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Abstract: Due to the structure of acylhydrazones both by the pharmacophore –CO–NH–N= group
and by the different substituents present in the molecules of compounds of this class, various
pharmacological activities were reported, including antitumor, antimicrobial, antiviral, antiparasitic,
anti-inflammatory, immunomodulatory, antiedematous, antiglaucomatous, antidiabetic, antioxidant,
and actions on the central nervous system and on the cardiovascular system. This fragment is found
in the structure of several drugs used in the therapy of some diseases that are at the top of public
health problems, like microbial infections and cardiovascular diseases. Moreover, the acylhydrazone
moiety is present in the structure of some compounds with possible applications in the treatment
of other different pathologies, such as schizophrenia, Parkinson’s disease, Alzheimer’s disease, and
Huntington’s disease. Considering these aspects, we consider that a study of the literature data
regarding the structural and biological properties of these compounds is useful.

Keywords: acylhydrazone; intermediates; synthesis; properties; cytotoxic; antimicrobial; antiviral;
antioxidant; anti-inflammatory; antiparasitic

1. Introduction

The acylhydrazones, through their structure, have significant malleability both chem-
ically and pharmaceutically. Numerous representatives of this class of organic com-
pounds are intermediates in the synthesis of heterocyclic compounds, including pentatomic
ones [1–6]. They also present a structural variability that offers the possibility to synthesize
compounds belonging to this class with various therapeutic indications (like cytotoxic,
antibacterial, antifungal, antiviral, antioxidant, antiparasitic, anti-inflammatory, anticon-
vulsant, and antihypertensive) [7,8]. A number of derivatives containing the acylhydra-
zone moiety are used in therapy, such as nitrofurazone (antimicrobial), carbazochrome
(antihemorrhagic), nifuroxazide (intestinal antibacterial), dantrolene (muscle relaxant),
nitrofurantoin (antibacterial), nifuratel (antitrichomonal and antifungal), nifurzide (intesti-
nal anti-infective), nifurtoinol (urinary anti-infective), naftazone (capillary stabilizing),
azimilide (anti-arrhythmic), zorubicin (cytotoxic antibiotic) [9–11]. The structures of some
representative pharmacologically active agents containing the acylhydrazone scaffold are
shown in Figure 1.

The objective of this paper is to review the literature describing the acylhydrazone
moiety as an important scaffold for medicinal chemistry highlighting its versatility and
drug-like character.
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donor (the oxygen atom of the carbonyl group) [14], together with the azomethine nitro-
gen atom (–N=), participate in the chelation of metal ions [16]. 

Figure 1. Structures of some representative bioactive molecules bearing the acylhydrazone template.

2. Structure

The acylhydrazones have in their structure the –CO–NH–N=CH– group in which
there are: an electrophilic carbon atom (CH=N), a nucleophilic imine nitrogen atom, by the
doublet of non-participating electrons (CH=N:), and an amino nitrogen atom with acidic
character (–NH–) [12,13]. Thus, the acylhydrazone molecules are both electrophilic and
nucleophilic [14]. The nucleophilic attack is performed at the amine nitrogen atom (NH),
and the electrophilic one at the oxygen atom (CO) [15].

The acylhydrazones can also exhibit keto-enol tautomerism and through the electron
donor (the oxygen atom of the carbonyl group) [14], together with the azomethine nitrogen
atom (–N=), participate in the chelation of metal ions [16].

Due to the fact that the N=CH bond is in the vicinity of the amide nitrogen atom
(CO–NH), the acylhydrazones may have an acidic character manifested by the yielding of
the hydrogen atom bound to the azomethine carbon atom [17].

The acylhydrazones can form intermolecular hydrogen bonds through the hydrogen
atom bound to the amino nitrogen (–NH–) and the oxygen atom [18–20], between the
hydrogen atom bound to the imine carbon (CH) and the atomic nitrogen atom (–N=) of
another molecule [20].
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The acylhydrazones exhibit geometric isomerism due to the imine group (–N=CH–).
Thus, they are in a mixture of E and Z isomers, where E is predominant, in general, because
its stability is superior to the Z isomer [4,21].

Theoretically, the acylhydrazones can have four isomers, two of which are geometric
isomers (E/Z) and are due to the C=N double bond, and two are conformal isomers
(syn/anti) and are due to the N–N bond [5,22]. The structures of these isomers are shown
in Figure 2 [14].
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Figure 2. Isomers of acylhydrazone derivatives.

In the case of N-aroylhydrazones 1a–k (Figure 3), the Z isomer is stabilized by in-
tramolecular hydrogen bonds. Thus, it is found in a higher percentage than the E isomer [5].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 39 

 

 

Due to the fact that the N=CH bond is in the vicinity of the amide nitrogen atom (CO–

NH), the acylhydrazones may have an acidic character manifested by the yielding of the 

hydrogen atom bound to the azomethine carbon atom [17]. 

The acylhydrazones can form intermolecular hydrogen bonds through the hydrogen 

atom bound to the amino nitrogen (–NH–) and the oxygen atom [18–20], between the hy-

drogen atom bound to the imine carbon (CH) and the atomic nitrogen atom (–N=) of an-

other molecule [20]. 

The acylhydrazones exhibit geometric isomerism due to the imine group (–N=CH–). 

Thus, they are in a mixture of E and Z isomers, where E is predominant, in general, be-

cause its stability is superior to the Z isomer [4,21]. 

Theoretically, the acylhydrazones can have four isomers, two of which are geometric 

isomers (E/Z) and are due to the C=N double bond, and two are conformal isomers 

(syn/anti) and are due to the N–N bond [5,22]. The structures of these isomers are shown 

in Figure 2 [14]. 

 

Figure 2. Isomers of acylhydrazone derivatives. 

In the case of N-aroylhydrazones 1a–k (Figure 3), the Z isomer is stabilized by intra-

molecular hydrogen bonds. Thus, it is found in a higher percentage than the E isomer [5]. 

 

Figure 3. Intramolecular hydrogen bond. 

