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Abstract: To date, some succeeding variants of SARS-CoV-2 have become more contagious. This
virus is known to enter human cells by binding the receptor-binding domain (RBD) of spike protein
with the angiotensin-converting enzyme 2 (ACE2), the latter being a membrane protein that regulates
the renin–angiotensin system. Since the host cell receptor plays a critical role in viral entry, inhibition
of the RBD–ACE2 complex is a promising strategy for preventing COVID-19 infection. In the
present communication, we propose and utilize an approach based on the generation of a complex of
pharmacophore models and subsequent Induced Fit Docking (IFD) to identify potential inhibitors of
the main binding sites of the Omicron SARS-CoV-2 RBD(S1)–ACE2 complex (PDB ID: 7T9L) among
a number of natural products of various types and origins. Several natural compounds have been
found to provide a high affinity for the receptor of interest. It is expected that the present results will
stimulate further research aimed at the development of specialized drugs against this virus.

Keywords: induced fit docking; natural compound; SARS-CoV-2 inhibitors; spike RBD; human
ACE2; pharmacophore model

1. Introduction

SARS-CoV-2 is a virus of the species (SARS-CoV), causing severe acute respiratory
syndrome, and is related to the SARS-CoV-1 virus that caused the 2002–2004 SARS outbreak.
Available evidence indicates that it is most likely of zoonotic origins and has close genetic
similarity to bat coronaviruses, suggesting it emerged from a bat-borne virus. The virus
shows little genetic diversity, indicating that the spillover event introducing SARS-CoV-2 to
humans is likely to have occurred in late 2019. Epidemiological studies estimate that each
infection resulted in an average of 2.4 to 3.4 new ones when no members of the community
are immune and no preventive measures are taken. However, some subsequent variants
have become more infectious. The virus primarily spreads between people through close
contact and via aerosols and respiratory droplets that are exhaled when talking, breathing,
or otherwise exhaling, as well as those produced from coughs or sneezes. It enters human
cells by binding to ACE2, a membrane protein that regulates the renin–angiotensin system.

It is well known that SARS-CoV-2 is an enveloped single-stranded RNA virus with
the spike-shaped glycoproteins protruding from its outer surface of the membrane, thus
forming a “crown” [1]. It has four main structural proteins: spike, envelope, membrane,
and nucleocapsid. The spike protein, in turn, exists in a trimeric form, with each protomer
having two functional subunits, S1 and S2, as shown in Figure 1. The S1 subunit includes the
receptor-binding domain (RBD), which is responsible for the recognition of the angiotensin-
converting enzyme 2 of the host cell and determines the range of potential carriers, which
is an important step for the introduction of the virus core into the cell [2–7].

At this stage, the virus attaches to the cell surface, and the spike protein, in turn, is ex-
posed to the host protease to initiate infection. This mechanism is shared by several known

Molecules 2022, 27, 8938. https://doi.org/10.3390/molecules27248938 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27248938
https://doi.org/10.3390/molecules27248938
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-8076-2245
https://orcid.org/0000-0003-2941-1084
https://doi.org/10.3390/molecules27248938
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27248938?type=check_update&version=2


Molecules 2022, 27, 8938 2 of 27

human pathogenic coronaviruses. At the same time, RBD, in the process of interaction with
ACE2, makes hinged movements to move from the lower state to the upper one to remove
steric hindrances [8].

Molecules 2022, 27, x FOR PEER REVIEW 2 of 28 
 

 

angiotensin-converting enzyme 2 of the host cell and determines the range of potential 
carriers, which is an important step for the introduction of the virus core into the cell [2–
7]. 

At this stage, the virus attaches to the cell surface, and the spike protein, in turn, is 
exposed to the host protease to initiate infection. This mechanism is shared by several 
known human pathogenic coronaviruses. At the same time, RBD, in the process of inter-
action with ACE2, makes hinged movements to move from the lower state to the upper 
one to remove steric hindrances [8]. 

 
Figure 1. Schematic illustration of SARS-CoV-2 virion with detailed arrangement of spike receptor 
binding domain. Reproduced with minor editing privilege from Abubakar [9] under the Creative 
Commons Attribution License (CC BY). 

Since the host cell receptor plays a critical role in viral entry, inhibition of the RBD–
ACE2 complex is a promising strategy for preventing COVID-19 infection. However, it 
should be noted that, for a number of reasons, peptide inhibitors have some disad-
vantages that limit their use as drugs, in particular, poor metabolic stability, poor mem-
brane permeability, and rapid clearance [10]. Taking this fact into account, the develop-
ment of low-molecular-weight drugs that can either prevent the interaction of RBD with 
ACE-2 or affect the stability of an already formed complex is a very urgent task [11–17]. 

To date, two main strategies have been formed to prevent the penetration of viral 
RNA into the cell. The first strategy to inhibit viral attachment eliminates the binding of 
the spike protein to the ACE2 enzyme by monoclonal antibodies directed to the receptor-
binding domain of the spike protein. The second strategy involves the distortion of the 
main RBD–ACE2 interaction interface due to its binding to blocking ligands or com-
pounds that modify the glycan component of human ACE2. Of course, the implementa-
tion of the second strategy is possible both with the use of known structures that inhibit 
other viral proteins as well as with the use of completely new compounds that will have 
affinity for the RBD–ACE2 binding interface [18,19]. 

However, the search for the structures, which may be used for further drug develop-
ment, is an extremely long and expensive process. From this point of view, the wide struc-
tural diversity and unique properties of natural products (NPs) predetermine them to be 
a good starting point, serving as a convenient template for the development of new inhib-
itors. Natural products with known antiviral activity may also be an additional means of 
fighting SARS-CoV-2 infection. At the moment, a number of theoretical works have been 
published that describe the binding abilities and dynamic behavior of many natural prod-
ucts relative to the RBD–ACE2 complex [9,20–27], as well as that considered the ad-
vantages in therapy, as compared to monoclonal antibodies [9,27–31]. 

Figure 1. Schematic illustration of SARS-CoV-2 virion with detailed arrangement of spike receptor
binding domain. Reproduced with minor editing privilege from Abubakar [9] under the Creative
Commons Attribution License (CC BY).

Since the host cell receptor plays a critical role in viral entry, inhibition of the RBD–
ACE2 complex is a promising strategy for preventing COVID-19 infection. However, it
should be noted that, for a number of reasons, peptide inhibitors have some disadvan-
tages that limit their use as drugs, in particular, poor metabolic stability, poor membrane
permeability, and rapid clearance [10]. Taking this fact into account, the development of
low-molecular-weight drugs that can either prevent the interaction of RBD with ACE-2 or
affect the stability of an already formed complex is a very urgent task [11–17].

