In Silico Comparative Exploration of Allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases
Abstract
:1. Introduction
2. Methodology
2.1. Retrieval of the Protein Sequences of Date Palm and Cockroach Allergens
2.2. Physiochemical Parameter Evaluations of the above Allergens
2.3. Functional Classifications
2.4. Subcellular Localization
2.5. Prediction of IgE Epitopes and Allergenic Site Prediction
2.6. Secondary Structure Prediction
2.7. Tertiary Structure Prediction (3D Model) and Validation
2.8. Antigen–Antibody Docking Studies
2.9. MD Simulation
3. Results and Discussion
3.1. Retrieval of the Protein Sequences for Date Palm and Cockroach Allergens
3.2. Physiochemical Parameter Evaluation of the above Allergens
3.3. Functional Characterization
3.4. Subcellular Localization
3.5. Prediction of IgE Epitopes and Allergenic Site Prediction
3.6. Secondary Structure Prediction
3.7. Tertiary Structure Prediction (3D model) and Validation
3.8. Antigen–Antibody Docking Studies
3.9. MD Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tungtrongchitr, A.; Sookrung, N.; Munkong, N.; Mahakittikun, V.; Chinabut, P.; Chaicumpa, W.; Bunnag, C.; Vichyanond, P. The levels of cockroach allergen in relation to cockroach species and allergic diseases in Thai patients. Asian Pac. J. Allergy Immunol. 2004, 22, 115–121. [Google Scholar] [PubMed]
- Rosenstreich, D.L.; Eggleston, P.; Kattan, M.; Baker, D.; Slavin, R.G.; Gergen, P.; Mitchell, H.; McNiff-Mortimer, K.; Lynn, H.; Ownby, D.; et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N. Engl. J. Med. 1997, 336, 1356–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alp, H.; Yu, B.H.; Grant, E.N.; Rao, V.; Moy, J.N. Cockroach allergy appears early in life in inner-city children with recurrent wheezing. Ann. Allergy Asthma Immunol. 2001, 86, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Almatroudi, A.; Mousa, A.M.; Vinnakota, D.; Abalkhail, A.; Alwashmi, A.S.S.; Almatroodi, S.A.; Alhumaydhi, F.A.; Kabir, R.; Mahmud, I. Prevalence and associated factors of respiratory allergies in the Kingdom of Saudi Arabia: A cross-sectional investigation, September-December 2020. PLoS ONE. 2021, 16, e0253558. [Google Scholar] [CrossRef] [PubMed]
- Arruda, L.K.; Vailes, L.D.; Ferriani, V.P.; Santos, A.B.; Pomés, A.; Chapman, M.D. Cockroach allergens and asthma. J. Allergy Clin. Immunol. 2001, 107, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liccardi, G.; Cazzola, M.; D’Amato, M.; D’Amato, G. Pets and cockroaches: Two increasing causes of respiratory allergy in indoor environments. Characteristics of airways sensitization and prevention strategies. Respir. Med. 2000, 94, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Üzela, A.; Çapana, N.; Canbakana, S.; Yurdakul, A.S.; Dursun, B. Evaluation of the relationship between cockroach sensitivity and house-dust-mite sensitivity in Turkish asthmatic patients. Respir. Med. 2005, 99, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- AlKhater, S.A. Sensitization to Common Aeroallergens in Asthmatic Children in the Eastern Region of Saudi Arabia. Saudi J. Med. Med. Sci. 2017, 5, 136–141. [Google Scholar]