The NMR spectra indicated that the N-acylhydrazones usually exist as a mixture of 

two conformers, namely E(C=N)(N–N) synperiplanar and E(C=N)(N–N) antiperiplanar, at room tem-

perature in DMSO-d6. The E(C=N) configurational isomers rapidly establish synperiplanar/an-

tiperiplanar equilibrium about the –CO–NH– bond, in the DMSO-d6 solution. The synperi-

planar conformer predominates the antiperiplanar isomer due to its ability to develop in-

termolecular interactions with polar solvents, like DMSO [23]. 

3. Synthesis 

The acylhydrazones 4 can be obtained by the condensation reaction of an aldehyde 

or ketone 3 with a derivative of the class of hydrazides 2 [24] in the presence of an alcohol 

[25,26], generally at reflux, and in an acidic medium [12,27–32] or in the absence of the 

Figure 3. Intramolecular hydrogen bond.

The NMR spectra indicated that the N-acylhydrazones usually exist as a mixture of
two conformers, namely E(C=N)(N–N) synperiplanar and E(C=N)(N–N) antiperiplanar, at room
temperature in DMSO-d6. The E(C=N) configurational isomers rapidly establish synperipla-
nar/antiperiplanar equilibrium about the –CO–NH– bond, in the DMSO-d6 solution. The
synperiplanar conformer predominates the antiperiplanar isomer due to its ability to develop
intermolecular interactions with polar solvents, like DMSO [23].

3. Synthesis

The acylhydrazones 4 can be obtained by the condensation reaction of an aldehyde
or ketone 3 with a derivative of the class of hydrazides 2 [24] in the presence of an
alcohol [25,26], generally at reflux, and in an acidic medium [12,27–32] or in the absence of
the acid catalyst [4,6,33–37]. The general synthesis reaction of acylhydrazones is presented
in Scheme 1 [37].
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4. Spectral Analysis

The vibration-rotation spectra of acylhydrazones show bands specific to the
–CO–NH–N= moiety present in the structure of derivatives of this class. The intervals
in which these bands are recorded are as follows: 1647–1687 cm−1 for the C=O connec-
tions [6,18,19], 3194–3440 cm−1 for the NH connection [6,19,29], with the specification
that there is variation between symmetrical (3080 cm−1) and asymmetrical vibrations
(3194 cm−1) [17], 980–1000 cm−1 for the N–N connection [38], 1578–1623 cm−1 for the N=C
connection [17–19], and for the CH connection the value of the wavenumber in the region
of 3050–3078 cm−1 was reported [6].

The values of the chemical shifts of the protons specific to the acylhydrazone deriva-
tives in the 1H-NMR spectra are in the following ranges: 11.0–13.5 ppm for the proton
of the –CO–NH– group [6,31], 8.5–12.5 ppm for the proton of the N–H bond [12,19,28],
8–9 ppm for the proton of the –N=CH– group [12,31].

In the 13C-NMR spectra, the chemical shift values for the imine carbon atom (–N=CH–)
are between 157–168 ppm, and for the amide carbon atom (–CO–NH–) are reported between
159.0–173.5 ppm [6,31]. In some cases, the duplicated signals observed in the NMR spectra
of acylhydrazones correspond to the presence of two amide bond-related conformers [23].

5. Biological Properties

Acylhydrazones have significant importance in the pharmaceutical field
through numerous biological properties with multiple therapeutic indications. In the
research studies performed using compounds from the acylhydrazone class, the
following actions were reported: antitumor [25–28,39–41] and [42–51], cytotoxic [52],
antibacterial [4,12,31,33–35] [53–59], antifungal [34,60,61], antiviral [62–69],
antiparasitic [6,45,70–76], anti-inflammatory [32,73,77–84], analgesic [36,77–81,85], im-
munomodulatory [83,86], enzyme inhibition [29,86–88] and [89–98], antidiabetic [18],
anticonvulsant [73], antioxidant [34,39,78,99–101], and effects on the cardiovascular sys-
tem [102–111].

5.1. Antitumor Action

According to a recent study, 5-bromo-1-methyl-N’-[(E)-(1-methyl-1H-indol-3-
yl)methylidene]-1H-indol-3-carbohydrazide 5 (Figure 4) showed antitumor action on breast,
cervical and colon cancer cell lines by inducing cellular apoptosis. This action is exerted
through cyclic adenosine monophosphate (cAMP)-dependent protein kinase A, p53 pro-
tein, and by stimulating the generation of reactive oxygen species (ROS) and nitric oxide
(NO) [28].
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Figure 4. Structure of 5-bromo-1-methyl-N’-[(E)-(1-methyl-1H-indol-3-yl)methylidene]-1H-indole-3-
carbohydrazide 5 with antitumor action.

Aneja et al. demonstrated that (E)-1-(4-methoxybenzyl)-N’-(7-methyl-2-oxoindolin-
3-ylidene)-1H-1,2,3-triazole-4-carbohydrazide 6 (Figure 5) has an inhibitory effect on the
kinase involved in cell replication, microtubule affinity regulatory kinase (4MARK4), ful-
filling an antiproliferative effect simultaneously with increasing the production of ROS,
inducing apoptosis in cancer cell lines [25].

Molecules 2022, 27, x FOR PEER REVIEW 5 of 39 
 

 

 
Figure 4. Structure of 5-bromo-1-methyl-N’-[(E)-(1-methyl-1H-indol-3-yl)methylidene]-1H-indole-
3-carbohydrazide 5 with antitumor action. 

Aneja et al. demonstrated that (E)-1-(4-methoxybenzyl)-N’-(7-methyl-2-oxoindolin-
3-ylidene)-1H-1,2,3-triazole-4-carbohydrazide 6 (Figure 5) has an inhibitory effect on the 
kinase involved in cell replication, microtubule affinity regulatory kinase (4MARK4), ful-
filling an antiproliferative effect simultaneously with increasing the production of ROS, 
inducing apoptosis in cancer cell lines [25]. 

 
Figure 5. Structure of (E)-1-(4-methoxybenzyl)-N’-(7-methyl-2-oxoindolin-3-ylidene)-1H-1,2,3-tria-
zole-4-carbohydrazide 6 with antiproliferative action. 