To date, two main strategies have been formed to prevent the penetration of viral
RNA into the cell. The first strategy to inhibit viral attachment eliminates the binding of
the spike protein to the ACE2 enzyme by monoclonal antibodies directed to the receptor-
binding domain of the spike protein. The second strategy involves the distortion of the
main RBD–ACE2 interaction interface due to its binding to blocking ligands or compounds
that modify the glycan component of human ACE2. Of course, the implementation of the
second strategy is possible both with the use of known structures that inhibit other viral
proteins as well as with the use of completely new compounds that will have affinity for
the RBD–ACE2 binding interface [18,19].

However, the search for the structures, which may be used for further drug devel-
opment, is an extremely long and expensive process. From this point of view, the wide
structural diversity and unique properties of natural products (NPs) predetermine them
to be a good starting point, serving as a convenient template for the development of new
inhibitors. Natural products with known antiviral activity may also be an additional means
of fighting SARS-CoV-2 infection. At the moment, a number of theoretical works have
been published that describe the binding abilities and dynamic behavior of many natu-
ral products relative to the RBD–ACE2 complex [9,20–27], as well as that considered the
advantages in therapy, as compared to monoclonal antibodies [9,27–31].

It is reasonable to assume that most of them indicate the interruption of the interaction
between RBD and ACE2 through competitive or allosteric inhibition by small-molecular-
weight ligands [32–36]. Taking into account the experience of previous studies, we propose
in this work to consider several binding domains, including those in the cleft and on
the surface of ACE2. This approach will make it possible to identify not only potential
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inhibitors of the main contact zone but also the allosteric inhibitors of the formation of the
RBD–ACE2 complex, which exhibits high complementarity to the ACE2 enzyme. To do
this, we analyzed the binding affinity of about 25,000 compounds taken from a specialized
database (DB) of natural products, COCONUT [37]. The library of potential natural ligands
was directed to one of the latest SARS-CoV-2 cryo-EM structures SARS-CoV-2 Omicron
RBD(S1) in complex with ACE2 (PDB ID: 7T9L [38]) for the virtual screening and subsequent
extra-precision molecular docking.

As is well known, the development of new drugs is based not only on a classical
docking of a ligand into the protein structure, but also on the search for regularities in
the structure of the potential inhibitors. In this line, we propose in this study an in silico
ligand search technique based on complex pharmacophore modeling. The developed 3D
pharmacophore models make it possible to carry out the rapid virtual screening of a large
DB of compounds. The pharmacophore model is a spatial set of steric and stereoelectronic
features required by the receptor for the molecular recognition of a ligand. At the same time,
one of its main advantages is manifested in the possibility of explaining how structurally
different ligands are able to interact with a common binding domain. According to the
literature, there are several examples of the use of pharmacophore models to search for
new SARS-CoV-2 receptor ligands (not only the RBD–ACE2 complex), which have a
predominantly quite local character [39–43].

Thus, within the framework of the present study, we have developed a set of pharma-
cophore hypotheses with the aim of coverage and the further screening of the structurally
diverse potential natural inhibitors of the interaction of the SARS-CoV-2 spike protein with
angiotensin-converting enzyme 2.

2. Results and Discussion
2.1. Initial Identification of Structural Similarity

As has already been mentioned, the selection and development of low-molecular-
weight structures capable of disrupting the interaction of RBD with ACE2 is currently an
urgent task. In this study, to search for new potential inhibitors of the SARS-CoV-2 spike
RBD binding to ACE2, we propose an integrated approach based on the development of
pharmacophore models and the subsequent screening of a database of NPs based on these
models. This study consisted of three main blocks with the first one dealing with the initial
identification of structural similarity; see Figure 2.
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Figure 2. The general scheme of the workflow for the development of pharmacophore models used
for the search of new inhibitors (carried out and applied in the present study).

At this stage, we conducted a small literature review and tried to summarize the
available data on the known in silico investigations of the main binding domains of
potential ligands (both natural and synthetic) with the RBD and ACE2 receptors; see
Figure 3. In total, about seven basic sites were defined, namely (a)—the RBD–ACE2 binding
interface [20–23,29,40,44–55]; (b,e)—three pockets on the surface of the RBD protein near
the central contact zone [21,26,46,56,57] and (d)—in the recess of a bended hydrophobic
“tube” [24,58,59]; (c)—large catalytic cleft in the cavity of ACE2 [20,25,41,44,45,60–62]; (f )—
surface binding site ACE2 [20,57]; and finally, (g)—a tight pocket in the core of ACE2 near
its cleft [41,63–65]. The potential inhibitors of the listed base domains are presented in
Table 1, while their residues are described in Table 2.



Molecules 2022, 27, 8938 5 of 27Molecules 2022, 27, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 3. Main binding domains of potential ligands to receptors RBD и ACE2 (based on data pro-
vided in Refs. [20–65]. 

Table 1. Potential inhibitors of the basic domains a–g of SARS-CoV-2 Spike RBD–ACE2 previously 
identified by in silico investigations. 

Drug Name Source Pharmacological 
Function(s) 

Binding 
Energy 
Score, 

kcal/mol a 

References 

binding domain: a 
7-Methyl-guanosine-5′-
triphosphate-5′-guanosine 

synthetic a biomarker of some types of 
cancer 

−9.1 [40] 

8-Bromo-adenosine-5′-
monophosphate synthetic 

inhibition of inosine 
monophosphate dehydrogenase 
in Escherichia coli 

−8.1 [40] 

Acalabrutinib synthetic 
inhibition of mantle cell 
lymphoma and chronic 
lymphocytic leukemia 

−7.2 [66] 

Acitretin synthetic treatment of severe psoriasis and 
other skin disorders in adults 

−9.6 [67] 

Adenosine-2′-5′-
diphosphate 

 agonist activity at P2Y1 receptor 
in turkey erythrocyte membranes 

−8.6 [40] 

Alpinumisoflavone Erythrina 
lysistemon 

antischistosomal activity −10.7 [56] 
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Table 1. Potential inhibitors of the basic domains a–g of SARS-CoV-2 Spike RBD–ACE2 previously
identified by in silico investigations.

