrossRef]
- Chen, D.-M.; Wu, X.-F.; Liu, Y.-J.; Huang, C.; Zhu, B.-X. Synthesis, crystal structures and vapor adsorption properties of Hg(II) and Cd(II) coordination polymers derived from two hydrazone Schiff base ligands. Inorg. Chim. Acta 2019, 494, 181–186. [Google Scholar] [CrossRef]
- Singh, A.K.; Thakur, S.; Pani, B.; Chugh, B.; Lgaz, H.; Chung, I.-M.; Chaubey, P.; Pandey, A.K.; Singh, J. Solvent-free microwave assisted synthesis and corrosion inhibition study of a series of hydrazones derived from thiophene derivatives: Experimental, surface and theoretical study. J. Mol. Liq. 2019, 283, 788–803. [Google Scholar] [CrossRef]
- Demurtas, M.; Baldisserotto, A.; Lampronti, I.; Moi, D.; Balboni, G.; Pacifico, S.; Vertuani, S.; Manfredini, S.; Onnis, V. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorganic Chem. 2019, 85, 568–576. [Google Scholar] [CrossRef]
- Lis, C.; Rubner, S.; Roatsch, M.; Berg, A.; Gilcrest, T.; Fu, D.; Nguyen, E.; Schmidt, A.-M.; Krautscheid, H.; Meiler, J.; et al. Development of Erasin: A chromone-based STAT3 inhibitor which induces apoptosis in Erlotinib-resistant lung cancer cells. Sci. Rep. 2017, 7, 17390. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Peng, J.-D.; Suo, F.-Z.; Zhang, T.; Fu, Y.-D.; Zheng, Y.-C.; Liu, H.-M. Discovery of tranylcypromine analogs with an acylhydrazone substituent as LSD1 inactivators: Design, synthesis and their biological evaluation. Bioorganic Med. Chem. Lett. 2017, 27, 5036–5039. [Google Scholar] [CrossRef] [PubMed]
- Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorganic Med. Chem. 2013, 21, 6592–6599. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Li, Y.; Ling, Y.; Huang, J.; Cui, J.; Wang, R.; Yang, X. New class of potent antitumor acylhydrazone derivatives containing furan. Eur. J. Med. Chem. 2010, 45, 5576–5584. [Google Scholar] [CrossRef]
- Li, Y.; Yan, W.; Yang, J.; Yang, Z.; Hu, M.; Bai, P.; Tang, M.; Chen, L. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance. Eur. J. Med. Chem. 2018, 152, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Massarico Serafim, R.A.; Gonçalves, J.E.; de Souza, F.P.; de Melo Loureiro, A.P.; Storpirtis, S.; Krogh, R.; Andricopulo, A.D.; Dias, L.C.; Ferreira, E.I. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur. J. Med. Chem. 2014, 82, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Qi, J.; Zheng, Y.; Qian, K.; Wei, L.; Maimaitiyiming, M.; Cheng, Z.; Wang, Y. Synthesis, anticancer activity and mechanism of iron chelator derived from 2,6-diacetylpyridine bis(acylhydrazones). J. Inorg. Biochem. 2019, 193, 1–8. [Google Scholar] [CrossRef]
- Yu, X.; Shi, L.; Ke, S. Acylhydrazone derivatives as potential anticancer agents: Synthesis, bio-evaluation and mechanism of action. Bioorganic Med. Chem. Lett. 2015, 25, 5772–5776. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.-T.; Man, R.-J.; Tang, D.-J.; Yao, Y.-F.; Tao, X.-X.; Yu, C.; Liang, X.-Y.; Makawana, J.A.; Zou, M.-J.; Wang, Z.-C.; et al. Design, Synthesis and Antitumor Activity of Novel link-bridge and B-Ring Modified Combretastatin A-4 (CA-4) Analogues as Potent Antitubulin Agents. Sci. Rep. 2016, 6, 25387. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, V.A.; Formagio, A.S.N.; Savariz, F.C.; Foglio, M.A.; Spindola, H.M.; de Carvalho, J.E.; Meyer, E.; Sarragiotto, M.H. Synthesis and antitumor activity of β-carboline 3-(substituted-carbohydrazide) derivatives. Bioorganic Med. Chem. 2011, 19, 6400–6408. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, P.S.V.B.; Pereira, T.M.; Kummerle, A.E.; Guedes, G.P.; Silva, H.; de Oliveira, L.L.; Neves, A.P. New Ru(II)–DMSO complexes containing coumarin-N-acylhydrazone hybrids: Synthesis, X-ray structures, cytotoxicity and antimicrobial activities. Polyhedron 2019, 171, 20–31. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Y.; He, X.; Ge, X.; Liu, J.; Meng, X.; Shao, M.; Jin, Y.; Tian, L.; Liu, Z. Triphenyltin(IV) acylhydrazone compounds: Synthesis, structure and bioactivity. J. Inorg. Biochem. 2019, 191, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Socea, L.-I.; Socea, B.; Saramet, G.; Barbuceanu, S.-F.; Draghici, C.; Constantin, V.D.; Olaru, O.T. Synthesis and Cytotoxicity Evaluation of new 5H-dibenzo[a,d][7]annulen-5-yl acetylhydrazones. Rev. Chim. 2015, 6, 1122–1127. [Google Scholar]
- He, H.; Xia, H.; Xia, Q.; Ren, Y.; He, H. Design and optimization of N-acylhydrazone pyrimidine derivatives as E. coli PDHc E1 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study. Bioorganic Med. Chem. 2017, 25, 5652–5661. [Google Scholar] [CrossRef]
- Jin, Y.-X.; Zhong, A.-G.; Ge, C.-H.; Pan, F.-Y.; Yang, J.-G.; Wu, Y.; Xie, M.; Feng, H.-W. A novel difunctional acylhydrazone with isoxazole and furan heterocycles: Syntheses, structure, spectroscopic properties, antibacterial activities and theoretical studies of (E)-N′-(furan-2-ylmethylene)-5-methylisoxazole-4-carbohydrazide. J. Mol. Struct. 2012, 1010, 190–196. [Google Scholar] [CrossRef]
- Jin, Y.-X.; Zhong, A.-G.; Zhang, Y.; Pan, F.-Y. Synthesis, crystal structure, spectroscopic properties, antibacterial activity and theoretical studies of a novel difunctional acylhydrazone. J. Mol. Struct. 2011, 1002, 45–50. [Google Scholar] [CrossRef]
- Rodríguez-Argüelles, M.C.; Cao, R.; García-Deibe, A.M.; Pelizzi, C.; Sanmartín-Matalobos, J.; Zani, F. Antibacterial and antifungal activity of metal(II) complexes of acylhydrazones of 3-isatin and 3-(N-methyl)isatin. Polyhedron 2009, 28, 2187–2195. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, Y.B.; Tang, J.F.; Yang, Y.S.; Chen, R.Q.; Zhang, F.; Zhu, H.L. Design, synthesis and antibacterial activities of vanillic acylhydrazone derivatives as potential β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Eur. J. Med. Chem. 2012, 57, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Bonnett, S.A.; Dennison, D.; Files, M.; Bajpai, A.; Parish, T. A class of hydrazones are active against non-replicating Mycobacterium tuberculosis. PLoS ONE 2018, 13, e0198059. [Google Scholar] [CrossRef] [Green Version]
- O’Dwyer, K.; Hackel, M.; Hightower, S.; Hoban, D.; Bouchillon, S.; Qin, D.; Aubart, K.; Zalacain, M.; Butler, D. Comparative Analysis of the Antibacterial Activity of a Novel Peptide Deformylase Inhibitor, GSK1322322. Antimicrob. Agents Chemother. 2013, 57, 2333–2342. [Google Scholar] [CrossRef] [Green Version]
- Guilherme, F.D.; Simonetti, J.É.; Folquitto, L.R.S.; Reis, A.C.C.; Oliver, J.C.; Dias, A.L.T.; Dias, D.F.; Carvalho, D.T.; Brandão, G.C.; de Souza, T.B. Synthesis, chemical characterization and antimicrobial activity of new acylhydrazones derived from carbohydrates. J. Mol. Struct. 2019, 1184, 349–356. [Google Scholar] [CrossRef]
