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In the past two decades, there have been remarkable changes in the way we analyze the
physical, chemical, and sensory properties of fresh and processed food products, with the
progressive replacement of traditional wet analytical methods (destructive, laborious, time-
consuming, and requiring the use of hazardous chemicals) with new, fast, non-destructive
physical methods where the analysis is performed in a single step, after validation, and
without the use of chemical reagents. With new magnetic resonance and vibrational
spectroscopic and imaging methods, food analyses have become faster, more accurate, and
better able to determine several parameters per analysis without destroying the sample
(non-destructive methods), or in some cases without even having to open their sealed
packages (non-invasive methods). Many advances also include the development of new
equipment (some even portable), easier access, greater sensitivity, better resolution, lower
detection and quantification limits, and the use of computational procedures known as
chemometrics or machine learning methods. Currently, most of the food analyses with
these technologies have been performed in laboratories, but analyses in fields, factories and
warehouses are gaining momentum, and analyses by consumers in supermarkets are just
around the corner.

This Special Issue, “Magnetic Resonance and Vibrational Spectroscopy and Imaging in Food
Analysis”, published in the journal Molecules, includes ten original papers: seven papers
using nuclear magnetic resonance spectroscopy and relaxometry (NMR) and imaging (MRI),
and three papers using near- and middle-infrared spectroscopy and hyperspectral imaging.
The NMR papers are as follows: Sørensen et al. [1] demonstrate the use of portable and
easy-to-use NMR instruments to measure fat and protein content in milk, on site. Salvador
et al. [2] show the use of high- and low-field NMR spectroscopy to monitor the effect of
UV-C light on the bean-darkening process. Machado et al. [3] demonstrate the potential
of low-field NMR relaxometry to predict fat, moisture and solid fat content in soft cheese
in commercial packages. Oshester et al. [4] use a low-field NMR spectrometer to monitor
the oxidation status of edible oil via the measurement of the oil self-diffusion coefficient.
Uguz et al. [5] show the potential of solid-state and spin diffusion pulse sequences in
food quality control using a time domain NMR spectrometer. The MRI papers are as
follows: Serial et al. [6] study the time-dependent flow behavior of concentrated egg yolk
emulsions via MRI and unravel the effects caused by viscous friction during shear. Kerr
et al. [7] demonstrate via MRI that high pressure reduces the infusion time 100 times when
compared with infusion at an ambient pressure.

The infrared spectroscopy and imaging papers are as follows: Aykas et al. [8] develop
a rapid, accurate method to detect acrylamide content in par-frozen French fries using a
portable Infrared spectrometer. Ren et al. [9] use Fourier transform infrared spectroscopy
to study the stability and interactions of anthocyanins and whey proteins. Finally, Jiang
et al. [10] develop a hyperspectral method, from 400 to 1000 nm, to rapidly and accurately
discriminate the maturity stages of Camellia oleifera fruits.
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We hope that this Special Issue provides useful information about the potential of
nuclear magnetic resonance and infrared spectroscopies and imaging as simple, rapid and
non-destructive procedures to monitor several physical and chemical parameters that are
important to understand food properties and food quality.
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