Drug Name Source Pharmacological
Function(s)

Binding Energy
Score, kcal/mol a References

binding domain: a
7-Methyl-guanosine-5′-
triphosphate-5′-
guanosine

synthetic a biomarker of some types of cancer −9.1 [40]

8-Bromo-adenosine-5′-
monophosphate synthetic inhibition of inosine monophosphate

dehydrogenase in Escherichia coli −8.1 [40]

Acalabrutinib synthetic inhibition of mantle cell lymphoma and
chronic lymphocytic leukemia −7.2 [66]

Acitretin synthetic treatment of severe psoriasis and other skin
disorders in adults −9.6 [67]

Adenosine-2′-5′-
diphosphate

agonist activity at P2Y1 receptor in turkey
erythrocyte membranes −8.6 [40]

Alpinumisoflavone Erythrina lysistemon antischistosomal activity −10.7 [56]

Cladribine synthetic a medication used to treat hairy cell leukemia
and B-cell chronic lymphocytic leukemia −7.9 [40]

Clofarabine synthetic treating relapsed or refractory acute
lymphoblastic leukaemia −7.2 [40]

Curcumin genus Curcuma antiinflammatory, antitumor activity −9.0 [48]



Molecules 2022, 27, 8938 6 of 27

Table 1. Cont.

Drug Name Source Pharmacological
Function(s)

Binding Energy
Score, kcal/mol a References

Demethylzeylasteral Tripterygium wilfordii
Hook F. androgen receptor in human LNCAP cells ND [44]

Dexamethasone synthetic
anti-inflammatory and immunosuppressant
effects; treating arthritis, severe allergies,
asthma, and certain types of cancer

−6.5 [68]

Dieckol Eisenia bicyclis antithrombotic and profibrinolytic activities −8.1 [69]

Dimethylcurcumin synthetic antiandrogen activity −11.2 [48,70]

Dithymoquinone Nigella sativa therapeutic of inflamation −8.6 [51]

Epigallocatechin-3-gallate Camellia sinensis
antioxidant effects, cancer chemoprevention,
improving cardiovascular health, enhancing
weight loss

ND [49,71,72]

Ergocalciferol (Vitamin
D2) Fish oil a dietary supplement to prevent and treat

vitamin D deficiency −14.8 [73]

Evans Blue synthetic
a negative allosteric modulator of the AMPA
and kainate receptors and an inhibitor of
vesicular glutamate transporters

ND [49]

Fludarabine synthetic a chemotherapy medication used in the
treatment of leukemia and lymphoma −7.0 [40]

Glycyrrhizin Glycyrrhiza radix emulsifier and gel-forming agent in
foodstuffs and cosmetics −9.0 [20]

Hesperidin Citrus aurantium inhibitor of the TRPM3 channels −9.5 [48]

Indacaterol synthetic

an ultra-long-acting beta-adrenoceptor
agonist used for the treatment of chronic
obstructive pulmonary disease in patients
with asthma

−8.1 [53]

Kobophenol A Caragana chamlagu inhibitor of acetylcholinesterase −11.1 [45]

Levodopa Mucuna pruriens an amino acid precursor of dopamine with
antiparkinsonian properties −6.1 [67]

Luteolin Reseda luteola a principal yellow dye compound −7.8 [53]

Parvisoflavone B Erythrina schliebenii antitubercular and cytotoxic activity −10.7 [56]

Rutin Fagopyrum esculantum antioxidant and cytoprotective properties −7.9 [21]

Taraxerol Taraxacum officinale antiinflammatory activity −7.5 [23]

Tazarotene synthetic
treatment of plaque psoriasis and acne and a
therapeutic for photoaged and
photodamaged skin

−6.1 [67]

Tretinoin a natural derivative of
vitamin A

treatment of acne and follicular keratosis and
the curing of acute promyelocytic leukemia −6.0 [67]

Ursodeoxycholic acid genus Ursus treatment of several diseases of the liver or
bile ducts −7.0 [53]

Velpatasvir synthetic the NS5A inhibitor used in the treatment of
hepatitis C infection −11.1 [74]

Venetoclax synthetic
a medication used to treat adults with chronic
lymphocytic leukemia, small lymphocytic
lymphoma, and acute myeloid leukemia

ND [49,75–77]

Vitamin B12 Propionibacterium
shermanii

hematopoiesis, neural metabolism, DNA and
RNA production −7.6 [22]
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Table 1. Cont.

Drug Name Source Pharmacological
Function(s)

Binding Energy
Score, kcal/mol a References

Vitamin K2 Mycobacterium
tuberculosis

a common form of vitamin K, primarily
necessary for the body to carry out vital
processes, cleaning blood vessels, and blood
clotting

−9.5 [78]

binding domain: b
Acetoside Olea europaea antioxidant, anti-inflammatory activity −8.5 [21]

Amentoflavone Ginkgo biloba

inhibitor of CYP3A4 and CYP2C9, which are
enzymes responsible for the metabolism of
some drugs in the body; it is also an inhibitor
of human cathepsin B

−8.5 [26]

Arbidol synthetic a broadspectrum respiratory antiviral drug −7.7 [58]

Celastrol Tripterygium wilfordii antitumor action, inhibitor of inflammatory
and human prostate cancer activities −8.3 [26]

Dioscin Ophiopogon intermedius antitumor, antimicrobial, anti-infammatory,
antioxidative, and tissue-protective activities −8.9 [26]

Epimedin C Herba epimedii treatment of cardiovascular disease and bone
loss −8.1 [26]

Epitheaflavin monogallate Camellia sinensis antitoxicant, antioxidant, and
antiinflammatory activity −7.5 [21]

Saikosaponin Bupleurum chinense treatment of hepatitis in Chinese herbal
medicine −9.1 [26]

Solanine Solanum nigrum fungicide, antimicrobial and pesticide
properties −9.5 [21]

binding domain: c

Anabsinthin Artemisia absinthium L.
inhibition of the human immunodeficiency
virus 1 (HIV1) protease, treating acute
bacillary dysentery

−12.5 [25]

Atazanavir synthetic

the inhibitor of the HIV protease; selectively
inhibits the virus-specific processing of viral
Gag-Pol proteins in the HIV-infected cells,
preventing the infection of other cells

−12.4 [62]

Baicalin Scutellaria baicalensis antioxidant, anti-inflammatory, and
anti-apoptosis properties −8.5 [20]

β-Sitosterol Solanum trilobatum reduction of benign prostatic hyperplasia and
blood cholesterol levels −10.9 [62]

Caflanone Cannabis sativa

selective activity against the human
coronavirus (COVID-19) disease;
vasorelaxant activity against
phenylephrine-induced contraction in rat
aorta

−7.9 [61]

Chloroquine genus Cinchona a medication used to prevent and treat
malaria −6.5 [52]

Demethylzeylasteral Tripterygium wilfordii
antitumor effects in a variety of cancers,
inhibits the proliferation, migration, and
invasion of gastric cancer cells

ND [44]

Epitheaflavin monogallate Camellia sinensis cancer-fighting chemical when combined
with cisplatin against ovarian cancer cells −7.5 [21]

Ertapenem synthetic

a carbapenem antibiotic medication used for
the treatment of infections of the abdomen,
the lungs, the upper part of the female
reproductive system, and the diabetic foot

−8.8 [41]
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Table 1. Cont.