- Reis, D.; Despaigne, A.; Silva, J.; Silva, N.; Vilela, C.; Mendes, I.; Takahashi, J.; Beraldo, H. Structural Studies and Investigation on the Activity of Imidazole-Derived Thiosemicarbazones and Hydrazones against Crop-Related Fungi. Molecules 2013, 18, 12645–12662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, B.; He, M.; Tang, S.; Hewlett, I.; Tan, Z.; Li, J.; Jin, Y.; Yang, M. Synthesis and antiviral activities of novel acylhydrazone derivatives targeting HIV-1 capsid protein. Bioorganic Med. Chem. Lett. 2009, 19, 2162–2167. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, D.; Gan, X.; Zeng, S.; Zhang, A.; Yin, L.; Song, B.; Jin, L.; Hu, D. Synthesis, antiviral activity, and molecular docking study of trans-ferulic acid derivatives containing acylhydrazone moiety. Bioorganic Med. Chem. Lett. 2017, 27, 4096–4100. [Google Scholar] [CrossRef] [PubMed]
- Herschhorn, A.; Gu, C.; Espy, N.; Richard, J.; Finzi, A.; Sodroski, J.G. A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry. Nat. Chem. Biol. 2014, 10, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, J.D.; Albuquerque, M.G.; Leal, K.Z.; Santos, F.D.C.; Batalha, P.N.; Brozeguini, L.; Seidl, P.R.; de Alencastro, R.B.; Cunha, A.C.; de Souza, M.C.B.V.; et al. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors. J. Mol. Struct. 2014, 1074, 263–270. [Google Scholar] [CrossRef]
- Reznichenko, O.; Quillévéré, A.; Martins, R.P.; Loaëc, N.; Kang, H.; Lista, M.J.; Beauvineau, C.; González-García, J.; Guillot, R.; Voisset, C.; et al. Novel cationic bis(acylhydrazones) as modulators of Epstein–Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA. Eur. J. Med. Chem. 2019, 178, 13–29. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Cheng, L.P.; Li, M.; Pang, W.; Wu, F.H. Discovery of novel acylhydrazone neuraminidase inhibitors. Eur. J. Med. Chem. 2019, 173, 305–313. [Google Scholar] [CrossRef]
- Abdel-Aal, M.T.; El-Sayed, W.A.; El-Ashry, E.-S.H. Synthesis and Antiviral Evaluation of Some Sugar Arylglycinoylhydrazones and Their Oxadiazoline Derivatives. Arch. Pharm. 2006, 339, 656–663. [Google Scholar] [CrossRef]
- Riccardi, L.; Genna, V.; De Vivo, M. Metal–ligand interactions in drug design. Nat. Rev. Chem. 2018, 2, 100–112. [Google Scholar] [CrossRef]
- Inam, A.; Siddiqui, S.M.; Macedo, T.S.; Moreira, D.R.M.; Leite, A.C.L.; Soares, M.B.P.; Azam, A. Design, synthesis and biological evaluation of 3-[4-(7-chloro-quinolin-4-yl)-piperazin-1-yl]-propionic acid hydrazones as antiprotozoal agents. Eur. J. Med. Chem. 2014, 75, 67–76. [Google Scholar] [CrossRef]
- Melnyk, P.; Leroux, V.; Sergheraert, C.; Grellier, P. Design, synthesis and in vitro antimalarial activity of an acylhydrazone library. Bioorganic Med. Chem. Lett. 2006, 16, 31–35. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Filho, J.M.; de Queiroz e Silva, D.M.A.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Challal, S.; Wolfender, J.-L.; Queiroz, E.F.; Soares, M.B.P. Conjugation of N -acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorganic Med. Chem. 2016, 24, 5693–5701. [Google Scholar] [CrossRef] [PubMed]
- Shakdofa, M.M.E.; Shtaiwi, M.H.; Morsy, N.; Abdel-rassel, T.M.A. Metal complexes of hydrazones and their biological, analytical and catalytic applications: A review. Main Group Chem. 2014, 13, 187–218. [Google Scholar] [CrossRef]
