A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps
Abstract
:1. Introduction
2. Characteristics of Mangosteen
3. Xanthones in the Mangosteen Pericarp Uses
3.1. Xanthones in the Mangosteen Pericarp
3.2. Bioactivity of Xanthones
3.2.1. Experimental Studies
3.2.2. Molecular Docking Studies
3.3. Uses of Xanthones
4. Extraction of Xanthones from Mangosteen Pericarps
4.1. Mangosteen Pericarp Preparation
4.2. Extraction
4.2.1. Traditional Extraction
4.2.2. Modern Extraction Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centre for Agricultural Information. Mangosteen. Available online: https://www.oae.go.th/assets/portals/1/files/jounal/2564/commodity2563.pdf (accessed on 30 August 2022).
- Trade Policy and Strategy Office. Potential and Future of Mangosteen, Queen of Thai Fruits. Available online: http://www.tpso.moc.go.th (accessed on 30 August 2022).
- Charoenphun, N.; Setarnawat, S.; Sai-Ut, S. Chemical composition and trends in utilization of by-products and wastes from 4 types of tropical fruit processing. TJST 2020, 28, 113–128. [Google Scholar]
- Adriani, L.; Widjastuti, T.; Nurdianti, R.R.; Wiradimadja, R. Effects of mangosteen peel extract (Garcinia mangostana L.) on blood lipid of ntiox chicken growth phase. In Proceedings of the 3rd International Conference of Integrated Intellectual Community (ICONIC), Hannover, Germany, 27–29 April 2018; pp. 1–5. [Google Scholar]
- Kumar, D.; Sekar, S. Analysis of physio-chemical properties of mangosteen rind extract from industrial waste. IJTSRD 2018, 2, 1522–1526. [Google Scholar]
- Chudhangkura, A. Xanthones in mangosteen. Food 2015, 45, 37–40. [Google Scholar]
- Wittenauer, J.; Falk, S.; Schweiggert-Weisz, U.; Carle, R. Characterisation and quantification of xanthones from the aril and pericarp of mangosteens (Garcinia mangostana L.) and a mangosteen containing functional beverage by HPLC–DAD–MSn. Food Chem. 2012, 134, 445–452. [Google Scholar] [CrossRef]
- Sukatta, U. Xanthones from Mangosteen Peels in the Cosmetic Industry. Available online: https://www3.rdi.ku.ac.th/?p=62656 (accessed on 30 August 2022).
- Krishnamurthi, S.; Rao, N.V.M. Mangosteen deserves wider attention. Indian Hort. 1962, 7, 3–8. [Google Scholar]
- Nazre, M.; Newman, M.F.; Pennington, R.T.; Middleton, D.J. Taxonomic revision of Garcinia section Garcinia (Clusiaceae). Phytotaxa 2018, 373, 1–52. [Google Scholar] [CrossRef]
- Bin Osman, M.; Milan, A.R. Mangosteen—Garcinia mangostana; Southampton Centre for Underutilized Crops, University of Southampton: Southampton, UK, 2006. [Google Scholar]
- SCUS. Mangosteen, Garcinia mangostana. In Field Manual for Extension Workers and Farmers; ICUC: Southamton, UK, 2006. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya; Available online: http://apps.worldagroforestry.org/treedb2 (accessed on 30 August 2022).