Drug Name Source Pharmacological
Function(s)

Binding Energy
Score, kcal/mol a References

Flavin adenine
dinucleotide cow milk

a cofactor for cytochrome-b5 reductase, the
enzyme that maintains hemoglobin in its
functional reduced state

−8.6 [41]

Indacaterol synthetic
an ultra-long-acting beta-adrenoceptor
agonist licensed for the treatment of chronic
obstructive pulmonary disease

−8.1 [41,53]

Kaempferol Lycopodiella inundata
a multipotential neuroprotective action
through the modulation of several
proinflammatory signaling pathways

−10.4 [62]

Ledipasvir synthetic

a direct acting antiviral medication used as
part of combination therapy to treat chronic
hepatitis C and exhibiting many
pharmacological activities

−9.1 [41]

Naringenin genus Citrus
inhibition of some drug-metabolizing
cytochrome P450 enzymes including
CYP3A4 and CYP1A2

−6.4 [79]

Nicotianamine Glycine max potent inhibitor of the
angiotensin-converting enzyme ACE2 −5.1 [20]

Raltegravir synthetic
a potent CYP3A inhibitor decreasing the
amount of human immunodeficiency virus in
human blood

−9.1 [41]

Stigmasterol Ophiopogon japonicus maintaining the structure and physiology of
cell membranes −9.8 [62]

binding domain: d
Chrysin Scutellaria baicalensis antivirus and antiinflammatory properties −6.5 [53]

Glycyrrhizin Glycyrrhiza radix antihepatotoxic activity −9.0 [20]

Linoleic acid Carthamus tinctorius one of two essential fatty acids for humans,
who must obtain it through their diet −6.8 [80]

Myricetin
3-(4”-galloylrhamnoside) Limonium species an excellent source of phytosterols and

flavonoids −8.3 [24]

Myricetin 3-rhamnoside Newtonia buchananii active against B. cereus, E. coli, and S. aureus −8.5 [24]

Pelargonidin genus Geranium
a type of plant pigment producing a
characteristic orange color, which is used in
food and industrial dyes

−7.7 [59]

Betulinic acid Betula pubescens

a naturally occurring pentacyclic triterpenoid
providing antiretroviral, antimalarial, and
anti-inflammatory properties, as well as a
more recently discovered potential as an
anticancer agent

−8.1 [56]

Canrenone active metabolite of
spironolactone

an antimineralocorticoid and active
metabolite of spironolactone used in the
treatment of primary hyperaldosteronism

−7.9 [56]

Glycyrrhizin Glycyrrhiza radix

a component of licorice, causes apparent
mineralocorticoid excess through the
inhibition of the enzyme
11-β-hydroxysteroid dehydrogenase

−9.0 [20]

Oleanolic acid Olea europaea, Rosa
woodsii

exhibiting antitumor and antiviral properties
together with weak anti-HIV and weak
anti-HCV activities in vitro

−8.2 [25,56]

Potassium canrenoate synthetic an aldosterone antagonist of the spirolactone
group, metabolizing to active canrenone −6.9 [56]
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Table 1. Cont.

Drug Name Source Pharmacological
Function(s)

Binding Energy
Score, kcal/mol a References

binding domain: f
Hesperetin Citrus aurantium inhibitor of the Mpro of SARS-coronaviruses −9.1 [20]

Scutellarin Erigeron breviscapus antiplatelet and anticoagulation properties −14.9 [20]
binding domain: g

2-vinyl-4H-1,3-dithiine Allium sativum affecting the vascular smooth muscle cells
isolated from spontaneous hypertensive rats −14.0 [64]

Abemaciclib synthetic a medication for the treatment of advanced
or metastatic breast cancers −9.9 [41,67]

Allyl disulfid Allium sativum
providing antioxidative, antiviral,
neuroprotective, antiparasitic, anticancer, and
antihyperlipidemic activities

−15.3 [64]

Allyl methyl trisulfide Allium chinense,
Mansoa alliacea used as flavoring agent and tumor inhibitor −14.4 [64]

Allyl propyl trisulfide Azadirachta indica used in food additives and flavors −14.0 [64]

Caffeic acid phenethyl
ester Propolis

antimitogenic, anticarcinogenic,
anti-inflammatory, and immunomodulatory
properties in vitro

−6.5 [81,82]

Chrysin Passiflora caerulea an ingredient in dietary supplements −7.1 [53]

Cianidanol Salix atrocinerea,
Visnea mocanera

an antioxidant flavonoid, occurring
especially in woody plants −9.5 [83]

binding domain: e

Diallyl tetrasulfid synthetic

shown to selectively kill cancerous cells in
the prostate and breast, leaving healthy cells
unharmed; providing also antioxidant,
anti-inflammatory, and anti-apoptotic effects;
and a promising treatment for cardiac
arrhythmias

−14.5 [64]

Flavin adenine
dinucleotide cow milk

a redox-active coenzyme associated with
various proteins, which is involved with
several enzymatic reactions in metabolism

−9.9 [41]

Pinocembrin Turnera diffusa

antioxidant, a drug to treat cerebral ischemia,
intracerebral hemorrhage, neurodegenerative
diseases, cardiovascular diseases, and
atherosclerosis

−7.8 [63]

Ponatinib synthetic

treatment of chronic myeloid leukemia and
chromosome-positive acute lymphoblastic
leukemia, a multi-targeted tyrosine-kinase
inhibitor

−9.9 [41]

Saquinavir synthetic an antiretroviral drug used to treat or prevent
HIV/AIDS −11.7 [41,62,67]

Siponimod synthetic a selective sphingosine-1-phosphate receptor
modulator for oral use for multiple sclerosis −9.9 [41,67]

Ursodeoxycholic acid genus Ursus

used as therapy in primary biliary
cholangitis; for intrahepatic cholestasis of
pregnancy; has been suggested to be an
adequate treatment of bile reflux gastritis

−8.7 [45,53,65,84]

a The strongest binding energy; ND—no data available.
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Table 2. A brief description of the binding domains a–g.