The cytotoxic action was evidenced for several compounds of which two derivatives, 
namely N’-(1-(4,7-dihydroxy-2-oxo-2H-chromen-3-yl)ethylidene)benzohydrazide 7a and 
N’-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene)benzohydrazide 7b (Figure 6), were 
identified as having an intensity of this effect comparable to that of doxorubicin and col-
chicine [27]. 

 

Figure 5. Structure of (E)-1-(4-methoxybenzyl)-N’-(7-methyl-2-oxoindolin-3-ylidene)-1H-1,2,3-
triazole-4-carbohydrazide 6 with antiproliferative action.

The cytotoxic action was evidenced for several compounds of which two derivatives,
namely N’-(1-(4,7-dihydroxy-2-oxo-2H-chromen-3-yl)ethylidene)benzohydrazide 7a and
N’-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene)benzohydrazide 7b (Figure 6), were
identified as having an intensity of this effect comparable to that of doxorubicin and
colchicine [27].
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Very recently, Vilková et al. investigated the anticancer activity of some acridine
acylhydrazone analogs 8a–d (Figure 7), among which 8a and 8c reduced the clonogenic
capacity of A549 cells [112].
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According to the evaluation of Lis et al., acylhydrazone 9 (Figure 8) induced apoptosis
in erlotinib-resistant neoplasms as a result of selective STAT3 inhibition [40].
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Figure 8. Structure of compound 9 showing antitumor action.

Recently, Banumathi et al. showed that the azo-hydrazone analog 10 (Figure 9) exerted
chemosensitivity specifically against EAC and A549 cells without altering their normal
counterpart [113]. It was found that the antiproliferative activity of 10 was due to the induc-
tion of apoptosis by inhibiting the STAT3 signal. Furthermore, compound 10 attenuated
solid tumor growth without inducing significant toxicological side effects.
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The acylhydrazone derivative 11 (Figure 10) exhibited an in vivo antiproliferative
effect with a potency similar to that of colchicine both by inducing apoptosis and by
inhibiting the polymerization of microtubules [26].
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Figure 10. Structure of derivative 11 with antiproliferative action.

The derivatives 12a–c (Figure 11) presented, besides the antiproliferative action on
human erythroleukemia K562 and melanoma Colo-38 cells, an antioxidant action demon-
strated based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity test,
ferric reducing antioxidant power, and oxygen radical absorbance capacity [39].
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According to a study by Sun et al., it was found that a derivative of the class of
acylhydrazones (13) (Figure 12) showed antitumor action with possible use in gastric
cancer as a lysine-specific demethylase 1 (LSD1) inhibitor [41].
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Congiu et al. synthesized a series of acylhydrazone derivatives 14a–d (Figure 13)
which showed cytotoxic effect and inhibition of tumor development for a relatively large
number of neoplasms [42].
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Figure 13. Structures of the acylhydrazone class compounds 14a–d with cytotoxic effect.

A series of acylhydrazone-derived compounds displayed cytotoxic action of variable
intensity. Thus, for compound 15, the potency of the effect was higher compared to
doxorubicin in promyelocytic leukemia [43]; for the acylhydrazone derivative 16, the
intensity of the effect was significant due to the exercise of cytotoxic action on different
neoplasms including resistant cell lines [44]. The benzothiazole acylhydrazones 17a–c
showed selective inhibition towards cancer cells. Moreover, derivative 17a displayed
higher antiproliferative activity than the reference agent cisplatin [114]. The structures of
the acylhydrazones 15–17 are presented in Figure 14.
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In the case of acylhydrazone derivatives, the cytotoxic mechanism does not involve the
generation of ROS leading to apoptosis. The derivative 18 (Figure 15) falls into this category
of compounds, influencing the cell cycle, cell division, and ribonucleotide reductase, an
enzyme that changes its activity following the chelation of iron ions [46].
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In a study by Yu et al., two derivatives of the class of acylhydrazones 19 and 20
(Figure 16) with cytotoxic action superior to the reference substance (5-fluorouracil) were
reported [47].
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Acylhydrazone 21 (Figure 17) could be used in therapy as an antitumor agent with
insignificant effects on normal cell lines due to the fact that it induces apoptosis by depolar-
izing the mitochondrial membrane and generating ROS in cancer cell lines. In addition to
these actions, the compound is involved in the inhibition of tubulin polymerization [48].
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Figure 17. Structure of acylhydrazone derivative 21 with antitumor action.

Compound 22a showed the strongest cytotoxic action on all cell cultures used, and
derivatives 22b and 22c exhibited cytotoxicity only on a certain (ovarian cancer) cell line. In
the experimental model of Ehrlich solid carcinoma, the acylhydrazone 22a showed inhibi-
tion of tumor development comparable to that of the reference substance, 5-fluorouracil [49].
The structures of acylhydrazones 22a–c are presented in Figure 18.
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Figure 18. Structures of acylhydrazones 22a–c with cytotoxic action.

De Almeida et al. evaluated the cytotoxic action of a series of derivatives from the
class of acylhydrazones. The research showed that acylhydrazone 23 (Figure 19) exerted
the best action in the series of studied compounds, probably due to the bromine substituent
in the para position on the phenyl nucleus [50].
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The acylhydrazone derivative 24 (Figure 20) showed antitumor action on the studied
cancer cell lines with increased intensity on the lung cancer cell line. The cytotoxic action is
due to the generation of ROS and the altering of the cell cycle [51].
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Figure 20. Structure of the acylhydrazone derivative 24 with antitumor action.

Compounds 25a and 25b (Figure 21) showed the inhibitory effect against carbonic
anhydrase IX and XII isoforms, respectively, involved in the growth and development of
tumors [29].
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Figure 21. Structures of acylhydrazone compounds 25a,b with antitumor effect.

The derivative 26 (Figure 22) showed antitumor action with a higher potency compared
to 5-fluorouracil, due to the inhibitory effect of telomerase [91].



Molecules 2022, 27, 8719 12 of 38

Molecules 2022, 27, x FOR PEER REVIEW 11 of 39 
 

 

 
Figure 21. Structures of acylhydrazone compounds 25a,b with antitumor effect. 