- Sukatta, U.; Takenaka, M.; Ono, H.; Okadome, H.; Sotome, I.; Nanayama, K.; Thanapase, W.; Isobe, S. Distribution of major xanthones in the pericarp, aril, and yellow gum of mangosteen (Garcinia mangostana Linn.) fruit and their contribution to antioxidative activity. Biosci. Biotechnol. Biochem. 2013, 77, 984–987. [Google Scholar] [CrossRef] [Green Version]
- Dorly; Tjitrosemito, S.; Poerwanto, R.; Juliarni. Secretory duct structure and phytochemistry compounds of yellow latex in mangosteen fruit. HAYATI J. Biosci. 2008, 15, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Rizaldy, D.; Hartati, R.; Nadhifa, T.; Fidrianny, I. Chemical compounds and pharmacological activities of mangosteen (Garcinia mangostana L.)—Updated review. Biointerface Res. Appl. Chem. 2022, 12, 2503–2516. [Google Scholar]
- Mello, R.F.A.; Pinheiro, W.B.S.; Benjamim, J.K.F.; Siqueira, F.C.; Chiste, R.C.; Santos, A.S. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography. Arab. J. Chem. 2021, 14, 103252. [Google Scholar] [CrossRef]
- Pothitirat, W.; Chomnawang, M.T.; Supabphol, R.; Gritsanapan, W. Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods. Pharm. Biol. 2010, 48, 182–186. [Google Scholar] [CrossRef]
- Widowati, W.; Ginting, C.N.; Lister, N.E.; Gisang, E.; Amalia, A.; Wibowo, S.H.B.; Kusuma, H.S.W.; Rizal. Anti-aging effects of mangosteen peel extract and its phytochemical compounds: Antioxidant activity, enzyme inhibition and molecular docking simulation. Trop. Life Sci. Res. 2020, 31, 127–144. [Google Scholar] [CrossRef]
- Chaiwong, N.; Phimolsiripol, Y.; Leelapornpisid, P.; Ruksiriwanich, W.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Leksawasdi, N.; Simirgiotis, M.J.; Barba, F.J.; et al. Synergistics of carboxymethyl chitosan and mangosteen extract as enhancing moisturizing, antioxidant, antibacterial, and deodorizing properties in emulsion cream. Polymers 2022, 14, 178. [Google Scholar] [CrossRef]
- Mohammad, N.A.; Zaidel, D.N.A.; Muhamad, I.I.; Hamid, M.A.; Yaakob, H.; Jusoh, Y.M.M. Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwave-assisted extraction. Heliyon 2019, 5, e02571. [Google Scholar] [CrossRef]
- Quality Plus Aesthetic International Co., Ltd. Purified Xanthoneextract from Mangosteen Peel. Available online: https://www.qualityplus.co.th/quality-plus-deep-technology/deep-biotechnology/purify-xanthone/ (accessed on 30 August 2022).
- Janardhanan, S.; Mahendra, J.; Girija, A.S.; Mahendra, L.; Priyadharsini, V. Antimicrobial effects of Garcinia mangostana on cariogenic microorganisms. J. Clin. Diagn. Res. 2017, 11, ZC19–ZC22. [Google Scholar] [CrossRef]
- Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-bacterial and anti-fungal activity of Xanthones obtained via semi-synthetic modification of α-Mangostin from Garcinia mangostana. Molecules 2017, 22, 275. [Google Scholar] [CrossRef] [Green Version]
- Leelapornpisid, W. Efficacy of alpha-mangostin for antimicrobial activity against endodontopathogenic microorganisms in a multi-species bacterial-fungal biofilm model. Arch. Oral Biol. 2022, 133, 105304. [Google Scholar] [CrossRef]
- Koh, J.-J.; Zou, H.; Mukherjee, D.; Lin, S.; Lim, F.; Tan, J.K.; Tan, D.Z.; Stocker, B.L.; Timmer, M.S.M.; Corkran, H.M.; et al. Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. Eur. J. Med. Chem. 2016, 123, 684–703. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput.-Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Yong, V. Metalloproteinases: Mediators of pathology and regeneration in the CNS. Nat. Rev. Neurosci. 2005, 6, 931–944. [Google Scholar] [CrossRef] [PubMed]
- Siahaan, A.; Loe, M.L.; Dalimunthe, N. Mangosteen extract reduces the expression of matrix metalloproteinase -2 and -9 in traumatic brain injury. Int. J. PharmTech Res. 2017, 10, 1–8. [Google Scholar] [CrossRef]