Binding
Domain Peculiarities of Domain Residues

a Central contact area RBD
with ACE2

RBD: Glu406, Arg403, Ser496, His505
ACE2: His34, Asp30, Lys353, Thr27

b Hydrophobic pocket beside the interaction
interface of RBD-ACE2 RBD: Tyr449, Leu452, Ala352

c Catalytic cleft of ACE2 ACE2: Thr371, Glu406, Arg273, His345, Asn149

d Bent FA hydrophobic tube of RBD RBD: Leu368, Leu387, Phe388, Phe342, Ile434, Phe377,
Phe338, Tyr365, Ala372

e β-sheet in the core of the RBD RBD: Lys440, Ser438, Arg346, Asp442, Val445, Tyr451

f Deepening pocket at the ACE2 surface ACE2: Arg482, Glu495

g Hydrophobic pocket alongside the cleft of ACE2 ACE2: Ser511, Tyr196, Gln102, Glu208, Pro565, Trp 566,
Ala 396, Gln 98, Leu91

For each domain, characteristic sets of ligands with high binding energies with the
receptor were selected according to the literature data. At this stage, we deliberately did
not give preference to natural ligands, which was in view of the fact that we needed to
determine the generality, as well as the similarity of the structure that exhibits high affinity
for a specific binding site. Also, at this stage we did not filter out the structures that have
reactive functional groups, being thus capable of high chemical reactivity.

At the next stage, these sets of selected ligands were prepared for molecular docking
(see Section 3.4.), and their ground tautomeric states were generated. After docking, the
ligands were differentiated by their binding energies. In each of the sets a–g, some 1–3
compounds possessing top docking scores were established. For those compounds, the
similarity of their structural fragments was determined. Based on this similarity, a search
for natural products in the COCONUT DB was performed. In order to cover as many
potential inhibitors as possible, we set the Tanimoto similarity [85] threshold to 85–95%.
Thus, for each of the domains a–g, libraries were formed from as many as about 1000–5000
natural products possessing a certain structural similarity.

2.2. Development of Pharmacophore Models

At the next main stage of this study, pharmacophore models were developed that
reflect the specificity of interactions in the considered binding pocket. For each of the
considered domains a–g, as many as four pharmacophore models were constructed (28
in total). Herein, we will consider these models on an example of pocket b. The graphic
representation and spatial arrangement of all four models for set b are represented in
Figures 4–7 while the remaining structures of the developed pharmacophore models are
given in the Supplementary Materials; see Figures S1–S24.
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hypothesis method.

First of all, based on the results of the molecular docking performed at the previous
stage, the lowest energy complex of the receptor with ligand from set b was determined.
Based on the analysis of chemical interactions of this complex, the “Receptor-ligand”
hypothesis was generated. The structure of the resulting hypothesis is given in Table 3. It
follows that acceptor A7 lies in the vicinity of His34 and D22 is located near Ser446, while
D26 is near Gln76 (see Figure 4). Aromatic rings R32, R33, and R34 are located near Ser494,
Gln42, and Asp38, respectively.

The second model was derived from the cavity of the corresponding receptor binding
site. Herein, we can also observe that the dyad of the aromatic ring and A8 acceptor is
located in the cavity of Arg493-Ser494-His-34, as shown in Figure 5. Based on this fact, one
can draw a conclusion about the structural commonality of the first and second models.
Further, as part of the construction of the “Multiple ligands” hypothesis, a complex of three
models was generated based on the entire set of ligands b, as presented in Figure 6. It can
be seen that their structures contain two acceptors based on the hydroxyl groups of the
benzoannulenone moiety, at least one aromatic ring, and a hydrophobic center.
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Furthermore, in the framework of this study, we tried to create a merged hypothesis
that takes into account the structures of the three hypotheses presented above. As a result of
the generation of the merged hypothesis, a model was obtained that includes the common
features of the previous three models. It can be seen that, in this case, features, such as A1,
D22, D36, N4, R31, R32, R33, and R34, were retained; see Figure 7. In general, here, as well
as in the receptor-ligand and receptor cavity models, one can observe the arrangement of a
number of aromatic cycles in the Arg493-Ser494-Arg498-His-34 cavity. This indicates the
most preferred configuration of the potential ligand for a given binding site.

In order to determine the set of the key ligands for each of the developed pharma-
cophore models of all studied domains, a virtual screening was carried out using the
libraries of NPs formed at the first stage; see the flow chart in Figure 2. Based on the
developed hypothesis, the suitability of compounds for the corresponding pharmacophore
model is analyzed during the screening process. By analyzing the mapping of screening
ligands to the model structure, the Phase module ranks the virtual screening results based
on the suitability score, known as the “Phase Screen Score”. The latter determines the
complementarity of the ligand to the given pharmacophore model.

Table 3. Screening parameters for the key and top-ligands according to the pharmacophore models a–g.

Library Size,
Cmpds. Hypothesis Structure of

Hypothesis Key Ligand Matched
Ligand Sites

Phase Screen
Score

Top Ligand
(IFD)

binding domain: a

2438

a1 ADDDDNR
CNP0260198 DDNR 1.418

CNP0332318

CNP0141274 ADDR 1.292

a2 AADDDNR
CNP0363429 ADDR 1.606
CNP0123143 ADDR 1.498
CNP0332318 AADD 1.477

a3
AAADR CNP0224071 AAADR 2.743
AAARR CNP0274243 AAARR 2.704
AAARR CNP0322514 AAARR 2.701

a4 AAADDDNNRR
CNP0305586 AADR 1.320
CNP0429890 ADRR 1.291

binding domain: b

3632

b1 ADDRRRR CNP0129813 ADRR 1.811

CNP0401960

b2 AAHNNNR
CNP0129813 AHN 1.516
CNP0401960 AHNR 1.412

b3
ADHR CNP0131499 ADHR 1.898

AADHR CNP0146455 AADHR 1.860
AADHR CNP0403928 AADHR 1.808

b4 ADDNRRRR CNP0128506 ADNR 1.393
binding domain: c

3657

c1 ADDDRRR

CNP0277806 DDDRR 1.665

CNP0277806

CNP0302437 DDDRR 1.646
CNP0318431 DDRR 1.622
CNP0129813 ADRR 1.620

c2 AAADDRR

CNP0409641 AARR 1.604
CNP0271209 AAADRR 1.555
CNP0406372 AADR 1.547
CNP0131497 AAAR 1.512
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Table 3. Cont.