- dos Santos Filho, J.M.; Leite, A.C.L.; de Oliveira, B.G.; Moreira, D.R.M.; Lima, M.S.; Soares, M.B.P.; Leite, L.F.C.C. Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorganic Med. Chem. 2009, 17, 6682–6691. [Google Scholar] [CrossRef]
- Jacomini, A.P.; Silva, M.J.V.; Silva, R.G.M.; Gonçalves, D.S.; Volpato, H.; Basso, E.A.; Paula, F.R.; Nakamura, C.V.; Sarragiotto, M.H.; Rosa, F.A. Synthesis and evaluation against Leishmania amazonensis of novel pyrazolo[3,4-d]pyridazinone-N-acylhydrazone-(bi)thiophene hybrids. Eur. J. Med. Chem. 2016, 124, 340–349. [Google Scholar] [CrossRef]
- Romeiro, N.C.; Aguirre, G.; Hernández, P.; González, M.; Cerecetto, H.; Aldana, I.; Pérez-Silanes, S.; Monge, A.; Barreiro, E.J.; Lima, L.M. Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates. Bioorganic Med. Chem. 2009, 17, 641–652. [Google Scholar] [CrossRef]
- Bezerra-Netto, H.J.C.; Lacerda, D.I.; Miranda, A.L.P.; Alves, H.M.; Barreiro, E.J.; Fraga, C.A.M. Design and synthesis of 3,4-methylenedioxy-6-nitrophenoxyacetylhydrazone derivatives obtained from natural safrole: New lead-agents with analgesic and antipyretic properties. Bioorganic Med. Chem. 2006, 14, 7924–7935. [Google Scholar] [CrossRef]
- Duarte, C.D.; Tributino, J.L.M.; Lacerda, D.I.; Martins, M.V.; Alexandre-Moreira, M.S.; Dutra, F.; Bechara, E.J.H.; De-Paula, F.S.; Goulart, M.O.F.; Ferreira, J.; et al. Synthesis, pharmacological evaluation and electrochemical studies of novel 6-nitro-3,4-methylenedioxyphenyl-N-acylhydrazone derivatives: Discovery of LASSBio-881, a new ligand of cannabinoid receptors. Bioorganic Med. Chem. 2007, 15, 2421–2433. [Google Scholar] [CrossRef]
- Tributino, J.L.M.; Duarte, C.D.; Corrêa, R.S.; Doriguetto, A.C.; Ellena, J.; Romeiro, N.C.; Castro, N.G.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A.M. Novel 6-methanesulfonamide-3,4-methylenedioxyphenyl-N-acylhydrazones: Orally effective anti-inflammatory drug candidates. Bioorganic Med. Chem. 2009, 17, 1125–1131. [Google Scholar] [CrossRef]
- Hernández, P.; Cabrera, M.; Lavaggi, M.L.; Celano, L.; Tiscornia, I.; Rodrigues da Costa, T.; Thomson, L.; Bollati-Fogolín, M.; Miranda, A.L.P.; Lima, L.M.; et al. Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorganic Med. Chem. 2012, 20, 2158–2171. [Google Scholar] [CrossRef]
- da Silva, Y.K.C.; Augusto, C.V.; de Castro Barbosa, M.L.; de Albuquerque Melo, G.M.; de Queiroz, A.C.; de Lima Matos Freire Dias, T.; Júnior, W.B.; Barreiro, E.J.; Lima, L.M.; Alexandre-Moreira, M.S. Synthesis and pharmacological evaluation of pyrazine N-acylhydrazone derivatives designed as novel analgesic and anti-inflammatory drug candidates. Bioorganic Med. Chem. 2010, 18, 5007–5015. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, J.V.; Meira, C.S.; Santos, E.d.S.; de Aragão França, L.S.; Vasconcelos, J.F.; Nonaka, C.K.V.; de Melo, T.L.; dos Santos Filho, J.M.; Moreira, D.R.M.; Soares, M.B.P. Anti-inflammatory activity of SintMed65, an N-acylhydrazone derivative, in a mouse model of allergic airway inflammation. Int. Immunopharmacol. 2019, 75, 105735. [Google Scholar] [CrossRef] [PubMed]