- Mahmudah, R.; Adnyana, I.K.; Sukandar, E.Y. Molecular docking studies of α-mangostin, γ-mangostin, and xanthone on peroxisome proliferator-activated receptor gamma diphenyl peptidase-4 enzyme, and aldose reductase enzyme as an anti-diabetic drug candidate. J. Adv. Pharm. Technol. Res. 2021, 12, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Bernal, F.A.; Coy-Barrera, E. Molecular docking and multivariate analysis of xanthones as antimicrobial and antiviral agents. Molecules 2015, 20, 13165–13204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miladiyah, I.; Jumina, J.; Haryana, S.M.; Mustofa, M. In silico molecular docking of xanthone derivatives as cyclooxygenase-2 inhibitor agents. Int. J. Pharm. Pharm. Sci. 2017, 9, 98–104. [Google Scholar] [CrossRef]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [Green Version]
- Abate, M.; Pagano, C.; Masullo, M.; Citro, M.; Pisanti, S.; Piacente, S.; Bifulco, M. Mangostanin, a xanthone derived from Garcinia mangostana fruit, exerts protective and reparative effects on oxidative damage in human keratinocytes. Pharmaceuticals 2022, 15, 84. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Wang, Y.T.; Lin, L.G. New insights into the anti-obesity activity of xanthones from Garcinia mangostana. Food Funct. 2015, 6, 383–393. [Google Scholar] [CrossRef]
- Mohan, S.; Syam, S.; Abdelwahab, S.I.; Thangavel, N. An anti-inflammatory molecular mechanism of action of α-mangostin, the major xanthone from the pericarp of Garcinia mangostana: An in silico, in vitro and in vivo approach. Food Function. 2018, 9, 3860–3871. [Google Scholar] [CrossRef]
- Chen, L.G.; Yang, L.L.; Wang, C.C. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol. 2008, 46, 688–693. [Google Scholar] [CrossRef]
- Mekseepralard, C.; Areebambud, C.; Suksamrarn, S.; Jariyapongskul, A. Effects of long-term alpha-mangostin supplementation on hyperglycemia and insulin resistance in type 2 diabetic rats induced by high fat diet and low dose streptozotocin. J. Med. Assoc. Thail. 2015, 98, S23–S30. [Google Scholar]
- Chen, S.P.; Lin, S.R.; Chen, T.H.; Ng, H.S.; Yim, H.S.; Leong, M.K.; Weng, C.F. Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ. Biomed. Pharmacother. 2021, 144, 112333. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. α-Mangostin nanoparticles cytotoxicity and cell death modalities in breast cancer cell lines. Molecules 2021, 26, 5119. [Google Scholar] [CrossRef]
- Chang, H.F.; Yang, L.L. Gamma-mangostin, a micronutrient of mangosteen fruit, induces apoptosis in human colon cancer cells. Molecules 2012, 17, 8010–8021. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wu, L.; Chen, Y.; Li, Y.; Wang, Q.; Li, M.; Hao, K.; Zhang, W.; Jiang, S.; Wang, Z. Cytotoxic and anti-proliferative effects of β-mangostin on rat C6 glioma cells depend on oxidative stress induction via PI3K/AKT/mTOR pathway inhibition. Drug Des. Devel. Ther. 2020, 14, 5315–5324. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Al-Abd, A.M.; El-halawany, A.M.; Abdallah, H.M.; Ibrahim, S.R.M. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol. 2017, 198, 302–312. [Google Scholar] [CrossRef]
- Reyes-Fermin, L.M.; Gonzalez-Reyes, S.; Tarco-Alvarez, N.G.; Hernandez-Nava, M.; Orozco-Ibarra, M.; Pedraza-Chaverri, J. Neuroprotective effect of α-mangostin and curcumin against iodoacetate-induced cell death. Nutr. Neurosci. 2012, 15, 34–41. [Google Scholar] [CrossRef]
- Foiklang, S.; Wanapat, M.; Norrapoke, T. Effect of grape pomace powder, mangosteen peel powder and monensin on nutrient digestibility, rumen fermentation, nitrogen balance and microbial protein synthesis in dairy steers. Asian-Australas J. Anim. Sci. 2016, 29, 1416–1423. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Ko, K.A.; Lee, J.Y.; Oh, J.W.; Lim, H.C.; Lee, D.W.; Choi, S.H.; Cha, J.K. Clinical and immunological efficacy of mangosteen and propolis extracted complex in patients with gingivitis: A multi-centered randomized controlled clinical trial. Nutrients 2021, 13, 2604. [Google Scholar] [CrossRef]