Library Size,
Cmpds. Hypothesis Structure of

Hypothesis Key Ligand Matched
Ligand Sites

Phase Screen
Score

Top Ligand
(IFD)

c3 AAARR CNP0437810 AAARR 2.781

c4 AAADDDRRR
CNP0168889 AADDRR 1.409
CNP0153057 AADDRR 1.394
CNP0310325 ADDDRR 1.393

binding domain: d

4953

d1 DDRRR
CNP0182350 DDRR 1.608

CNP0380471

CNP0191402 DDRR 1.508

d2 AADDHNR CNP0429546 AAHNR 1.453

d3 ADDRRR
CNP0318928 ADDRRR 2.630
CNP0140035 ADDRRR 2.586
CNP0380471 ADDRRR 2.517

d4 AADDDHNRRR
CNP0204419 AAHNR 1.327
CNP0348217 AADR 1.220

binding domain: e

4847

e1 HHN CNP0161706 HHN 1.594

CNP0340958

e2 AADNRRR CNP0340958 AADN 1.348

e3 AHHHN CNP0287935 AHHHN 2.688

e4 AADHNRRR
CNP0360609 AAHH 1.533
CNP0364398 AAHH 1.504
CNP0329427 AAHH 1.475

binding domain: f

4431

f1 ADRR CNP0393256 ADRR 2.692

CNP0393256
f2 ADDDRRR

CNP0104690 ADRR 1.540
CNP0148806 ADRR 1.505
CNP0122888 ADDRR 1.499

f3 AAADRR CNP0393256 AAADRR 2.981

f4 AADDDRRRR
CNP0302437 ADRRR 1.481
CNP0347670 ADRR 1.472

binding domain: g

620

g1 ADDNRRR
CNP0342552 ADRR 1.413

CNP0125042

CNP0202472 ADRR 1.175
CNP0176937 ADRR 1.170

g2 ADDDDDD
CNP0391500 ADDD 1.398
CNP0005103 ADDD 1.389
CNP0176937 ADDD 1.352

g3 AADRR CNP0125042 AARR 2.126

g4 AADDDDNRR CNP0071844 ADRR 1.298

Another indicator, the “Matched Ligand Site”, indicates which particular features of
the hypothesis turn out to be appropriate for the particular ligand under consideration. The
corresponding natural products array screening parameters for the key ligands are provided
in Table 3. Based on the proposed procedure, as many as seven key ligands were selected for
the corresponding binding pocket from the library b consisting of 3632 compounds.



Molecules 2022, 27, 8938 15 of 27

Analyzing the screening results within the Multiple ligands model of the b domain,
one can note a clear predominance of the CNP0131499 compound in its group with a Phase
Screen Score of about 1.898. Herewith, four features turned out to be appropriate for this
ligand, namely A4, D17, H26, and R30. It should be noted that, in some cases, we expanded
the number of key ligands for one model to 3–4 pieces, since their Phase Screen Scores
turned out to be rather large and, moreover, very close among the compounds of their
screening library. In this way, for each of the developed pharmacophore models 1–4 of
all studied domains a–g, the key ligands were found that show complementarity to their
binding sites.

2.3. Final Verification of Key Ligands

After the key ligands for all 28 models were found, we proceeded to their compre-
hensive testing in order to identify those with the highest inhibition potential. In order to
take into account distortions in the protein structure together with its side chains during
its interaction with the studied ligands, we used the Induced Fit Docking protocol, which
plays a crucial role in the process of extra-precision docking [86]. The IFD approach makes
it possible to take into account both the flexibility of the docked ligand as well as the
flexibility of the receptor, while adjusting the spatial structure of the latter based on the
docked ligand. In that way, all key ligands were subjected to the IFD protocol with the
selected 3D structure of the spike RBD–ACE2 complex (PDB ID: 7T9L).

The results of that survey were analyzed based on the affinity of the docked ligands
to their binding domains. It followed that a number of compounds, namely CNP0332318,
CNP0401960, CNP0277806, CNP0380471, CNP0340958, CNP0393256, and CNP0125042 had
a binding energy lower than the other key ligands for binding sites a–g, respectively. As
a result, those compounds showed a good coordination with binding affinity, namely of
−6.71, −7.93, −9.98, −8.68, −6.21, −6.56, and −9.16 kcal/mol, respectively.

It follows from the data presented in Table 3 that the best ligand in the IFD analysis
is not always the one with the highest screening score. This indicates that the flexibility
and variability of the protein structure in the region of the binding domain correct the
resulting energy of interaction with the ligand during docking. Table 4 shows the final
result of the performed IFD calculations in the most ranked binding position arranged in
the order of decreasing predicted free binding energy, ∆G. The extensive interactions of the
docking poses of the top-ligands with binding domains a–g are shown in Figure 8, while
their corresponding 2D interaction diagrams are presented in Figure 9. These contacts
include hydrogen bonds (HBs), van der Waals interactions, π-alkyl, and π–π stacking.
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Table 4. Induced Fit Docking results for the SARS-CoV-2 RBD–ACE2 of top inhibitors.

Binding
Domain Ligand Binding Energy,

kcal/mol
IFD Score,
kcal/mol Type of Interactions of Residues

a CNP0332318 −6.71 −1673.0

H-bond: Tyr453(A), Ser496(A), Tyr501(A),
Asn33(D), Glu37(D), Lys353(D)
π-alkyl: Arg403(A), Lys353(D)
t-stacking: His34(D)

b CNP0401960 −7.93 −1672.3
H-bond: Lys444(A), Tyr449(A), Gln42(D)
π-alkyl: Arg498(A)
π-stacking: Tyr449(A)

c CNP0277806 −9.98 −1677.2

H-bond: Arg273(D), His345(D), Pro346(D),
Gln375 (D), Glu402(D), Arg518(D), Gln522(D)
π-alkyl: Arg273(D), Arg518(D)
π-stacking: His374(D)

d CNP0380471 −8.68 −1673.6

H-bond: Asn331(A), Ile332(A), Cys336(A),
Asn343(A), Asp364(A), Lys528(A), Lys529(A),
Ser530(A)
π-alkyl: Lys529(A)

e CNP0340958 −6.21 −1671.4 H-bond: Thr345(A), Arg346(A), Asn354(A),
Ser399(A), Lys444(A)

f CNP0393256 −6.56 −1671.8
H-bond: His493(D), Thr608(D)
π-alkyl: Lys475(D), Arg482(D)
t-stacking: Trp610(D)