- Arruda, L.K.; Vailes, L.D.; Benjamin, D.C.; Chapman, M.D. Molecular cloning of German cockroach (Blattella germanica) allergens. Int. Arch. Allergy Immunol. 1995, 107, 295–297. [Google Scholar] [CrossRef]
- Sen, A.; Bansal, R.; Mohagaonkar, S.; Bhardwaj, T.; Rathi, B.; Almalki, A.H.; Janahi, E.M.; Alsulimani, A.; Tewari, B.N.; Somvanshi, P.; et al. In-silico analysis of multiepitope based vaccine targeting respiratory viruses SARS, MERS and SARS-CoV-2. Minerva Biotechnol. Biomol. Res. 2022, 34, 97–113. [Google Scholar] [CrossRef]
- Bernton, H.S.; Brown, H. Insect allergy preliminary studies of the cockroach. Allergy 1964, 35, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Bernton, H.S.; McMahon, T.F.; Brown, H. Cockroach asthma. Br. J. Dis. Chest. 1972, 66, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Vellody, D.; Homburger, H.; Yunginger, J.W. Cockroach cause of allergic asthma. Its specificity and immunologic profile. J. Allergy Clin. Immunol. 1979, 63, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lluch, M.; Sastre, J.; Fernandez-Nieto, M.; Fernandez-Caldas, E.; Quirce, S. Eosinophilic and neutrophilic sputum response to bronchial challenge with cockroach. J. Allergy Clin. Immunol. 2003, 112, 802–803. [Google Scholar] [CrossRef]
- Kind, T.J.; Goldsby, R.A.; Osborne, B.A. Hypersensitivity reactions. In Kuby Immunology, 6th ed.; Kind, T.J., Goldsby, R.A., Osborne, B.A., Eds.; WH Freeman and Company: New York, NY, USA, 2007; pp. 371–388. [Google Scholar]
- Schou, C.; Lind, P.; Fernandez-Caldas, E.; Lockey, R.F.; Løwenstein, H. Identification and purification of an important cross-reactive allergen from American (Periplaneta americana) and German (Blattella germanica) cockroach. J. Allergy Clin. Immunol. 1990, 86, 935–946. [Google Scholar] [CrossRef]
- Fang, Y.; Long, C.; Bai, X.; Liu, W.; Rong, M.; Lai, R.; An, S. Two new types of allergens from the cockroach. Periplaneta Am. Allergy 2015, 70, 1674–1678. [Google Scholar] [CrossRef]
- Goel, C.; Govindaraj, D.; Singh, B.P.; Farooque, A.; Kalra, N.; Arora, N. Serine protease Per a 10 from Periplaneta americana bias dendritic cells towards type 2 by upregulating CD86 and low IL-12 secretions. Clin. Exp. Allergy 2012, 42, 412–422. [Google Scholar] [CrossRef]
- Goel, C.; Kalra, N.; Dwarakanath, B.S.; Gaur, S.N.; Arora, N. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway. Clin. Exp. Immunol. 2015, 180, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Satyam, R.; Janahi, E.M.; Bhardwaj, T.; Somvanshi, P.; Haque, S.; Najm, M.Z. In silico identification of immunodominant B-cell and T-cell epitopes of non-structural proteins of Usutu Virus. MicrobPathog 2018, 125, 129–143. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In John M. Walker (ed): The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Saha, S.; Raghava, G.P. VICMpred: An SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genom. Proteom. Bioinform. 2006, 4, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.S.; Loaiza, C.D.; Kaundal, R. Plant-mSubP: A computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches. AoB Plants 2019, 12, plz068. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Raghava, G.P. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006, 34, W202–W209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satyam, R.; Bhardwaj, T.; Jha, N.K.; Jha, S.K.; Nand, P. Toward a chimeric vaccine against multiple isolates of Mycobacteroides—An integrative approach. Life Sci. 2020, 250, 117541. [Google Scholar] [CrossRef] [PubMed]
- Maurer-Stroh, S.; Krutz, N.L.; Kern, P.S.; Gunalan, V.; Nguyen, M.N.; Limviphuvadh, V.; Eisenhaber, F.; Gerberick, G.F. AllerCatPro-prediction of protein allergenicity potential from the protein sequence. Bioinformatics 2019, 35, 3020–3027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, F.D. Cross-reactivity between aeroallergens and food allergens. World J. Methodol. 2015, 5, 31–50. [Google Scholar] [CrossRef]
- Geourjon, C.; Deléage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 1995, 11, 681–684. [Google Scholar] [CrossRef]
- Khan, S.; Somvanshi, P.; Bhardwaj, T.; Mandal, R.K.; Dar, S.A.; Wahid, M.; Jawed, A.; Lohani, M.; Khan, M.; Areeshi, M.Y.; et al. Aspartate-β-semialdehyde dehydrogenase as a potential therapeutic target of Mycobacterium tuberculosis H37Rv: Evidence from in silico elementary mode analysis of biological network model. J. Cell Biochem. 2018, 119, 2832–2842. [Google Scholar] [CrossRef]
- Bhardwaj, T.; Haque, S.; Somvanshi, P. Comparative Assessment of the Therapeutic Drug Targets of C. botulinum ATCC 3502 and C. difficile str. 630 Using In silico Subtractive Proteomics Approach. J. Cell. Biochem. 2019, 120, 16160–16184. [Google Scholar] [CrossRef]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 2006, 54, 5.6.1–5.6.37, Chapter 5: Unit-5.6. [Google Scholar] [CrossRef] [Green Version]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005, 33, W363–W367. [Google Scholar] [CrossRef] [PubMed]
- Mashiach, E.; Schneidman-Duhovny, D.; Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008, 36, W229–W232. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Bhardwaj, T.; Somvanshi, P.; Mandal, R.; Dar, S.A.; Jawed, A.; Wahid, M.; Akhter, N.; Lohani, M.; Alouffi, S.; et al. Inhibition of C298S mutant of human aldose reductase for antidiabetic applications: Evidence from In-silico elementary mode analysis of biological network model. J. Cell. Biochem. 2018, 119, 6961–6973. [Google Scholar] [CrossRef]
- Kushwaha, P.; Singh, V.; Somvanshi, P.; Bhardwaj, T.; Barreto, G.E.; Ashraf, G.; Mishra, B.N.; Chundawat, R.S.; Haque, S. Identification of new BACE1 inhibitors for treating Alzheimer’s disease. J. Mol. Model. 2021, 27, 58. [Google Scholar] [CrossRef] [PubMed]
- Alsulimani, A.; Bhardwaj, T.; Janahi, E.M.; Almalki, A.H.; Tewari, B.N.; Wahid, M.; Mustfa, F.; Somvanshi, P.; Haque, S. Systematic structure guided clustering of chemical lead compounds targeting RdRp of SARS-CoV-2. Minerva Biotechnol. Biomol. Res. 2022, 34, 114–121. [Google Scholar] [CrossRef]