- Meira, C.S.; dos Santos Filho, J.M.; Sousa, C.C.; Anjos, P.S.; Cerqueira, J.V.; Dias Neto, H.A.; da Silveira, R.G.; Russo, H.M.; Wolfender, J.-L.; Queiroz, E.F.; et al. Structural design, synthesis and substituent effect of hydrazone-N-acylhydrazones reveal potent immunomodulatory agents. Bioorganic Med. Chem. 2018, 26, 1971–1985. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.D.T.d.O.; de Miranda, M.D.S.; Jacob, Í.T.T.; Amorim, C.A.d.C.; de Moura, R.O.; da Silva, S.Â.S.; Soares, M.B.P.; de Almeida, S.M.V.; Souza, T.R.C.d.L.; de Oliveira, J.F.; et al. Synthesis, in vitro and in vivo biological evaluation, COX-1/2 inhibition and molecular docking study of indole-N-acylhydrazone derivatives. Bioorganic Med. Chem. 2018, 26, 5388–5396. [Google Scholar] [CrossRef] [PubMed]
- Kümmerle, A.E.; Vieira, M.M.; Schmitt, M.; Miranda, A.L.P.; Fraga, C.A.M.; Bourguignon, J.-J.; Barreiro, E.J. Design, synthesis and analgesic properties of novel conformationally-restricted N-acylhydrazones (NAH). Bioorganic Med. Chem. Lett. 2009, 19, 4963–4966. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, E.T.; dos Santos, T.B.; Silva, D.K.C.; Meira, C.S.; Moreira, D.R.M.; da Silva, T.F.; Salmon, D.; Barreiro, E.J.; Soares, M.B.P. Potent immunosuppressive activity of a phosphodiesterase-4 inhibitor N-acylhydrazone in models of lipopolysaccharide-induced shock and delayed-type hypersensitivity reaction. Int. Immunopharmacol. 2018, 65, 108–118. [Google Scholar] [CrossRef]
- Jakubek, M.; Kejík, Z.; Kaplánek, R.; Antonyová, V.; Hromádka, R.; Šandriková, V.; Sýkora, D.; Martásek, P.; Král, V. Hydrazones as novel epigenetic modulators: Correlation between TET 1 protein inhibition activity and their iron(II) binding ability. Bioorganic Chem. 2019, 88, 102809. [Google Scholar] [CrossRef]
- Özturan Özer, E.; Unsal Tan, O.; Ozadali, K.; Küçükkılınç, T.; Balkan, A.; Uçar, G. Synthesis, molecular modeling and evaluation of novel N′-2-(4-benzylpiperidin-/piperazin-1-yl)acylhydrazone derivatives as dual inhibitors for cholinesterases and Aβ aggregation. Bioorganic Med. Chem. Lett. 2013, 23, 440–443. [Google Scholar] [CrossRef]
- Dias Viegas, F.P.; de Freitas Silva, M.; Divino da Rocha, M.; Castelli, M.R.; Riquiel, M.M.; Machado, R.P.; Vaz, S.M.; Simões de Lima, L.M.; Mancini, K.C.; Marques de Oliveira, P.C.; et al. Design, synthesis and pharmacological evaluation of N -benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur. J. Med. Chem. 2018, 147, 48–65. [Google Scholar] [CrossRef]
- Canal-Martín, A.; Sastre, J.; Sánchez-Barrena, M.J.; Canales, A.; Baldominos, S.; Pascual, N.; Martínez-González, L.; Molero, D.; Fernández-Valle, M.E.; Sáez, E.; et al. Insights into real-time chemical processes in a calcium sensor protein-directed dynamic library. Nat. Commun. 2019, 10, 2798. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, X.-L.; Shi, J.; Wang, S.-F.; Yin, Y.; Yang, Y.-S.; Zhang, W.-M.; Zhu, H.-L. Synthesis, molecular modeling and biological evaluation of N-benzylidene-2-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide derivatives as potential anticancer agents. Bioorganic Med. Chem. 2014, 22, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Gage, J.L.; Onrust, R.; Johnston, D.; Osnowski, A.; MacDonald, W.; Mitchell, L.; Ürögdi, L.; Rohde, A.; Harbol, K.; Gragerov, S.; et al. N-Acylhydrazones as inhibitors of PDE10A. Bioorganic Med. Chem. Lett. 2011, 21, 4155–4159. [Google Scholar] [CrossRef] [PubMed]