g CNP0125042 −9.16 −1676.5

H-bond: Gln98(D), Asn103(D), Gly104(D),
Asn194(D), His195(D), Tyr196(D), Gly205(D),
Glu208(D)
π-alkyl: Arg219(D)
t-stacking: Tyr196(D)
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Figure 8. Interactions of the top-ligands at binding sites (a–g) of SARS-CoV-2 spike RBD–ACE2 (PDB
ID: 7T9L). Hydrogen bond lengths with key residues are given in angstroms and shown as dashed
purple lines. π–alkyl and π–stacking contacts are shown as dashed turquoise lines.
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As can be judged from the data presented in Table 4, in the series of the studied
top-ligands, the docking energies are in the range of −9.98 to −6.21 kcal/mol. At that, one
of the positions of the CNP0277806 ligand in the ACE2 binding pocket c turned out to be the
most stable, with an IFD of −1677.2 kcal/mol. Analysis of the interactions of CNP0277806
with ACE2 residues showed that it is located deeply within the binding pocket of the
ACE2, being in the cleft between the two quasi-subunits constituted by the His374-Tyr515
dyad, see Figure 10. This finding indicates the fact that CNP0277806 have the potential
to covalently bind to amino acid residues at this region of 7T9L. This ability to interact
with an angiotensin-converting enzyme 2 provides additional benefits in suppressing viral
activity. It should be noted that, among the studied series of potential SARS-CoV-2 spike
RBD–ACE2 inhibitors of all key ligands, CNP0277806 showed the best coordination with
the 7T9L surface cavity with the strongest binding energy and, accordingly, values of the
inhibition constant and IFD score. As a matter of fact, the best IFD score does not always
correspond to the strongest binding energy, since the resulting IFD score is significantly
affected by the Prime energy value, which, unlike the Glide Docking Score, can reach
several tens of thousands of kilocalories [87,88]. Indeed,

IFD score = 1.0 × GlideScore + 0.05 × PrimeEnergy (1)
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Figure 10. Interaction of ACE2 with Preussianone, the latter aligned with the c active site environment
of the receptor complex (PDB ID: 7T9L).

The molecule of CNP0277806 (Preussianone [89]) has a distributed network of seven
HBs in the binding pocket c of the cleft of ACE2, including that between the oxygen
atom of Gln522 and the hydrogen atom of the hydroxy group of the chromenone moiety;
see Figures 8c and 9c. The second and third HBs are formed between the hydrogen
atom of the amino group of Arg518, carbonyl oxygen of Glu402, and one of the hydroxy
groups of the central chromanone core of CNP0277806. The fourth HB is formed between
the hydrogen atom of the amino group of Arg273 and the other hydroxy group of the
chromanone moiety, while the fifth and sixth HBs are located between one hydroxy group
of the pyrocatechol fragment and Pro346-Gln375. The seventh HB is found between the
other hydroxy group of the same pyrocatechol moiety and the nitrogen atom of the aromatic
ring of His345. Likewise, the residues Arg273 and Arg518 have π–alkyl contacts with the
aromatic moiety of the chromanone fragment. On the other hand, there is also an interaction
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of the π-stacking sandwich-type between aromatic systems of His374 and the pyrocatechol
fragment of CNP0277806.

The molecule CNP0332318 is located in the central contact zone a between the receptor-
binding domain of spike and ACE2; see Figures 8a and 9a. At the same time, it is stabilized
by seven HBs, three of which are formed between the carbonyl oxygen atom of the acetophe-
none moiety and one of the aromatic protons of Tyr501(A), together with the hydrogen
atoms of the amino groups Lys353(D) and Ser496(A). The fourth and fifth HBs are located
between the protons of the aniline fragment and the carboxyl group of Glu37(D). The sixth
HB is localized between the oxygen of the urea moiety and hydroxy group of Tyr453(A),
while the seventh HB lies between the hydrogen of the amino group of Asn33(D) and one
of the nitrogen atoms of the diazine fragment of CNP0332318. The additional stabilization
of this ligand is possible due to the two π–alkyl contacts of the acetophenone fragment
with the protons of the amino groups Arg403(A) and Lys353(D), as well as the π-stacking
T-shaped-type interaction of the same fragment with the aromatic system of His34(D).

As for the ligand CNP0401960 of the binding domain b, five HBs can be noted here,
two of which are located between the hydroxy group of the chromenone–pyranone core
and Gln42(D); see Figures 8b and 9b. The remaining three hydrogen bonds are formed
between the carboxyl group of CNP0401960 and Lys444(A), Tyr449(A), and Gln42(D). As
well as in the binding pocket a, the nonvalent π–alkyl and π-stacking parallel-displaced-
type interactions of the protons of the amino group of Arg498(A) and the phenolic ring of
Tyr449(A), respectively, are realized with the chromenone–pyranone aromatic system of
the ligand under study.

An extensive network of nine HBs has been realized in the binding site d between the
receptor and the CNP0380471 ligand [90], as shown in Figures 8d and 9d. The three of them
are formed between Asn331 and Ile332 and one of the hydroxy groups of the chromenone
moiety. The second hydroxy group of the same fragment forms two more HBs with Lys528
and Ser530, while the sixth and the seventh HBs are located between Lys529, Asp364, and
the carbonyl oxygen atom and one of the aromatic hydrogens of the chromenone fragment,
accordingly. The eighth HB is located between the hydroxy group of the dioxin core and
the carboxyl oxygen atom of Cys336. Finally, the ninth HB arises between the hydroxy
group of the methoxyphenol fragment and Asn343. In the course of binding of this ligand,
the π–alkyl interaction arises between the aromatic system of the benzodioxine fragment
of CNP0380471 and Lys529.

At the same time ligand CNP0340958 [91], which is Apocholic Acid, forms a more
moderate set of interactions with RBD at the e binding site. As is seen in Figures 8e and 9e,
it is represented by six HBs, three of which are located between the hydroxy group of
apocholic acid and Arg346 and Lys444. Two other HBs are formed between Asn354, Ser399,
and the hydroxy group of the naphthalenole fragment. The final HB is located between the
hydroxy group of the indenol fragment of the Apocholic Acid and Thr345.

Ligand CNP0393256 is quite well-known [92] and is none other than Hesperetin; it is
stabilized at binding site f on the surface of ACE2 primarily by a network of the non-valent
π-interactions, as shown in Figures 8f and 9f. In particular, two strong t-stacking contacts
are realized between the aromatic system of the methoxyphenol moiety of Hesperetin and
both aromatic cycles of the indole moiety of Trp610. Two more π–alkyl interactions are
formed between Arg482 and two cycles of Hesperetin. There is also a similar contact with
Lys475. Hydrogen bonds are represented by the contacts of Thr608 with the methoxy group
and those of His493 with the hydroxy groups of Hesperetin.

The CNP0125042 ligand, which is one of the derivatives of the Xanthines class, forms a
strong network of non-valent interactions in the g binding pocket in the small hydrophobic cavity
near the cleft of ACE2. The hydrogen bonding is shown in more detail in Figures 8g and 9g.
Out of the seven HBs, three bonds are located between Asn103 and His195 and both oxygen
atoms of the pyrimidinedione cycle. The fourth HB is located between the NH proton of the
same cycle and Asn194. The fifth HB is located between the proton of the hydroxy group of
Tyr196 and the nitrogen atom of one of the diazole rings of CNP0125042. The sixth and seventh
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HBs are formed between the protons of the amide group of CNP0125042 and Gly205, Glu208.
At that, π–alkyl interactions are represented by three contacts of the terminal amino group
of Arg219 with three aromatic rings of the studied ligand, while t-stacking displaced-type is
realized between the azole ring and Tyr196.