- Kurniawati, A.; Poerwanto, R.; Sobir; Efendi, D.; Cahyana, H. Character, xanthone content and antioxidant properties of mangosteen fruit’s hull (Garcinia mangostana L.) at several fruit growth stadia. J. Agron. Indones. 2011, 39, 188–192. [Google Scholar]
- Gondokesumo, M.E.; Pardjianto, B.; Sumitro, S.B.; Widowati, W.; Handono, K. Xanthones analysis and antioxidant activity analysis (applying ESR) of six different maturity levels of mangosteen rind extract (Garcinia mangostana Linn.). Pharmacogn. J. 2019, 11, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Neelapong, W.; Phonyotin, B.; Sittikijyothin, W. Extraction of active compounds from Thai herbs: Powder and extract. KMUTNB. 2019, 29, 157–166. [Google Scholar]
- Boonrat, C.; Indranupakorn, R. Influence of extraction techniques and solvents on α-mangostin amounts from mangosteen (Garcinia mangostana L.) pericarp. Thai Bull. Pharm. Sci. 2015, 10, 1–11. [Google Scholar]
- Suvarnakuta, P.; Chaweerungrat, C.; Devahastin, S. Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chem. 2011, 125, 240–247. [Google Scholar] [CrossRef]
- Sotong, S.; Ruaypom, K. Research on mangosteen pericarp drying using by hot air recycle. J. Ind. Tech. UBRU 2016, 6, 197–213. [Google Scholar]
- Megawati; Ginting, R.R.; Kusumaningtyas, R.D.; Sediawan, W.B. Mangosteen Peel Antioxidant Extraction and Its Use to Improve the Stability of Biodiesel B20 Oxidation. Available online: http://lib.unnes.ac.id (accessed on 30 August 2022).
- Kusmayadi, A.; Adriani, L.; Abun, A.; Muchtaridi, M.; Tanuwiria, U.H. The effect of solvents and extraction time on total xanthone and antioxidant yields of mangosteen peel (Garcinia mangostana L.) extract. Drug Invent. Today 2018, 10, 2572–2576. [Google Scholar]
- Pojanaukij, N.; Kajorncheappunngam, S. Comparison of antimicrobial activity of mangosteen crude, turmeric and Gotu Kola extract. NUJST 2010, 18, 1–9. [Google Scholar]
- Yoswathana, N.; Eshtiaghi, M.N. Optimization of subcritical ethanol extraction for xanthone from mangosteen pericarp. Int. J. Chem. Eng. Appl. 2015, 6, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.W.; Cho, J.K.; Curtis-Long, M.J.; Yuk, H.J.; Kim, Y.S.; Jung, S. α-Glucosidase inhibition and antihy-perglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochem 2011, 72, 2148–2154. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Ibrahim, S.R.; Shaaban, M.I.; Ross, S.A. Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Fitoterapia 2014, 98, 215–221. [Google Scholar] [CrossRef]
- Ee, G.; Daud, S.; Taufiq-Yap, Y.; Ismail, N.; Rahmani, M. Xanthones from Garcinia mangostana (Guttiferae). Nat. Prod. Res. 2006, 20, 1067–1073. [Google Scholar] [CrossRef]
- Eukun Sage, E.; Jailani, N.; Md Taib, A.Z.; Mohd Noor, N.; Mohd Said, M.I.; Abu Bakar, M.; Mackeen, M.M. From the Front or Back Door? Quantitative analysis of direct and indirect extractions of α-mangostin from mangosteen (Garcinia mangostana). PLoS ONE 2018, 13, e0205753. [Google Scholar] [CrossRef]
- Satong-aun, W.; Assawarachan, R.; Noomhorm, A.; Pathumthani, K.L. The Influence of Drying Temperature and Extraction Methods on a-Mangostin in Mangosteen Pericarp. J. Food Sci. Eng. 2011, 1, 85–92. [Google Scholar]
- Rusman, J.R.A.; Sundar, S.A.; Nuriliani, A.; Saragih, H.T. Ameliorative effect of mangosteen (Garcinia mangostana L.) peel infusion on the histopathological structures of the liver and kidney of rats (Rattus norvegicus Berkenhout, 1769) after H2O2 induction. Vet. World 2021, 14, 1579–1587. [Google Scholar] [CrossRef]