- Anwer, R.; AlQumaizi, K.I.; Haque, S.; Somvanshi, P.; Ahmad, N.; AlOsaimi, S.M.; Fatma, T. Unravelling the interaction of glipizide with human serum albumin using various spectroscopic techniques and molecular dynamics studies. J. Biomol. Struct. Dyn. 2021, 39, 336–347. [Google Scholar] [CrossRef]
- Krause, T.; Röckendorf, N.; Meckelein, B.; Sinnecker, H.; Schwager, C.; Möckel, S.; Jappe, U.; Frey, A. IgE Epitope Profiling for Allergy Diagnosis and Therapy—Parallel Analysis of a Multitude of Potential Linear Epitopes Using a High Throughput Screening Platform. Front Immunol. 2020, 11, 565243. [Google Scholar] [CrossRef]
- Matsuo, H.; Yokooji, T.; Taogoshi, T. Common food allergens and their IgE-binding epitopes. Allergol. Int. 2015, 64, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Mueller, G.A.; Pedersen, L.C.; Lih, F.B.; Glesner, J.; Moon, A.F.; Chapman, M.D.; Tomer, K.B.; London, R.E.; Pomés, A. The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J. Allergy Clin. Immunol. 2013, 132, 1420–1426. [Google Scholar] [CrossRef] [Green Version]
- Sudha, V.T.; Arora, N.; Gaur, S.N.; Pasha, S.; Singh, B.P. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy 2008, 63, 768–776. [Google Scholar] [CrossRef]
- Pomés, A.; Arruda, L.K. Investigating cockroach allergens: Aiming to improve diagnosis and treatment of cockroach allergic patients. Methods 2014, 66, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Pomés, A.; Mueller, G.A.; Randall, T.A.; Chapman, M.D.; Arruda, L.K. New Insights into Cockroach Allergens. Curr. Allergy Asthma Rep. 2017, 17, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Xiong, Q.; Saelim, N.; Wang, L.; Nong, W.; Wan, A.T.; Shi, M.; Liu, X.; Cao, Q.; Hui, J.H.L.; et al. Genome assembly and annotation of Periplaneta americana reveal a comprehensive cockroach allergen profile. Allergy 2022, in press. [Google Scholar] [CrossRef] [PubMed]
S. No. | Protein Seq. | Uniprot /NCBI | No. of Amino Acids | Molecular Wt. | pI | Ext. Cof. | Instability Index | Aliphatic Index | GRAVY |
---|---|---|---|---|---|---|---|---|---|
Blattella germanica Allergens | |||||||||
1 | Bla g 1.0101 | Q9UAM5 | 412 | 45817.74 | 4.49 | 14900 | 38.52 | 129.54 | 0.176 |
2 | Bla g 1.0201 | O96522 | 492 | 55507.76 | 4.70 | 19370 | 46.59 | 120.51 | 0.046 |
3 | Bla g 2 | P54958 | 352 | 38557.88 | 5.28 | 35005 | 26.72 | 91.85 | 0.076 |
4 | Bla g 3 | D0VNY7 | 657 | 78737.11 | 6.44 | 123110 | 44.65 | 65.21 | −0.665 |
5 | Bla g 4 | P54962 | 182 | 20927.45 | 6.48 | 27640 | 28.02 | 72.42 | −0.567 |
6 | Bla g 5 | O18598 | 204 | 23333.71 | 6.32 | 45380 | 31.54 | 80.39 | −0.490 |
7 | Bla g 6.0101 | Q1A7B3 | 151 | 17216.22 | 3.96 | 2980 | 35.44 | 86.56 | −0.388 |
8 | Bla g 6.0201 | ABB89297 | 151 | 17095.14 | 3.96 | 3105 | 31.48 | 87.22 | −0.269 |
9 | Bla g 6.0301 | ABB89298 | 154 | 17749.86 | 4.10 | 2980 | 53.85 | 81.10 | −0.496 |
10 | Bla g 7 | Q9NG56 | 284 | 32837.84 | 4.72 | 6085 | 44.60 | 81.94 | −0.973 |
11 | Bla g 8 | A0ERA8 | 195 | 21180.40 | 4.44 | 6990 | 38.88 | 67.28 | −0.567 |
Periplaneta americana Allergens | |||||||||
1 | Per a 1.0101 | Q9TZR6 | 231 | 26222.88 | 4.46 | 10430 | 57.52 | 114.46 | −0.014 |
2 | Per a 1.0102 | O18535 | 228 | 25791.39 | 4.44 | 10430 | 56.32 | 115.96 | 0.004 |