- He, J.-B.; Feng, L.-L.; Li, J.; Tao, R.-J.; Ren, Y.-L.; Wan, J.; He, H.-W. Design, synthesis and molecular modeling of novel N-acylhydrazone derivatives as pyruvate dehydrogenase complex E1 inhibitors. Bioorganic Med. Chem. 2014, 22, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.-R.; Liu, J.-L.; Mei, D.-S.; Ding, J.; Meng, L.-H.; Duan, W.-H. Design, synthesis and biological evaluation of acylhydrazone derivatives as PI3K inhibitors. Chin. Chem. Lett. 2015, 26, 118–120. [Google Scholar] [CrossRef]
- van der Vlag, R.; Guo, H.; Hapko, U.; Eleftheriadis, N.; Monjas, L.; Dekker, F.J.; Hirsch, A.K.H. A combinatorial approach for the discovery of drug-like inhibitors of 15-lipoxygenase-1. Eur. J. Med. Chem. 2019, 174, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Rupiani, S.; Buonfiglio, R.; Manerba, M.; Di Ianni, L.; Vettraino, M.; Giacomini, E.; Masetti, M.; Falchi, F.; Di Stefano, G.; Roberti, M.; et al. Identification of N-acylhydrazone derivatives as novel lactate dehydrogenase A inhibitors. Eur. J. Med. Chem. 2015, 101, 63–70. [Google Scholar] [CrossRef]
- Ünsal-Tan, O.; Özden, K.; Rauk, A.; Balkan, A. Synthesis and cyclooxygenase inhibitory activities of some N-acylhydrazone derivatives of isoxazolo[4,5-d]pyridazin-4(5H)-ones. Eur. J. Med. Chem. 2010, 45, 2345–2352. [Google Scholar] [CrossRef]
- Carcelli, M.; Rogolino, D.; Gatti, A.; De Luca, L.; Sechi, M.; Kumar, G.; White, S.W.; Stevaert, A.; Naesens, L. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Sci. Rep. 2016, 6, 31500. [Google Scholar] [CrossRef] [Green Version]
- Parlar, S.; Sayar, G.; Tarikogullari, A.H.; Karadagli, S.S.; Alptuzun, V.; Erciyas, E.; Holzgrabe, U. Synthesis, bioactivity and molecular modeling studies on potential anti-Alzheimer piperidinehydrazide-hydrazones. Bioorganic Chem. 2019, 87, 888–900. [Google Scholar] [CrossRef]
- Anastassova, N.O.; Yancheva, D.Y.; Mavrova, A.T.; Kondeva-Burdina, M.S.; Tzankova, V.I.; Hristova-Avakumova, N.G.; Hadjimitova, V.A. Design, synthesis, antioxidant properties and mechanism of action of new N,N′-disubstituted benzimidazole-2-thione hydrazone derivatives. J. Mol. Struct. 2018, 1165, 162–176. [Google Scholar] [CrossRef]
- Socea, L.I.; Visan, D.C.; Barbuceanu, S.F.; Apostol, T.V.; Bratu, O.G.; Socea, B. The Antioxidant Activity of Some Acylhydrazones with Dibenzo[a,d][7]annulene Moiety. Rev. Chim. 2018, 69, 795–797. [Google Scholar] [CrossRef]
- Costa, D.G.; da Silva, J.S.; Kümmerle, A.E.; Sudo, R.T.; Landgraf, S.S.; Caruso-Neves, C.; Fraga, C.A.M.; de Lacerda Barreiro, E.J.; Zapata-Sudo, G. LASSBio-294, A Compound With Inotropic and Lusitropic Activity, Decreases Cardiac Remodeling and Improves Ca2+ Influx Into Sarcoplasmic Reticulum After Myocardial Infarction. Am. J. Hypertens. 2010, 23, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.S.; Pereira, S.L.; Maia, R.D.C.; Landgraf, S.S.; Caruso-Neves, C.; Kümmerle, A.E.; Fraga, C.A.M.; Barreiro, E.J.; Sudo, R.T.; Zapata-Sudo, G. N-acylhydrazone improves exercise intolerance in rats submitted to myocardial infarction by the recovery of calcium homeostasis in skeletal muscle. Life Sci. 2014, 94, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Sudo, G.; Pereira, S.L.; Beiral, H.J.V.; Kummerle, A.E.; Raimundo, J.M.; Antunes, F.; Sudo, R.T.; Barreiro, E.J.; Fraga, C.A.M. Pharmacological Characterization of (3-Thienylidene)-3,4-Methylenedioxybenzoylhydrazide: A Novel Muscarinic Agonist With Antihypertensive Profile. Am. J. Hypertens. 2010, 23, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Sathler, P.C.; Lourenço, A.L.; Rodrigues, C.R.; da Silva, L.C.R.P.; Cabral, L.M.; Jordão, A.K.; Cunha, A.C.; Vieira, M.C.B.; Ferreira, V.F.; Carvalho-Pinto, C.E.; et al. In vitro and in vivo analysis of the antithrombotic and toxicological profile of new antiplatelets N-acylhydrazone derivatives and development of nanosystems. Thromb. Res. 2014, 134, 376–383. [Google Scholar] [CrossRef]