The derivative 26 (Figure 22) showed antitumor action with a higher potency com-
pared to 5-fluorouracil, due to the inhibitory effect of telomerase [91]. 

 
Figure 22. Structure of acylhydrazone 26 with antitumor action. 

The acylhydrazone 27 (Figure 23) demonstrated the inhibitory activity on phospha-
tidyl-inositol-3-kinase, which is involved in cell division. Gao et al. assumed that the ac-
tion was feasible due to the nitrogen atoms and substituents in the compound structure 
[94]. 

 
Figure 23. Structure of compound 27 with antitumor activity. 

The acylhydrazone 28 (Figure 24) was reported as an inhibitor with significant action 
on lactate dehydrogenase A, an isoform that exhibits abnormal activity in tumor cells [96]. 

 

Figure 22. Structure of acylhydrazone 26 with antitumor action.

The acylhydrazone 27 (Figure 23) demonstrated the inhibitory activity on phosphatidyl-
inositol-3-kinase, which is involved in cell division. Gao et al. assumed that the action was
feasible due to the nitrogen atoms and substituents in the compound structure [94].
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The acylhydrazone 28 (Figure 24) was reported as an inhibitor with significant action
on lactate dehydrogenase A, an isoform that exhibits abnormal activity in tumor cells [96].

Molecules 2022, 27, x FOR PEER REVIEW 11 of 39 
 

 

 
Figure 21. Structures of acylhydrazone compounds 25a,b with antitumor effect. 

The derivative 26 (Figure 22) showed antitumor action with a higher potency com-
pared to 5-fluorouracil, due to the inhibitory effect of telomerase [91]. 

 
Figure 22. Structure of acylhydrazone 26 with antitumor action. 

The acylhydrazone 27 (Figure 23) demonstrated the inhibitory activity on phospha-
tidyl-inositol-3-kinase, which is involved in cell division. Gao et al. assumed that the ac-
tion was feasible due to the nitrogen atoms and substituents in the compound structure 
[94]. 

 
Figure 23. Structure of compound 27 with antitumor activity. 

The acylhydrazone 28 (Figure 24) was reported as an inhibitor with significant action 
on lactate dehydrogenase A, an isoform that exhibits abnormal activity in tumor cells [96]. 

 
Figure 24. Structure of compound 28 with lactate dehydrogenase A inhibitory action.

5.2. Antimicrobial Action
5.2.1. Antibacterial Action

There are many acylhydrazones described to have antimicrobial effects on various
bacterial strains. It is difficult to analyze the structure-activity relationships because of
the high chemical diversity of these compounds. As a general rule, the compounds active
on Gram-negative bacteria are more hydrophilic than those effective on Gram-positive
bacteria because of the differences in their cell wall structure [115,116]. Many of the
studies reported here used acylhydrazone scaffold as the rationale for their drug-design
process and presented only the phenotypic antibacterial activity without the mechanism of
the effect.

A series of acylhydrazone salts 29a,b (Figure 25) were synthesized and their an-
timicrobial action was studied. It is noteworthy that the investigated derivative 29a ex-
erted antimicrobial action on methicillin-resistant Staphylococcus aureus (MRSA), Escherichia
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coli, Clostridium difficile, and Candida albicans. A high potency action was registered on
methicillin-resistant Staphylococcus aureus and Escherichia coli (29b) [31]. Overall, molec-
ular dynamics simulation analysis showed that the effect of structural features, such as
pyridinium scaffold, hydrophobic side chains, and –CO–NH–N= linker, in the diffusion
of such substances across the cell membrane and that it could be responsible for their
antibacterial activity. In order to understand the mechanism of acylhydrazone salts 29a,b as
anti-bacterial agents, docking experiments were performed against the microbial target, E.
coli glucosamine-6-P synthase. The acylhydrazone salts 29a,b were predicted to form stable
hydrogen bonding and hydrophobic interactions. Molecular dynamics simulation high-
lighted the target interaction behavior of these derivatives at the surface of cell membranes
indicating a passive diffusion mechanism at the surface layer.
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Figure 25. Structures of the salts of acylhydrazones 29a,b with antimicrobial action.

Among the pathogenic microorganisms, for which the antimicrobial action of acyl-
hydrazone derivatives was demonstrated there is also Mycobacterium tuberculosis. Rohane
et al. synthesized an acylhydrazone 30 (Figure 26) with the most intense action among the
obtained derivatives due to the substituents on the benzene ring. The reference substance
used was isoniazid [33]. Molecular docking studies investigating acylhydrazone analogs
using enoyl acyl carrier protein reductase as their potential biological target indicate that
the hydroxyl, azide, amino, and phenyl groups of the spacer of the acylhydrazone play an
important role in the interactions with the active site [33]. The enoyl acyl carrier protein
reductase is an attractive target for drug-design, being essential in the type II fatty acid
synthase system found in microorganisms and without homologue in mammals [117].
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Siddique et al. obtained a series of new compounds 31a–g (Figure 27), that showed
antibacterial and antifungal actions with varying intensities studied on Escherichia coli,
Bacillus subtilis, Salmonella typhimurium, Staphylococcus aureus, and Candida albicans [34].

Molecules 2022, 27, x FOR PEER REVIEW 13 of 39 

 

 

used was isoniazid [33]. Molecular docking studies investigating acylhydrazone analogs 

using enoyl acyl carrier protein reductase as their potential biological target indicate that 

the hydroxyl, azide, amino, and phenyl groups of the spacer of the acylhydrazone play an 

important role in the interactions with the active site [33]. The enoyl acyl carrier protein 

reductase is an attractive target for drug-design, being essential in the type II fatty acid 

synthase system found in microorganisms and without homologue in mammals [117]. 

 

Figure 26. Structure of acylhydrazone 30 with tuberculostatic action. 

Siddique et al. obtained a series of new compounds 31a–g (Figure 27), that showed 

antibacterial and antifungal actions with varying intensities studied on Escherichia coli, Ba-

cillus subtilis, Salmonella typhimurium, Staphylococcus aureus, and Candida albicans [34]. 