3 | Per a 1.0103 | O18530 | 395 | 44610.99 | 4.55 | 24870 | 52.06 | 112.10 | 0.017 |
4 | Per a 1.0104 | O18528 | 274 | 31142.54 | 4.45 | 18910 | 55.73 | 114.64 | −0.020 |
5 | Per a 1.0201 | O18527 | 446 | 50547.54 | 5.31 | 16390 | 56.57 | 108.05 | −0.179 |
6 | Per a 3.0101 | Q25641 | 685 | 81175.35 | 6.25 | 132385 | 41.56 | 67.11 | −0.612 |
7 | Per a 3.0201 | Q94643 | 631 | 75511.84 | 6.61 | 120590 | 44.03 | 64.07 | −0.737 |
8 | Per a 3.0202 | Q25640 | 470 | 561888.05 | 7.02 | 85625 | 42.03 | 64.26 | −0.782 |
9 | Per a 3.0203 | Q25639 | 393 | 46746.52 | 6.52 | 65225 | 46.06 | 66.92 | −0.749 |
10 | Per a 6 | Q1M0Y3 | 151 | 17130.99 | 3.84 | 2980 | 24.97 | 87.22 | −0.377 |
11 | Per a 7 | Q9UB83 | 284 | 32776.81 | 4.69 | 6085 | 45.04 | 81.58 | −0.920 |
12 | Per a 7.0102 | P0DSM7 | 284 | 32793.87 | 4.72 | 4595 | 45.01 | 83.31 | −0.924 |
13 | Per a 9 | B9VAT1 | 356 | 39735.09 | 5.58 | 36120 | 30.93 | 80.56 | −0.413 |
14 | Per a 10 | Q1M0X9 | 256 | 26652.14 | 4.89 | 34420 | 25.77 | 84.49 | 0.273 |
Phoenix dactylifera Allergens | |||||||||
1 | XP_008803750.1 | P33050 | 176 | 18902.39 | 5.93 | 11845 | 34.39 | 73.75 | −0.109 |
2 | XP_008780644.1 | A0A0S3B0K0 | 182 | 20044.54 | 6.25 | 18910 | 27.85 | 74.01 | −0.352 |
3 | XP_008782456.1 | - | 201 | 22566.84 | 6.12 | 23295 | 51.48 | 70.75 | −0.286 |
4 | AGE46030.1 | - | 361 | 41027.22 | 5.66 | 68465 | 33.46 | 81.05 | −0.247 |
5 | XP_008796227.1 | - | 529 | 59084.12 | 5.93 | 94350 | 35.72 | 77.75 | −0.364 |
6 | XP_010911620.1 | O81355 | 309 | 33749.62 | 6.00 | 17420 | 30.12 | 98.45 | −0.013 |
7 | YP_005090378.1 | - | 509 | 55292.25 | 6.02 | 25580 | 36.20 | 95.07 | −0.129 |
8 | XP_008781205.1 | - | 396 | 43329.14 | 5.71 | 30410 | 20.56 | 81.46 | −0.315 |
9 | XP_008811417.1 | Q2UMD5 | 823 | 92522.51 | 5.89 | 188840 | 31.89 | 71.56 | −0.448 |
S. No. | Protein Allergen | Uniprot /NCBI | Functional Class | Functionality |
---|---|---|---|---|
1 | Bla g 1.0101 | Q9UAM5 | Metabolism molecule | - |
2 | Bla g 1.0201 | O96522 | Virulence factors | - |
3 | Bla g 2 | P54958 | Cellular process | Acid proteases (SSF50630) |
4 | Bla g 3 | D0VNY7 | Cellular process | E set domains (SSF81296); Hemocyanin, N-terminal domain (SSF48050); Di-copper centre-containing domain (SSF48056) |
5 | Bla g 4 | P54962 | Cellular process | Lipocalins (SSF50814) |
6 | Bla g 5 | O18598 | Metabolism molecule | Thioredoxin-like (SSF52833); GST C-terminal domain-like (SSF47616) |
7 | Bla g 6.0101 | Q1A7B3 | Information and storage | EF-hand (SSF47473) |
8 | Bla g 6.0201 | ABB89297 | Cellular process | - |
9 | Bla g 6.0301 | ABB89298 | Information and storage | - |
10 | Bla g 7 | Q9NG56 | Information and storage | - |
11 | Bla g 8 | A0ERA8 | Cellular process | EF-hand (SSF47473) |
12 | Per a 1.0101 | Q9TZR6 | Metabolism molecule | - |
13 | Per a 1.0102 | O18535 | Metabolism molecule | - |
14 | Per a 1.0103 | O18530 | Metabolism molecule | - |
15 | Per a 1.0104 | O18528 | Metabolism molecule | - |
16 | Per a 1.0201 | O18527 | Metabolism molecule | - |
17 | Per a 3.0101 | Q25641 | Metabolism molecule | E set domains (SSF81296); Hemocyanin, N-terminal domain (SSF48050); Di-copper centre-containing domain (SSF48056) |