It is interesting to note that, in all cases considered herein (as has already been indicated
by several authors), the base for the stabilization of potential inhibitors in the main binding
interface of RBD–ACE2 (a) is a distributed network of hydrogen bonds, predominantly
those involving residues Tyr453(A), Ser496(A), Asn33(D), and Lys353(D). On the other
hand, it is a non-valence coordination of the aromatic systems of ligands with Arg403(A),
Lys353(D), and His34(D) within the formation of stable π-contacts.

The results of the present study demonstrated that natural products from the top-
ligands set are predicted to effectively fit into the main considered active sites of RBD,
ACE2, and RBD–ACE2 with high affinity, which was confirmed by the IFD protocol.

3. Materials and Methods
3.1. Preparation of Protein for Docking and Grid Generation

The cryo-EM structure of the SARS-CoV-2 Omicron spike protein in complex with
human ACE2, (focused refinement of RBD and ACE2) with resolution 2.66 Å, was obtained
from the Protein Data Bank (PDB ID: 7T9L [38]). The 7T9L macromolecule contains two
chains, A (RBD-S1 of the spike glycoprotein) and D (processed ACE2), that are binding
through a specific interface. This complex of chains was used as a receptor for protein
preparation with using Schrödinger Maestro 11.5 [93]. The co-factors (2-acetamido-2-deoxy-
β-D-glucopyranose) and water molecules were removed, and absent hydrogen atoms were
added. Further, the receptor structure was refined using the PROPKA protocol [94] at
pH = 7.0 and then energy-minimized within the OPLS3 force field. The receptor grids were
generated using the appropriate sets of residues as the centroids for each of the studied
binding sites a–g, while the size of each of the grid boxes was 30 × 30 × 30 Å.

3.2. Preparation of Ligands

The 2D structures of ligands downloaded in SDF format from the COCONUT natural
compound database [37] were initially filtered according to Lipinski’s rule [95]. Further,
ligands containing reactive functional groups were removed [96]. At the next stage, for the
filtered ligands of sets a–g, low-energy tautomeric states for the target pH = 7 ± 2 were
generated using the Epik module [97].

3.3. Development of Pharmacophore Models

Pharmacophore hypotheses were generated based on the analysis of residues of the
binding domains a–g of the receptor (ACE2, RBD and RBD-ACE2; PDB ID: 7T9L). For
each binding site, 4 pharmacophore models were developed: a model based on ligand–
protein interactions, a model using the receptor cavity, a model taking into account multiple
ligands, and finally, a model combining the previous three—the so-called merge model.
Hypotheses were generated using the Phase module [98]. In each case, from 4 to 7 features
of the pharmacophore were used, including:

• Hydrogen bond acceptor (A);
• Hydrogen bond donor (D);
• Aromatic ring (R);
• Positive ionizable (P);
• Negative ionizable (N);
• Hydrophobic center (H).

Since the characteristics of the hydrogen bond donor and acceptor are of a vector
nature, they determine the direction of electron exchange.
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3.4. Molecular Docking Simulations

Molecular docking using the Schrödinger Maestro 11.5 [93] was employed to rapidly
determine the ligand-binding poses and affinity to human ACE2 and SARS-CoV-2 spike
RBD/RBD–ACE2. Molecular docking at the stage of the preparation of identical structures
for the formation of a library of NP was carried out at the extra-precision level using the
glide module [99]. For each one of the tautomers formed at the stage of ligand preparation,
50 conformational states were generated with an energy window for ring sampling of
2.5 kcal/mol. In this case, the ligand sampling method was chosen as flexible, and the
maximum minimization steps were 100. Post-docking minimization included 10 poses per
ligand, with a threshold for rejecting minimized pose of 0.5 kcal/mol.

Final Induced Fit Docking was performed for key ligands with the best Phase Screen
Scores of the pharmacophore hypotheses 1–4 for all binding sites a–g. The docking protocol
was assigned as the standard for flexible protein and ligand, generating up to 20 poses
within the OPLS3 force field. The refinement of residues was carried out in the framework
of the Prime module [100] within 5.0 Å of ligand poses. The redocking procedure was
performed with the studied ligands in their respective cavities within 30 kcal/mol of their
lowest energy structure. At the final stage, the best docking modes of all compounds were
selected from their conformations based on the docking score, as well as on significant non-
valence interactions observed with the receptor. The interaction analyses were performed
using Schrödinger Maestro 11.5.

4. Conclusions

In the present study, we proposed and used a comprehensive approach based on the
generation of pharmacophore models and subsequent Induced Fit Docking to identify
potential inhibitors of the main binding sites of the Omicron SARS-CoV-2 RBD(S1)–ACE2
complex (PDB ID: 7T9L) among a number of natural products of different origins.

The pharmacophore models were created on the basis of four types of hypotheses,
namely: receptor–ligand, receptor cavity, multiple ligands, and the merged hypothesis. Each
model of each of the binding domains was used to conduct a virtual screening of the gener-
ated libraries from about 25,000 natural compounds from the COCONUT database. The
found key ligands were then used for extra-precision molecular docking in the framework
of the IFD protocol. The results of the performed molecular docking of the established
structures of the top ligands were used to study the binding interactions in the main active
centers of the RBD–ACE2 complex. For several natural compounds with high affinity for the
receptor of interest, non-polar, π-stacking, and other electrostatic interactions were found
to stabilize these ligands in the binding pocket. Undoubtedly, one of the main roles was
played by the distributed networks of the ligand–receptor hydrogen bonds.

As a result of this study, it was found that Preussianone, which is a natural extract from
the leaves of Garcinia preussii, showed the best affinity for the binding pocket c in the cleft
of ACE2. Several other natural products being tested in this study, such as CNP0332318,
CNP0401960, CNP0380471, Apocholic Acid, Hesperetin, and CNP0125042, also showed
better affinity for their binding domains compared to the rest of the tested ligands.

The selected potential inhibitor candidates identified in this work showed improved
interaction energies relative to the RBD–ACE2 complex, providing increased specificity
due to the additional hydrogen bonding with the active site residues. It is expected that the
presented results will stimulate further research aimed at the development of specialized
drugs against the SARS-CoV-2 virus.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248938/s1, Figures S1–S24: Pharmacophore models
of a, c–g.
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