 

Figure 27. Structures of acylhydrazones 31a–g with antibacterial and antifungal actions. 

The mechanism of antibacterial action, in the case of acylhydrazones 32a–d (Figure 

28), studied by Xia et al., is to modulate the expression of genes responsible for hemolysis 

and virulence of tested pathogenic microorganisms [35]. 
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The mechanism of antibacterial action, in the case of acylhydrazones 32a–d (Figure 28),
studied by Xia et al., is to modulate the expression of genes responsible for hemolysis and
virulence of tested pathogenic microorganisms [35].
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Figure 28. Structures of acylhydrazones 32a–d with antibacterial action.

The acylhydrazone derivatives 33a,b and 34a–c (Figure 29) showed antibacterial action
on Escherichia coli by inhibiting the enzymatic pyruvate dehydrogenase complex (PDHc).
Among the compounds studied, the most active was 34b. The acylhydrazones 33a and 33b
exhibited selectivity for the enzymatic complex [12].
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Figure 29. Structures of acylhydrazone derivatives 33a,b and 34a–c with antibacterial action.

The antimicrobial action of some acylhydrazone derivatives against Escherichia coli,
resulting from the inhibition of the multienzyme PDHc-E1, was also investigated. Among
the compounds studied, acylhydrazones 35a–d (Figure 30) exerted the best action with
good selectivity [53].
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Figure 30. Structures of acylhydrazone derivatives 35a–d with antimicrobial action.

The acylhydrazone derivatives 36a–d (Figure 31) showed intense antibacterial action
on Pseudomonas aeruginosa, a resistant microorganism [4].
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According to studies by Jin et al., the acylhydrazones 37a,b (Figure 32) exhibited a
broad antibacterial spectrum, being active on both Gram-negative bacteria (Escherichia
coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis, Staphylococcus
aureus) [54,55].
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Figure 32. Structures of derivatives 37a,b with antibacterial action.

The complex of acylhydrazone 38 (H2L) with zinc (II) ion as [Zn(HL)2]·EtOH showed
an intense antimicrobial action on most of the tested bacterial strains. Among the mi-
croorganisms on which this property was studied are Bacillus subtilis, methicillin-resistant
Staphylococcus aureus, Escherichia coli, and Haemophilus influenzae. The potency of the com-
plex on Haemophilus influenzae was significant [56]. The structure of acylhydrazone 38 is
presented in Figure 33.
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Figure 33. Structure of acylhydrazone 38 with antimicrobial action.

Among the compounds investigated are acylhydrazones 39 with action on Escherichia
coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis [57] and 40 which was
only active on Mycobacterium tuberculosis among the microorganisms included in the
study [58]. The structures of acylhydrazones 39 and 40 are shown in Figure 34.
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Shah et al. synthesized a series of isonicotinic hydrazid-based acylhydrazone analogs
41a–f (Figure 35), which were evaluated for their antibacterial activity against two Gram-
positive strains, namely Staphylococcus aureus, Bacillus subtilis, and a Gram-negative bac-
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terium, i.e., Escherichia coli [118]. The results showed that the studied compounds 41a–f had
appreciable antibacterial activity against the tested strains, among which the derivatives
41c and 41e proved to be the most active, being promising agents in the treatment of
bacterial infections. The acylhydrazones 41a–f were also screened for their cytotoxic effect,
the maximum activity being noted for analogs 41e and 41f.

Molecules 2022, 27, x FOR PEER REVIEW 16 of 39 

 

 

 

Figure 33. Structure of acylhydrazone 38 with antimicrobial action. 

Among the compounds investigated are acylhydrazones 39 with action on Escherichia 

coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis [57] and 40 which was 

only active on Mycobacterium tuberculosis among the microorganisms included in the study 

[58]. The structures of acylhydrazones 39 and 40 are shown in Figure 34. 

 

Figure 34. Structures of acylhydrazones 39 and 40 with antimicrobial action. 

Shah et al. synthesized a series of isonicotinic hydrazid-based acylhydrazone analogs 

41a–f (Figure 35), which were evaluated for their antibacterial activity against two Gram-

positive strains, namely Staphylococcus aureus, Bacillus subtilis, and a Gram-negative bac-

terium, i.e., Escherichia coli [118]. The results showed that the studied compounds 41a–f 

had appreciable antibacterial activity against the tested strains, among which the deriva-

tives 41c and 41e proved to be the most active, being promising agents in the treatment of 

bacterial infections. The acylhydrazones 41a–f were also screened for their cytotoxic effect, 

the maximum activity being noted for analogs 41e and 41f. 

 

Figure 35. Structures of acylhydrazones 41a–f with antibacterial and cytotoxic actions. Figure 35. Structures of acylhydrazones 41a–f with antibacterial and cytotoxic actions.

The acylhydrazone 42 (Figure 36) showed good antimicrobial activity on Escherichia
coli by inhibiting the PDHc-E1 due to the para-NO2 group grafted on the benzene ring [93].
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Yao et al. designed and synthesized a series of aminoguanidine derivatives containing
an acylhydrazone moiety 43a–h (Figure 37), which were evaluated for their antimicrobial
activity against Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, Bacillus
subtilis, and Streptococcus mutans) and Gram-negative strains (Escherichia coli; Pseudomonas
aeruginosa) [119]. Penicillin, oxacillin, and norfloxacin were used as positive controls. The
derivative 43d displayed a wide spectrum of antibacterial effects, being active on both
Gram-positive and Gram-negative bacterial strains.
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5.2.2. Antifungal Action