18 | Per a 3.0201 | Q94643 | Information and storage | E set domains (SSF81296); Hemocyanin, N-terminal domain (SSF48050); Di-copper centre-containing domain (SS8F480596) |
19 | Per a 3.0202 | Q25640 | Cellular process | E set domains (SSF81296); Di-copper centre-containing domain (SSF48056) |
20 | Per a 3.0203 | Q25639 | Cellular process | E set domains (SSF81296); Di-copper centre-containing domain (SSF48056) |
21 | Per a 6 | Q1M0Y3 | Cellular process | EF-hand (SSF47473) |
22 | Per a 7.0101 | Q9UB83 | Information and storage | - |
23 | Per a 7.0102 | P0DSM7 | Information and storage | - |
24 | Per a 9 | B9VAT1 | Cellular process | Guanido kinase N-terminal domain (SSF48034); Glutamine synthetase/guanido kinase (SSF55931) |
25 | Per a 10 | Q1M0X9 | Cellular process | Trypsin-like serine proteases (SSF50494) |
26 | XP_008803750.1 | P33050 | Metabolism molecule | Enolase C-terminal domain-like (SSF51604); Enolase N-terminal domain-like (SSF54826) |
27 | XP_008780644.1 | A0A0S3B0K0 | Metabolism molecule | RmlC-like cupins (SSF51182) |
28 | XP_008782456.1 | - | Cellular process | - |
29 | AGE46030.1 | - | Metabolism molecule | - |
30 | XP_008796227.1 | - | Virulence factors | - |
31 | XP_010911620.1 | O81355 | Cellular process | NAD(P)-binding Rossmann-fold domains (SSF51735) |
32 | YP_005090378.1 | - | Cellular process | - |
33 | XP_008781205.1 | - | Cellular process | - |
34 | XP_008811417.1 | Q2UMD5 | Cellular process | (Trans)glycosidases (SSF51445); Beta-galactosidase LacA, domain 3 (SSF117100); Galactose-binding domain-like (SSF49785) |
S. No. | Protein Seq. | IgE Epitope | Sequence Matched | Pos. | PIDs | ARPs |
---|---|---|---|---|---|---|
1 | Bla g 1.0101 | * LIRALFGL * LIRALFGL * LIRALFGL | *LIRALFGL *LIRALFGL *LIRALFGL | 19 211 403 | 100 100 100 | VDHFIQLIRALFGLS---RAARNLQDD |
2 | Bla g 1.0201 | The protein sequence does not contain an experimentally proven IgE epitope | IHSIIGLPPFVPPSRRHARRGVGI | |||
3 | Bla g 2 | The protein sequence does not contain an experimentally proven IgE epitope | IEDSLTISNLTTSQQDIVLADELS | |||
4 | Bla g 3 | The protein sequence does not contain an experimentally proven IgE epitope | LYTYFEHFEHSLGNAMYIGKLEDL | |||
5 | Bla g 4 | The protein sequence does not contain an experimentally proven IgE epitope | DALVSKYTDSQGKNRTTIRGRTKF | |||
6 | Bla g 5 | The protein sequence does not contain an experimentally proven IgE epitope | YHYDADENSKQKKWDPLKKETIPY | |||
7 | Bla g 6.0101 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
8 | Bla g 6.0201 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
9 | Bla g 6.0301 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
10 | Bla g 7 | * AQLLAEEADRKYD * EKYKSITDELDQTFS * ELVNEKEKYKSITDE * ESKIVELEEELRVVG * MQQLENDLDQVQESLLK * QKLQKEVDRLEDELV * RIQLLEEDLERSEER * RSLSDEERMDALENQ * VAALNRRIQLLEEDL * VDRLEDELVNEKEKY | * ARFMAEEADKKYD * EKYKYICDDLDMTFT * ELVHEKEKYKYICDD * ESKIVELEEELRVVG * IQQIENDLDQTMEQLMQ * QKLQKEVDRLEDELV * RIQLLEEDLERSEER * KGLADEERMDALENQ * VAALNRRIQLLEEDL * VDRLEDELVHEKEKY | 151 265 259 187 50 247 91 133 85 253 | 69.23 66.66 73.33 100 58.82 100 100 80 100 93.33 | GESKIVELEEELRVVGNNLKSLEV |