- Fang, L.; Liu, Y.; Zhuang, H.; Liu, W.; Wang, X.; Huang, L. Combined microwave-assisted extraction and high-speed counter-current chromatography for separation and purification of xanthones from Garcinia mangostana. J. Chromatogr. B 2011, 879, 3023–3027. [Google Scholar] [CrossRef]
- Yoswathana, N. Accelerated extraction of xanthone from mangosteen pericarp using ultrasonic technique. Afr. J. Pharm. Pharmacol. 2013, 7, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Radoiu, M.; Kaur, H.; Bakowska-Barczak, A.; Splinter, S. Microwave-assisted industrial scale cannabis extraction. Technologies 2020, 8, 45. [Google Scholar] [CrossRef]
- Radoiu, M.; Splinter, S.; Popek, T. Continuous industrial-scale microwave-assisted extraction of high-value ingredients from natural biomass. In Proceedings of the 53rd IMPI’s Microwave Power Symposium, Las Vegas, NV, USA, 18–20 June 2019. [Google Scholar]
- Veggi, P.C.; Martinez, J.; Angela, M.; Meireles, A. Fundamentals of microwave extraction. In Microwave Assisted Extraction for Bioactive Compounds: Theory and Practice; Chemat, F., Cravotto, G., Eds.; Springer: New York, NY, USA; Heidelberg, Germany; Dordrech, The Netherlands; London, UK, 2013. [Google Scholar]
- Moret, S.; Conchione, C.; Srbinovska, A.; Lucci, P. Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods 2019, 8, 503. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 25, 231. [Google Scholar] [CrossRef] [Green Version]
- Eskilsson, C.S.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Muley, P.D.; Wang, Y.; Hu, J.; Shekhawat, D. Microwave-assisted heterogeneous catalysis. In Catalysis; Royal Society of Chemistry: Washington, DC, USA, 2021; Volume 33, pp. 1–37. [Google Scholar]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Baghdadi, A.; Tayebi-meigooni, A. Alpha-mangostin-rich extracts from mangosteen pericarp: Optimization of green extraction protocol and evaluation of biological activity. Molecules 2018, 23, 1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Entezari, M.H.; Hagh Nazary, S.; Haddad Khodaparast, M.H. The direct effect of ultrasound on the extraction of date syrup and its microorganisms. Ultrason. Sonochem. 2004, 11, 379–384. [Google Scholar] [CrossRef]
- Bruce, E.R.; Brian, A.J.; John, L.E.; Nathan, L.P.; Nebojsa, A.; Chris, P. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar]
- Camel, V. Recent extraction techniques for solid matrices-supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: Their potential and pitfalls. Analyst 2001, 126, 1182–1193. [Google Scholar] [CrossRef]
- Machmudah, S.; Shiddiqi, Q.Y.A.; Kharisma, A.D.; Widiyastuti; Wahyudiono; Kanda, H.; Winardi, S.; Goto, M. Subcritical water extraction of xanthone from mangosteen (Garcinia mangostana Linn) pericarp. J. Adv. Chem. Eng. 2015, 5, 117. [Google Scholar] [CrossRef]
- Machmudah, S.; Lestari, S.D.; Kanda, H.; Winardi, S.; Goto, M. Subcritical water extraction enhancement by adding deep eutectic solvent for extracting xanthone from mangosteen pericarps. J. Supercrit. Fluids 2018, 133, 615–624. [Google Scholar] [CrossRef]
- Mulia, K.; Krisanti, E.; Terahadi, F.; Putri, S. Selected natural deep eutectic solvents for the extraction of α-mangostin from mangosteen (Garcinia mangostana L.) pericarp. Int. J. Technol. 2015, 6, 1211–1220. [Google Scholar] [CrossRef] [Green Version]
- Pasquali, I.; Bettini, R.; Giordano, F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur. J. Pharm. Sci. 2006, 27, 299–310. [Google Scholar] [CrossRef]
- Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies—A practical review. Talanta 2001, 53, 771–782. [Google Scholar] [CrossRef]
- Ruen-ngam, D. Extraction of antioxidants. J. Sci. Ladkrabang 2014, 23, 120–139. [Google Scholar]