The acylhydrazones 31a, 31b, 31c, and 31e (Figure 27) studied on Candida albicans
exerted a moderate antifungal effect [34]. Additionally, the derivatives 44a–e (Figure 38)
showed modest antifungal activity against different fungal strains (Candida albicans, Candida
tropicalis, Candida krusei, Candida glabrata, and Candida parapsilosis) [60]. In the case of
compounds 44a–d, the association of the carbohydrate unit with the acylhydrazone moiety
determined the increase of the fungicidal effect on Candida parapsilosis. The acylhydrazone
derivatives 45a,b (Figure 38), from the series synthesized by Reis et al., had selectivity for
Candida glabrata and a potency comparable to that of the nystatin [61].
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All the compounds 46a–g (Figure 39), obtained by Kumar et al., showed excellent
antifungal activity against Aspergillus niger compared to the reference drug (clotrimazole),
good antimalarial effect against Plasmodium falciparum compared to the standard drug
chloroquine, and moderate to good antibacterial activity against Gram-positive bacterium
strain Bacillus cereus compared to clotrimazole [120].
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5.3. Antiviral Action

In the case of some derivatives from the acylhydrazone class, it is reported in the
literature that they exhibit antiviral action. This effect was identified for acylhydrazones
47a,b and 48 (Figure 40), which were studied as inhibitors targeting Human immunodeficiency
virus type 1 (HIV-1) capsid protein [62] and on Tobacco mosaic virus, respectively [63].
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Additionally, the acylhydrazone derivatives 49–55 (Figure 41) were studied for their
antiviral action. Through the research undertaken, the following results were obtained,
namely, compound 49 displayed antiviral action on HIV-1 by blocking the activity of
the viral envelope glycoprotein [64], analog 50 showed intense action on HIV-1 [65], and
derivatives 51 and 52 had antiviral action on the Epstein–Barr virus [66]. Compound 53, with
possible application in the treatment of the Influenza virus, had neuraminidase inhibitory
action more potent than oseltamivir [67]. The derivatives 54 and 55, containing in their
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structure a monosaccharide moiety (D-mannose, D-ribose), displayed the highest potency
in the series of studied compounds on Hepatitis A virus (54) and Herpes simplex 1 (55), using
as reference substance amantadine, respectively, acyclovir [68].
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Figure 41. Structures of acylhydrazone derivatives 49–55 with antiviral action.

In the case of acylhydrazone derivatives, the antiviral action against HIV and Influenza
A virus subtype H1N1 was shown to be determined by the enzymatic inhibition resulting
from the chelation of metal ions in the viral structure and endonucleases [69].

The acylhydrazone class derivative 56 (Figure 42) was found to be an influenza virus
endonuclease inhibitor due to the ability of complexation of metal ions (through –OH
groups) in the enzyme structure and forming hydrogen bonds [98].
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5.4. Antiparasitic Action

Some acylhydrazone derivatives were studied for their antiparasitic activity. For
example, compounds 57a,b had antiparasitic action against Entamoeba histolytica which
was superior to that of metronidazole with lower toxicity [6]. Compound 58a showed
antimalarial activity as an inhibitor of β-hematin synthesis and derivative 58b displayed
antiamoebic effect [70]. Compounds 59 [71] and 60a–c exhibited antiparasitic action against
the Plasmodium falciparum, 60b being the most potent compound in the series [72]. The
structures of acylhydrazone compounds 57–60 are presented in Figure 43.
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The derivatives 61a,b [74], 62 [45] with antiparasitic action on Trypanosoma cruzi, and
analog 63 [75] active against Leishmania amazonensis were also reported (Figure 44).
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The mechanism of antiparasitic action of the acylhydrazone derivative 64 (Figure 45)
is based on membrane depolarization, production of ROS, and alteration of cell membrane
integrity in the case of the parasite L. amazonensis [121].
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Figure 45. Structure of acylhydrazone 64 with antiparasitic action.

A compound with an inhibitory effect on the development of Plasmodium falciparum
was obtained by complexing the acylhydrazone 65 (Figure 46) with iron ions [73].

The acylhydrazones 66a,b (Figure 47) showed antiparasitic action via inhibition of
cruzain, the major cysteine protease of Trypanosoma cruzi. The effect was comparable to that
of the reference substance nifurtimox [76,122].
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Figure 47. Structures of acylhydrazones 66a,b with antiparasitic action on Trypanosoma cruzi.

5.5. Anti-Inflammatory Action

Acylhydrazone class compounds 67–72 (Figure 48) exerted anti-inflammatory activity.
Thus, compound 67 inhibited the cascade of arachidonic acid based on the naphthyl
group which facilitates hydrophobic interactions with IKK-β [32]. The derivatives 68a,b
showed anti-inflammatory and analgesic activities, the effects exerted by 68a being of lower
intensity [77]. In the case of compound 69a, the anti-inflammatory action was determined
by the presence of the –NO2 group [78]. The derivative 69b had an anti-inflammatory action
comparable to that of nimesulide [79]. Compounds 69c and 70a,b demonstrated the anti-
inflammatory effect by inhibiting the NF-kB pathway and the release of IL-8 [80]. Analog 71
also exerted analgesic action in addition to the anti-inflammatory one [81]. The derivative
72 had an anti-inflammatory effect by reducing the eosinophilia due to low IL-4, IL-5,
and IL-13 cytokine levels [82]. This suggests its therapeutic potential for treating allergic
diseases. Additionally, 72 demonstrated the anti-inflammatory action by modulating IL-1β
secretion and PGE2 synthesis in macrophages and by inhibiting calcineurin phosphatase
activity in lymphocytes [83].
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The anti-inflammatory effect of acylhydrazone 73 (Figure 49) was due to the selective
inhibition of cyclooxygenase-2 (COX-2) and decreasing lymphocyte proliferation [84].
Moreover, the in silico analysis and experimental results suggested that 73 exhibits a
well-balanced pharmacodynamic and pharmacokinetic profile.
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Compound 74 (Figure 50), synthesized by Ünsal-Tan et al., was reported as a non-
selective COX inhibitor with the highest potency among the studied derivatives [97].
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The acylhydrazones 75a–c (Figure 51) exhibited an anti-inflammatory effect compara-
ble to that of indomethacin, but do not affect the gastric mucosa [73].
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Figure 51. Structures of compounds 75a–c with anti-inflammatory action.

In addition to the anti-inflammatory activity, compounds of the acylhydrazone class
68a,b [77], 69a [78], 69b [79], 70a [80], and 71 [81] (Figure 48) demonstrated analgesic action.
This effect, in association with the anti-inflammatory activity, may have possible therapeutic
applications in various pathologies.