11 | Bla g 8 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
12 | Per a 1.0101 | * LIRALFGL * LIRALFGL | * LIRALFGL * LIRSLFGL | 35 223 | 100 87.5 | FKNFLNFLQTNGLNAIEFLNNIH |
13 | Per a 1.0102 | * LIRALFGL * LIRALFGL | * LIRALFGL * LIRSLFGL | 32 220 | 100 87.5 | FKNFLNFLQTNGLNAIEFLNNIH |
14 | Per a 1.0103 | * LIRALFGL * LIRALFGL | * LIRALFGL * LIRSLFGL | 199 387 | 100 87.5 | AYLHADDFHKIITTIEA |
15 | Per a 1.0104 | * LIRALFGL | * LIRALFGL | 78 | 100 | LPEDLQDFLALIPIDQILAIAAD |
16 | Per a 1.0201 | * LIRALFGL | * LIRALFGL | 101 | 100 | FKNFLNFLQTNGLNAIEFLNNIH |
17 | Per a 3.0101 | The protein sequence does not contain an experimentally proven IgE epitope | SVFHFYRLLVGHVVDPYHKNGLAP | |||
18 | Per a 3.0201 | The protein sequence does not contain an experimentally proven IgE epitope | RLNHKPFTYNIEV | |||
19 | Per a 3.0202 | The protein sequence does not contain an experimentally proven IgE epitope | RLNHKPFTYNIEV | |||
20 | Per a 3.0203 | The protein sequence does not contain an experimentally proven IgE epitope | RLNHKPFTYNIEV | |||
21 | Per a 6 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
22 | Per a 7 | * AQLLAEEADRKYD * EKYKSITDELDQTFS * ELVNEKEKYKSITDE * ESKIVELEEELRVVG * MQQLENDLDQVQESLLK * QKLQKEVDRLEDELV * RIQLLEEDLERSEER * RSLSDEERMDALENQ * VAALNRRIQLLEEDL * VDRLEDELVNEKEKY | * ARFMAEEADKKYD * EKYKYICDDLDMTFT * ELVHEKEKYKYICDD * ESKIVELEEELRVVG * IQQIENDLDQTMEQLMQ * QKLQKEVDRLEDELV * RIQLLEEDLERSEER * KGLADEERMDALENQ * VAALNRRIQLLEEDL * VDRLEDELVHEKEKY | 151 265 259 187 50 247 91 133 85 253 | 69.23 66.66 73.33 100 58.82 100 100 80 100 93.33 | GESKIVELEEELRVVGNNLKSLEV |
24 | Per a 7.0102 | * AQLLAEEADRKYD * EKYKSITDELDQTFS * ELVNEKEKYKSITDE * ESKIVELEEELRVVG * MQQLENDLDQVQESLLK * QKLQKEVDRLEDELV * RIQLLEEDLERSEER * RSLSDEERMDALENQ * VAALNRRIQLLEEDL * VDRLEDELVNEKEKY | * ARFMAEEADKKYD * EKYKYICDDLDMTFT * ELVHEKEKYKYICDD * ESKIVELEEELRVVG * IQQIENDLDQTMEQLMQ * QKLQKEVDRLEDELV * RIQLLEEDLERSEER * KGLADEERMDALENQ * VAALNRRIQLLEEDL * VDRLEDELVHEKEKY | 151 265 259 187 50 247 91 133 85 253 | 69.23 66.66 73.33 100 58.82 100 100 80 100 93.33 | GESKIVELEEELRVVGNNLKSLEV |
23 | Per a 9 | The protein sequence does not contain an experimentally proven IgE epitope | KLPKLAANREKLEEVAAKFSLQVR | |||
24 | Per a 10 | The protein sequence does not contain an experimentally proven IgE epitope | CNGDSGGPLVSANRKLTGIVSWG | |||
25 | XP_008803750.1 | The protein sequence does not contain an experimentally proven IgE epitope | IQGQVYCDTCRAGFITELSEFI | |||
26 | XP_008780644.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
27 | XP_008782456.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
28 | AGE46030.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
29 | XP_008796227.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
30 | XP_010911620.1 | The protein sequence does not contain an experimentally proven IgE epitope | MVSIFHTIYVKGDQTNFQIGP | |||
31 | YP_005090378.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
32 | XP_008781205.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