- Lima, L.M.; Frattani, F.S.; dos Santos, J.L.; Castro, H.C.; Fraga, C.A.M.; Zingali, R.B.; Barreiro, E.J. Synthesis and anti-platelet activity of novel arylsulfonate–acylhydrazone derivatives, designed as antithrombotic candidates. Eur. J. Med. Chem. 2008, 43, 348–356. [Google Scholar] [CrossRef]
- Jordão, A.K.; Ferreira, V.F.; Lima, E.S.; de Souza, M.C.B.V.; Carlos, E.C.L.; Castro, H.C.; Geraldo, R.B.; Rodrigues, C.R.; Almeida, M.C.B.; Cunha, A.C. Synthesis, antiplatelet and in silico evaluations of novel N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorganic Med. Chem. 2009, 17, 3713–3719. [Google Scholar] [CrossRef]
- Alencar, A.K.N.; Pereira, S.L.; da Silva, F.E.; Mendes, L.V.P.; Cunha, V.D.M.N.; Lima, L.M.; Montagnoli, T.L.; Caruso-Neves, C.; Ferraz, E.B.; Tesch, R.; et al. N-acylhydrazone derivative ameliorates monocrotaline-induced pulmonary hypertension through the modulation of adenosine AA2R activity. Int. J. Cardiol. 2014, 173, 154–162. [Google Scholar] [CrossRef]
- Silva, A.G.; Zapata-Sudo, G.; Kummerle, A.E.; Fraga, C.A.M.; Barreiro, E.J.; Sudo, R.T. Synthesis and vasodilatory activity of new N-acylhydrazone derivatives, designed as LASSBio-294 analogues. Bioorganic Med. Chem. 2005, 13, 3431–3437. [Google Scholar] [CrossRef]
- Kümmerle, A.E.; Raimundo, J.M.; Leal, C.M.; da Silva, G.S.; Balliano, T.L.; Pereira, M.A.; de Simone, C.A.; Sudo, R.T.; Zapata-Sudo, G.; Fraga, C.A.M. Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N-acylhydrazone derivatives. Eur. J. Med. Chem. 2009, 44, 4004–4009. [Google Scholar] [CrossRef]
- Feng, H.; Li, C.; Shu, S.; Liu, H.; Zhang, H. A11, a novel diaryl acylhydrazone derivative, exerts neuroprotection against ischemic injury in vitro and in vivo. Acta Pharmacol. Sin. 2019, 40, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilková, M.; Hudáčová, M.; Palušeková, N.; Jendželovský, R.; Almáši, M.; Béres, T.; Fedoročko, P.; Kožurková, M. Acridine Based N-Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Characterization and ctDNA/HSA Spectroscopic Binding Properties. Molecules 2022, 27, 2883. [Google Scholar] [CrossRef] [PubMed]
- Banumathi; Sherapura, A.; Malojirao, V.H.; Zabiulla; Sharath, B.S.; Thirusangu, P.; Mahmood, R.; Kumari, N.S.; Baliga, S.M.; Khanum, S.A.; et al. Antiproliferative pharmacophore azo-hydrazone analogue BT-1F exerts death signalling pathway targeting STAT3 in solid tumour. Pharmacol. Rep. 2022, 74, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Osmaniye, D.; Levent, S.; Karaduman, A.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z. Synthesis of New Benzothiazole Acylhydrazones as Anticancer Agents. Molecules 2018, 23, 1054. [Google Scholar] [CrossRef] [Green Version]
- Biagi, G.L.; Guerra, M.C.; Barbaro, A.M.; Gamba, M.F. Influence of lipophilic character on the antibacterial activity of cephalosporins and penicillins. J. Med. Chem. 1970, 13, 511–516. [Google Scholar] [CrossRef]