It was found that the analgesic action mediated by acylhydrazones 76a,b was ex-
erted via the opioidergic system [36]. Cordeiro et al. showed that amino-pyridinyl-N-
acylhydrazone 77 exhibited anti-inflammatory activity by inhibiting p38α, reducing in-
flammatory pain, cell migration, and inflammatory mediators participating in the MAPK
pathway, such as IL-1β and NF-α [123]. The structures of acylhydrazones 76a,b and 77 are
presented in Figure 52.
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5.6. Immunomodulatory Action

The action of acylhydrazone derivatives on the immune system was also reported in
the literature. The acylhydrazone class derivative 72 (Figure 48) showed immunomodula-
tory effect by inhibiting cytokine production and lymphocyte proliferation [83].

According to a study conducted by Guimarães et al., acylhydrazone 78 (Figure 53)
exhibited immunosuppressive activity due to the inhibitory action of phosphodiesterase-
4 (PDE-4), inhibiting phosphorylation of IkB protein which interferes with the NF-kB
pathway [86].
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5.7. Antiedematous Action

Compounds 25b (R1 = C6H5, R2 = 2-pyridyl) and 25c (R1 = CH3, R2 = 4-BrC6H4)
(Figure 21), having in their structures the acylhydrazone moiety closed in a heterocycle,
showed antiedematous effect by inhibiting carbonic anhydrase I isoform [29].

5.8. Antiglaucomatous Action

The acylhydrazone derivatives 25c (R1 = CH3 and R2 = 4-BrC6H4), 25d (R1 = CH3 and
R2 = C6H5), 25e (R1 = CH3 and R2 = 4-CH3C6H4) (Figure 21), and 79 (Figure 54) exhibited
antiglaucomatous activity by inhibiting the carbonic anhydrase II isoform [29].
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5.9. Activity on the Central Nervous System (CNS)

The acylhydrazones 80a–f showed the inhibitory action on acetylcholinesterase and
good antiaggregation activity on plates of β-amyloid. The enzyme inhibition was noted as
the effect depending on the conformation of the enzyme-substrate complex, with relatively
better results than the other compounds in the case of 80d and 80f [88]. The derivative
81 is one of the substances synthesized by Viegas et al. with possible beneficial effects in
Alzheimer’s disease by inhibiting acetylcholinesterase, COX-1, and COX-2 [89]. Compound
82 could be a potential candidate for use in neurodegenerative diseases due to passive
diffusion through the blood–brain barrier and controlling neuronal synapses [90]. The
structures of compounds 80–82 are presented in Figure 55.
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Figure 55. Structures of compounds 80–82 with activity on the CNS.

Compounds 83 and 84 (Figure 56), which showed the chelating affinity of iron (II)
ions, presented inhibitory action on ten-eleven translocation methylcytosine dioxygenase 1
(TET 1). This protein catalyzes the chemical reaction of transforming 5-methylcytosine into
5-hydroxymethylcytosine, a substance that in abnormal concentrations is associated with
diverse pathologies, like leukemia, Parkinson’s disease, and Alzheimer’s disease [87].
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An acylhydrazone derivative 85 (Figure 57) was reported as a potent phosphodi-
esterase 10A (PDE10A) inhibitor probably due to the presence in their structure of the
substituted 4-quinoline nucleus [92]. The PDE10A is implicated in diverse central nervous
system pathologies, such as Parkinson’s disease and Huntington’s disease, and mental
disorders, like schizophrenia [92].
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Figure 57. Structure of acylhydrazone 85 with PDE10A inhibitory action.

The derivative of acylhydrazone 86 (Figure 58) exerted inhibitory action of an isoform
of lipooxygenase (15-LOX-1) with good intensity, due to the ortho-chlorine atom on the
benzene nucleus. This isoform is involved in pathologies, such as Alzheimer’s disease and
Parkinson’s disease [95].

Molecules 2022, 27, x FOR PEER REVIEW 28 of 39 
 

 

tuted 4-quinoline nucleus [92]. The PDE10A is implicated in diverse central nervous sys-
tem pathologies, such as Parkinson’s disease and Huntington’s disease, and mental dis-
orders, like schizophrenia [92]. 

 
Figure 57. Structure of acylhydrazone 85 with PDE10A inhibitory action. 

The derivative of acylhydrazone 86 (Figure 58) exerted inhibitory action of an isoform 
of lipooxygenase (15-LOX-1) with good intensity, due to the ortho-chlorine atom on the 
benzene nucleus. This isoform is involved in pathologies, such as Alzheimer’s disease and 
Parkinson’s disease [95]. 

 
Figure 58. Structure of acylhydrazone 86 with inhibitory action of a LOX isoform. 

The piperidinehydrazide-hydrazones 87a–c and 88a–c (Figure 59) showed potential 
anti-Alzheimer activity by inhibiting the β-amyloid plaque formation [99]. Furthermore, 
the acylhydrazones 87a,b and 88a,b displayed strong antioxidant activity due to the pres-
ence in their molecules of the dimethylamino (87a, 88a), respectively, diethylamino moi-
ety (87b, 88b). 

 
Figure 59. Structures of acylhydrazone derivatives 87a–c and 88a–c with antioxidant action. 

  

Figure 58. Structure of acylhydrazone 86 with inhibitory action of a LOX isoform.

The piperidinehydrazide-hydrazones 87a–c and 88a–c (Figure 59) showed potential
anti-Alzheimer activity by inhibiting the β-amyloid plaque formation [99]. Furthermore, the
acylhydrazones 87a,b and 88a,b displayed strong antioxidant activity due to the presence
in their molecules of the dimethylamino (87a, 88a), respectively, diethylamino moiety
(87b, 88b).
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5.10. Antidiabetic Activity

Compounds 89a–e (Figure 60) showed an antidiabetic effect due to the inhibition of
α-glucosidase, an enzyme that catalyzes the cleavage of oligosaccharides into monosaccha-
rides. The derivative with an electronegative group in the para position (89c) exhibited the
most intense action [18].
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5.11. Antioxidant Action

Among the various pharmacological studies performed in the case of some acylhydra-
zone derivatives are those that showed their antioxidant effects [34,39,78,101].