33 | XP_008811417.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found | |||
34 | XP_008803750.1 | The protein sequence does not contain an experimentally proven IgE epitope | Not found |
S. No. | Protein Allergen | IgE Prevalence | Similarity to Allergen and Resulting Predicted Evidence for Allergenicity | |||
---|---|---|---|---|---|---|
Uniprot /NCBI | Pfam | InterPro | ||||
1 | Bla g 1.0101 | Q9UAM5 | PF06757 | IPR010629 | 1052 | Strong evidence |
2 | Bla g 7 | Q9NG56 | PF00261 | IPR000533 | - | Strong evidence |
3 | Per a 1.0101 | Q9TZR6 | PF06757 | IPR010629 | 15 | Strong evidence |
4 | Per a 1.0102 | O18535 | PF06757 | IPR010629 | 211 | Strong evidence |
5 | Per a 1.0103 | O18530 | PF06757 | IPR010629 | 211 | Strong evidence |
6 | Per a 1.0104 | O18528 | PF06757 | IPR010629 | 15 | Strong evidence |
7 | Per a 1.0201 | O18527 | PF06757 | IPR010629 | 211 | Strong evidence |
8 | Per a 7 | Q9UB83 | PF00261 | IPR000533 | 17010 | Strong evidence |
9 | Per a 7.0102 | P0DSM7 | - | - | - | Strong evidence |
S. No. | Protein Seq. | Alpha Helix | Extended Strand | Beta Turn | Random Coil |
---|---|---|---|---|---|
1 | Bla g 1.0101 | 305 is 74.03% | 2 is 0.49% | 17 is 4.13% | 88 is 21.36% |
2 | Bla g 7 | 280 is 98.59% | 0 is 0.00% | 1 is 0.35% | 3 is 1.06% |
3 | Per a 1.0101 | 181 is 78.35% | 0 is 0.00% | 7 is 3.03% | 43 is 18.61% |
4 | Per a 1.0102 | 176 is 77.19% | 0 is 0.00% | 8 is 3.51% | 44 is 19.30% |
5 | Per a 1.0103 | 279 is 70.63% | 9 is 2.28% | 17 is 4.30% | 90 is 22.78% |
6 | Per a 1.0104 | 208 is 75.91% | 4 is 1.46% | 9 is 3.28% | 53 is 19.34% |
7 | Per a 1.0201 | 319 is 71.52% | 6 is 1.35% | 18 is 4.04% | 103 is 23.09% |
8 | Per a 7 | 278 is 97.89% | 0 is 0.00% | 1 is 0.35% | 5 is 1.76% |
9 | Per a 7.0102 | 281 is 98.94% | 0 is 0.00% | 0 is 0.00% | 3 is 1.06% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, M.A.; Bhardwaj, T.; Anwar, S.; Alenazi, F.; Ali, A.; Alshammari, K.F.; AboElnaga, S.M.H.; Singh, R.; Najm, M.Z. In Silico Comparative Exploration of Allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases. Molecules 2022, 27, 8740. https://doi.org/10.3390/molecules27248740
Kausar MA, Bhardwaj T, Anwar S, Alenazi F, Ali A, Alshammari KF, AboElnaga SMH, Singh R, Najm MZ. In Silico Comparative Exploration of Allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases. Molecules. 2022; 27(24):8740. https://doi.org/10.3390/molecules27248740
Chicago/Turabian StyleKausar, Mohd Adnan, Tulika Bhardwaj, Sadaf Anwar, Fahaad Alenazi, Abrar Ali, Khalid Farhan Alshammari, Shimaa Mohammed Hasnin AboElnaga, Rajeev Singh, and Mohammad Zeeshan Najm. 2022. "In Silico Comparative Exploration of Allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases" Molecules 27, no. 24: 8740. https://doi.org/10.3390/molecules27248740
APA StyleKausar, M. A., Bhardwaj, T., Anwar, S., Alenazi, F., Ali, A., Alshammari, K. F., AboElnaga, S. M. H., Singh, R., & Najm, M. Z. (2022). In Silico Comparative Exploration of Allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases. Molecules, 27(24), 8740. https://doi.org/10.3390/molecules27248740