- Mishima, K.; Kawakami, R.; Yokota, H.; Harada, T.; Kato, T.; Irie, K.; Mishima, K.; Fujiwara, M.; Matsuyama, K.; Mustofa, S.; et al. Extraction of xanthones from the pericarps of Garcinia mangostana Linn. With supercritical carbon dioxide and ethanol. Solvent Extr. Res. Dev. 2013, 20, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Zarena, A.S.; Udaya Sankar, K. Supercritical carbon dioxide extraction of xanthones with antioxidant activity from Garcinia mangostana: Characterization by HPLC/LC–ESI-MS. J. Supercrit. Fluids 2009, 49, 330–337. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Process. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Li, Y.; Radoiu, M.; Fabiano-Tixier, A.S.; Chemat, F. From Laboratory to Industry: Scale-Up, Quality, and Safety Consideration for Microwave-Assisted Extraction. In Microwave-Assisted Extraction for Bioactive Compounds; Food Engineering Series; Chemat, F., Cravotto, G., Eds.; Springer: Boston, MA, USA, 2012. [Google Scholar]
- Jujun, P.; Pootakham, K.; Pongpaibul, Y.; Tharavichitkul, P.; Ampasavate, C. HPLC determination of mangostin and its application to storage stability study. CMU J. Nat. Sci. 2009, 8, 43–53. [Google Scholar]
Bioactivity/Use | Component | References | |
---|---|---|---|
Bioactivities | antioxidant | α-mangostin | [18,19,20,21] |
γ-mangostin | [20] | ||
crude | [19,20,22,35] | ||
anti-obesity/ anti-amylase/anti-glucosidase/anti-lipase | α-mangostin | [36] | |
anti-inflammatory | α-mangostin | [37,38] | |
γ-mangostin | [38] | ||
anti-hyperglycemias, anti-diabetic | α-mangostin | [39] | |
γ-mangostin | [40] | ||
anti-neoplastic, anti-proliferative, anti-cancer | α-mangostin | [41] | |
γ-mangostin | [42] | ||
β-mangostin | [43] | ||
crude | [44] | ||
anti-apoptosis | α-mangostin | [35] | |
neuroprotective effects/ brain protective effect | α -mangostin | [45] | |
crude | [30] | ||
anti-tyrosinase/ anti-collagenase/anti-elastase/ anti-hyaluronidase | α-mangostin | [20,35] | |
anti-bacteria | α-mangostin | [19,20,21,25,26] | |
crude | [13,19,24] | ||
anti-TB | xanthone derivatives | [27] | |
anti-fungi and yeast | α-mangostin | [13,25,26] | |
Uses | cosmetic/ anti-acne | crude | [13] |
food industry/ food supplement | crude | [46] | |
oral care | crude | [47] | |
deodorant | crude | [21] |
Level | Apparent |
---|---|
5–50 % pink dots on a greenish-yellow background. The fruit is unripe and has a lot of gum. It’s difficult to separate the mangosteen pulp from the pericarps. | |
Dots spread 51–100 %, yellow-green with pink. The fruit is practically ripe, and the gum level is less than 1. It’s difficult to separate the pulp from the pericarps of mangosteen fruit. | |
Although the spots are not as apparent as at level 2, the mangosteen pulp can be separated from the pericarps. | |
Mangosteen pulp can be removed from the pericarps and eaten, ranging in color from red to purple red. | |
Mangosteen pulp is readily extracted from the pericarps and has a dark purple color. It is ready to eat and has no gum. | |
The purple and black color pericarp represent the perfectly ripe fruit, ready to eat. |
Extraction Method | Conditions | Xanthone Compounds | Reference |
---|---|---|---|
Maceration | 1 kg of mangosteen pericarp that macerated with 4 L of 95 % ethanol for 7 days, and was able to obtain 1.19 mg/g of xanthones from the mangosteen pericarp | Xanthones | [56] |
Maceration | The optimum conditions for extracting xanthones from mangosteen pericarp were at 33 °C, amplitude was set to 75, and 80% ethanol by the maceration at 2 h could be able to extract xanthones at a concentration of 0.0565 mg/g of dry mangosteen. | Xanthones | [65] |
Percolation | 10 g of powdered dried mangosteen fruit rind was combined with 10 mL of 95 % ethanol, and the combination was let to stand for 1 h. A percolator was used to add 95% ethanol to the mixture once it had been moved there (3.6 L). Once the percolate was gone, the extraction was carried out at room temperature with a flow rate of 3 mL/min (20 h). The α-mangostin content in extract by percolation was 12.71 % w/w | α-mangostin | [19] |