In addition to the above-mentioned properties identified in the case of acylhydra-
zones 31a, 31c, 31g (Figure 27) [34], and 69a (Figure 48) [78], the antioxidant action of the
specified derivatives was also reported. This activity was tested using DPPH [34,78], ferric-
reducing antioxidant power (FRAP) [34], hydroxyl-mediated deoxyribose degradation, and
superoxide radical scavenging assays [78].

The antioxidant action was reported for the compounds 90a–i (Figure 61) using the
oxidative stress induced by tert-butyl hydroperoxide. Moreover, the cytoprotective effect
was investigated, which indicated that derivatives 90a–c and 90g–i showed effects com-
parable to those of the reference substance (quercetin), and compounds 90d–f exhibited
weaker effects compared to this one [100].
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5.12. Action on the Cardiovascular System

Among the different biological properties and possible therapeutic indications of the
acylhydrazone class compounds, their actions on the cardiovascular system were iden-
tified. Thus, acylhydrazone 91a (Figure 62) may be a potential candidate for use in the
treatment scheme of cardiac remodeling, respectively in combating diastolic disorders after
myocardial infarction. This derivative has the potential to reduce cardiac remodeling after
myocardial infarction by regulating inflammatory mediators, leading to reduced inflam-
mation and cardiac fibrosis. The positive inotropic effect of compound 91a was observed
by stimulating the activity of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a
(SERCA2a) protein, causing both the uptake of Ca2+ ions into the sarcoplasmic reticulum
and intracellular Ca2+ utilization. This effect was also observed in healthy cardiomyocytes
by increasing the intracellular Ca2+ concentration. Compound 91a regulates the phospho-
rylation and dephosphorylation of troponin I, troponin T, and protein C, respectively, but
the Ca2+ sensitivity of contractile proteins was not noted in this study. Thus, this analog
is considered a promising agent for use in the treatment of heart failure after myocardial
infarction [102]. The above-mentioned acylhydrazone was also found to prevent exercise
intolerance after myocardial infarction, probably by producing NO with vasodilating action
by increasing the level of cyclic guanosine monophosphate (cGMP) in vascular smooth
muscle cells and by activating adenosine A2A receptors leading to the decreased inflam-
matory response. Compound 91a could thus increase the blood flow to muscles, prevent
the oxidation of proteins, and reduce the pro-inflammatory cytokines, which could lead to
improved skeletal muscle contractile response after myocardial infarction [103].
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The acylhydrazone derivative 91b had a vasodilating effect, by increasing the con-
centrations of NO and cGMP, more potent than its isomer with possible use in the treat-
ment scheme of hypertension. Additionally, compound 91b is an M3 muscarinic receptor
agonist proved by the antagonist effect of a selective antagonist, 4-diphenylacetoxy-N-
methylpiperidine methiodide. The acylhydrazone 91b had a reduced number of adverse
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reactions compared to other parasympathomimetic compounds. This derivative was re-
ported for its hypotensive effect with no modification in heart rate observed for both
intravenous and longer-term oral administration with possible use in the treatment of
hypertension [104]. The structure of compound 91b [124] is shown in Figure 62.

Sathler et al. obtained an acylhydrazone 92 that demonstrated antithrombotic proper-
ties when collagen was used as an agonist and lower toxicity compared to other derivatives.
The proposed mechanism is based on the interaction of the compound with TXA2 syn-
thase, acting as an inhibitor [105]. Additionally, Lima et al. synthesized the arylsulfonate–
acylhydrazone derivatives 93–95 with antiplatelet activity [106]. The structures of the
acylhydrazones 92–95 are presented in Figure 63.
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Other derivates with antiplatelet effect are acylhydrazones containing the 1,2,3-triazole
scaffold 96a–e (Figure 64), which exhibited a comparable or even higher potency than
acetylsalicylic acid. The inhibitory activity observed in the arachidonic acid test was
different in the case of studied compounds due to the various structural fragments, as
follows: 96a—adenosine diphosphate (ADP) pathway antagonist, 96a,c,d,e—adrenaline
pathway antagonists, and 96b,c,e—arachidonic acid pathway antagonists [107].
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According to a research study conducted by Alencar et al., an acylhydrazone derivative
97 (Figure 65) was analyzed pharmacologically. It lowered the pressure on the pulmonary
arteries by interacting with adenosine A2A receptors, which have an important role in
the pathophysiological mechanism of pulmonary arterial hypertension. Thus, the acyl-
hydrazone 97 had an effect on ventricular remodeling (right ventricular hypertrophy) by
decreasing it, lowering the right ventricular systolic pressure, stimulating SERCA2a protein
and endothelial nitric oxide synthase, reducing the levels of phospholamban [108].
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Figure 65. Structure of acylhydrazone 97 with action on ventricular remodeling.

Silva et al. stated that the derivatives of acylhydrazones 98a and 98b (Figure 66)
displayed vasodilatory action. Compound 98b, containing an allyl moiety linked to the
amide nitrogen atom, showed a potency equivalent to that of compound 91a (Figure 62) and
of acylhydrazone 98a, with a methyl group substituting the amide hydrogen atom [109].
The same biological property was exerted by compounds 98c and 98d (Figure 66), the
vasodilatory action being more intense than that of acylhydrazone 91a [110].
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Figure 66. Structures of acylhydrazone class derivatives 98a–d with vasodilatory action.

The acylhydrazone 99 (Figure 67) was reported by Feng et al. as a substance that can
protect cells from oxygen-glucose deprivation, oxidative stress stimulated by H2O2 and
glutamate, stimulated apoptosis by oxygen-glucose deprivation, increased intracellular
ROS, and increased ATP levels in neuronal cells. Compound 99 also increased the phos-
phorylation based on extracellular signal-regulated kinase and protein kinase B, based on
antagonistic action with selective antagonists, and had favorable effects on stroke, inducing
neuroprotection. Therefore, acylhydrazone 99 could be used in ischemic strokes after
further research [111].
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