- Ebejer, J.-P.; Charlton, M.H.; Finn, P.W. Are the physicochemical properties of antibacterial compounds really different from other drugs? J. Cheminformatics 2016, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Zitko, J.; Doležal, M. Enoyl acyl carrier protein reductase inhibitors: An updated patent review (2011–2015). Expert Opin. Ther. Pat. 2016, 26, 1079–1094. [Google Scholar] [CrossRef]
- Shah, M.A.; Uddin, A.; Shah, M.R.; Ali, I.; Ullah, R.; Hannan, P.A.; Hussain, H. Synthesis and Characterization of Novel Hydrazone Derivatives of Isonicotinic Hydrazide and Their Evaluation for Antibacterial and Cytotoxic Potential. Molecules 2022, 27, 6770. [Google Scholar] [CrossRef]
- Yao, X.; Hu, H.; Wang, S.; Zhao, W.; Song, M.; Zhou, Q. Synthesis, Antimicrobial Activity, and Molecular Docking Studies of Aminoguanidine Derivatives Containing an Acylhydrazone Moiety. Iran. J. Pharm. Res. 2021, 20, 536–545. [Google Scholar] [CrossRef]
- Kumar, P.; Kadyan, K.; Duhan, M.; Sindhu, J.; Singh, V.; Saharan, B.S. Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents. Chem. Cent. J. 2017, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, E.S.; Nora de Souza, M.V.; Terror, M.S.; Pinheiro, A.C.; da Trindade Granato, J. Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur. J. Med. Chem. 2019, 184, 111742. [Google Scholar] [CrossRef] [PubMed]
- Tejera, E.; Munteanu, C.R.; López-Cortés, A.; Cabrera-Andrade, A.; Pérez-Castillo, Y. Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease. Molecules 2020, 25, 5172. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, N.d.M.; Freitas, R.H.C.N.; Fraga, C.A.M.; Fernandes, P.D. New 2-amino-pyridinyl-N-acylhydrazones: Synthesis and identification of their mechanism of anti-inflammatory action. Biomed. Pharmacother. 2020, 123, 109739. [Google Scholar] [CrossRef] [PubMed]
- da Silva Monteiro, C.E.; Franco, Á.X.; Sousa, J.A.O.; Matos, V.E.A.; de Souza, E.P.; Fraga, C.A.M.; Barreiro, E.J.; de Souza, M.H.L.P.; Soares, P.M.G.; Barbosa, A.L.R. Gastroprotective effects of N-acylarylhydrazone derivatives on ethanol-induced gastric lesions in mice are dependent on the NO/cGMP/KATP pathway. Biochem. Pharmacol. 2019, 169, 113629. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socea, L.-I.; Barbuceanu, S.-F.; Pahontu, E.M.; Dumitru, A.-C.; Nitulescu, G.M.; Sfetea, R.C.; Apostol, T.-V. Acylhydrazones and Their Biological Activity: A Review. Molecules 2022, 27, 8719. https://doi.org/10.3390/molecules27248719
Socea L-I, Barbuceanu S-F, Pahontu EM, Dumitru A-C, Nitulescu GM, Sfetea RC, Apostol T-V. Acylhydrazones and Their Biological Activity: A Review. Molecules. 2022; 27(24):8719. https://doi.org/10.3390/molecules27248719
Chicago/Turabian StyleSocea, Laura-Ileana, Stefania-Felicia Barbuceanu, Elena Mihaela Pahontu, Alexandru-Claudiu Dumitru, George Mihai Nitulescu, Roxana Corina Sfetea, and Theodora-Venera Apostol. 2022. "Acylhydrazones and Their Biological Activity: A Review" Molecules 27, no. 24: 8719. https://doi.org/10.3390/molecules27248719
APA StyleSocea, L. -I., Barbuceanu, S. -F., Pahontu, E. M., Dumitru, A. -C., Nitulescu, G. M., Sfetea, R. C., & Apostol, T. -V. (2022). Acylhydrazones and Their Biological Activity: A Review. Molecules, 27(24), 8719. https://doi.org/10.3390/molecules27248719