Soxhlet | Soxhlet extraction was employed to extract xanthones from dried mangosteen pericarp. The results presented that the xanthones extracted by Soxhlet, 31.26 mg/g of dried mangosteen pericarp | Xanthones | [57] |
Soxhlet | crude extract (26.60 % dry weight), α-mangostin (13.51%, w/w of crude extract) and anti-acne activity, were obtained at a concentration of 50 % ethanol, an optimal amount for extraction by Soxhlet | α-mangostin | [19] |
Soxhlet | The optimum conditions for extracting xanthones from mangosteen pericarp were 33 °C, amplitude was set to 75, and 80% ethanol by Soxhlet extraction at 2 h, which was able to extract xanthones at a concentration of 0.1221 mg/g of dry mangosteen. | Xanthones | [65] |
Infusion | 1000 mL of drinking water and 330 g of pericarps were combined, and the mixture was submerged for 12 h until the water turned dark red and smelled fresh. The stock solution, which contained 1.87 % of the flavonoid in the mangosteen pericarps infusion, was then obtained. | Flavonoid content such as xanthones, tannins, and catechins. | [64] |
Extraction Method | Conditions | Xanthone Compounds | Reference |
---|---|---|---|
Microwave | The optimum conditions for the extraction of antioxidant-rich xanthones are the 2.24 min irradiation time, the solvent ratio of mangosteen pericarps powder of 25 mL/g and a 71% ethanol concentration. | Xanthones | [22] |
Microwave | The mangosteen pericarp was extracted using 72.40 % (v/v) ethyl acetate with microwave extraction, with 189.20 W output power and irradiation time was set to 3.16 min, which was able to extract xanthones, particularly α-mangostin, at about 120.68 mg /g of mangosteen pericarp (dry matter). | α-mangostin | [73] |
Ultrasonic | The optimum conditions for extracting xanthones from mangosteen pericarp were 33 °C, an amplitude of 75, and 80% ethanol by the ultrasonic-assisted extraction method for 0.5 h, which could extract xanthones at a concentration of 0.1760 mg/g of dry mangosteen. | Xanthones | [65] |
Subcritical Water Extraction | Extraction of xanthone compounds from mangosteen pericarps was examined at temperatures of 120–180 °C and pressures of 1–5 Mpa using a batch extractor. The maximum yield of xanthone was 34 mg/g sample at 180 °C and 3 Mpa with 150 min reaction time. | Xanthones | [78] |
The supercritical fluid extraction technique | Extraction of α-mangostin from mangosteen pericarps by supercritical fluid extraction technique using CO2 as a solvent under 35, 40 and 50 °C, pressure 10 to 20 Mpa could extract α-mangostin up to 4.5 × 10−7. | α-mangostin | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuvanatemiya, V.; Srean, P.; Klangbud, W.K.; Venkatachalam, K.; Wongsa, J.; Parametthanuwat, T.; Charoenphun, N. A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules 2022, 27, 8775. https://doi.org/10.3390/molecules27248775
Yuvanatemiya V, Srean P, Klangbud WK, Venkatachalam K, Wongsa J, Parametthanuwat T, Charoenphun N. A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules. 2022; 27(24):8775. https://doi.org/10.3390/molecules27248775
Chicago/Turabian StyleYuvanatemiya, Vasin, Pao Srean, Wiyada Kwanhian Klangbud, Karthikeyan Venkatachalam, Jittimon Wongsa, Thanya Parametthanuwat, and Narin Charoenphun. 2022. "A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps" Molecules 27, no. 24: 8775. https://doi.org/10.3390/molecules27248775
APA StyleYuvanatemiya, V., Srean, P., Klangbud, W. K., Venkatachalam, K., Wongsa, J., Parametthanuwat, T., & Charoenphun, N. (2022). A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules, 27(24), 8775. https://doi.org/10.3390/molecules27248775