A Novel Green Micellar HPLC-UV Method for the Estimation of Vandetanib in Pure Form, Human Urine, Human Plasma and Human Liver Microsomes Matrices with Application to Metabolic Stability Evaluation
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Separation
2.2. Analytical Characteristics and Method Validation
2.2.1. Linearity
2.2.2. Detection (LOD) and Quantification (LOQ) Limits
2.2.3. Suitability of the System
2.2.4. Precision and Accuracy
2.2.5. Stability
2.3. Applications
2.3.1. Applications to CAPRELSA Tablets
2.3.2. Metabolic Stability
3. Discussion
4. Experimental Section
4.1. Reagents and Chemicals
4.2. Apparatus
4.3. Chromatographic Conditions
4.4. Preparation of VNB Calibration Levels
4.5. Construction of VNB Calibration Curve
4.6. Quality Control Sample Preparation
4.7. Method Validation
4.7.1. Linearity
4.7.2. Detection (LOD) and Quantification Limit (LOQ)
4.7.3. Precision and Accuracy
4.7.4. Stability
4.8. Assay of VNB Tablet Samples
4.9. Metabolic Stability of VNB
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abdelhameed, A.S.; Attwa, M.W.; Attia, M.I.; Alanazi, A.M.; Alruqi, O.S.; AlRabiah, H. Development of novel univariate and multivariate validated chemometric methods for the analysis of dasatinib, sorafenib, and vandetanib in pure form, dosage forms and biological fluids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 264, 120336–120348. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, A.S.; Hassan, E.S.; Attwa, M.W.; Al-Shakliah, N.S.; Alanazi, A.M.; AlRabiah, H. Simple and efficient spectroscopic-based univariate sequential methods for simultaneous quantitative analysis of vandetanib, dasatinib, and sorafenib in pharmaceutical preparations and biological fluids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 260, 119987–120003. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, F.; Caputo, R.; Damiano, V.; Caputo, R.; Troiani, T.; Vitagliano, D.; Carlomagno, F.; Veneziani, B.M.; Fontanini, G.; Bianco, A.R.; et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin. Cancer Res. 2003, 9, 1546–1556. [Google Scholar] [PubMed]
- Wedge, S.R.; Ogilvie, D.J.; Dukes, M.; Kendrew, J.; Chester, R.; Jackson, J.A.; Boffey, S.J.; Valentine, P.J.; Curwen, J.O.; Musgrove, H.L.; et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002, 62, 4645–4655. [Google Scholar] [PubMed]
- Marangoni, E.; Hatem, R.; Labiod, D.; Château-Joubert, S.; El Botty, R.; Servely, J.-L.; De Plater, L.; Bieche, I. Vandetanib as a potential new treatment for ER negative breast cancers. Cancer Res. 2015, 75 (Suppl. S15), 1687. [Google Scholar] [CrossRef]
- Xiao, Y.-Y.; Zhan, P.; Yuan, D.-M.; Liu, H.-B.; Lv, T.-F.; Shi, Y.; Song, Y. Chemotherapy plus vandetanib or chemotherapy alone in advanced non-small cell lung cancer: A meta-analysis of four randomised controlled trials. Clin. Oncol. 2013, 25, e7–e15. [Google Scholar] [CrossRef] [PubMed]
- Drappatz, J.; Norden, A.D.; Wong, E.T.; Doherty, L.M.; LaFrankie, D.C.; Ciampa, A.; Kesari, S.; Sceppa, C.; Gerard, M.; Phan, P.; et al. Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 85–90. [Google Scholar] [CrossRef]
- Darwish, H.W.; Bakheit, A.H. A new spectrofluorimetric assay method for vandetanib in tablets, plasma and urine. Trop. J. Pharm. Res. 2016, 15, 2219–2225. [Google Scholar] [CrossRef] [Green Version]
- Amer, S.M.; Kadi, A.A.; Darwish, H.W.; Attwa, M.W. Liquid chromatography tandem mass spectrometry method for the quantification of vandetanib in human plasma and rat liver microsomes matrices: Metabolic stability investigation. Chem. Cent. J. 2017, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Johnson, J.; Wang, F.; Yang, L.; Broniscer, A.; Stewart, C.F. Determination of vandetanib in human plasma and cerebrospinal fluid by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). J. Chromatogr. B 2011, 879, 2561–2566. [Google Scholar] [CrossRef]
- Martin, P.; Oliver, S.; Kennedy, S.-J.; Partridge, E.; Hutchison, M.; Clarke, D.; Giles, P. Pharmacokinetics of vandetanib: Three phase I studies in healthy subjects. Clin. Ther. 2011, 34, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Zirrolli, J.A.; Bradshaw, E.L.; Long, M.E.; Gustafson, D.L. Rapid and sensitive LC/MS/MS analysis of the novel tyrosine kinase inhibitor ZD6474 in mouse plasma and tissues. J. Pharm. Biomed. Anal. 2005, 39, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.-X.; Wu, H.-L.; Kang, C.; Xie, L.-X.; Yin, X.-L.; Gu, H.-W.; Yu, R.-Q. Fast quantitative analysis of four tyrosine kinase inhibitors in different human plasma samples using three-way calibration- assisted liquid chromatography with diode array detection. J. Sep. Sci. 2015, 38, 2781–2788. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Cui, D.; Cao, Z.; Bu, Q.; Xu, Y.; Zhao, Y. Validation of a high-performance liquid chromatographic ultraviolet detection method for the quantification of vandetanib in rat plasma and its application to pharmacokinetic studies. J. Cancer Res. Ther. 2014, 10, 84–88. [Google Scholar] [CrossRef] [PubMed]
- El-Shaheny, R.N.; El-Maghrabey, M.H.; Belal, F.F. Micellar liquid chromatography from green analysis perspective. Open Chem. 2015, 13, 877–892. [Google Scholar] [CrossRef] [Green Version]
- Belal, F.; El-Razeq, S.A.; El-Awady, M.; Zayed, S.; Barghash, S. Rapid micellar HPLC analysis of loratadine and its major metabolite desloratadine in nano-concentration range using monolithic column and fluorometric detection: Application to pharmaceuticals and biological fluids. Chem. Cent. J. 2016, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Belal, F.; Ibrahim, F.; Sheribah, Z.; Alaa, H. Micellar HPLC method for the simultaneous determination of three anticonvulsant drugs in dosage forms and biological fluids. Application to dissolution-rate testing. Ann. Pharm. Fr. 2018, 76, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Holden, S.N.; Eckhardt, S.G.; Basser, R.; de Boer, R.; Rischin, D.; Green, M.; Rosenthal, M.A.; Wheeler, C.; Barge, A.; Hurwitz, H.I. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann. Oncol. 2005, 16, 1391–1397. [Google Scholar] [CrossRef]
- Miller, K.D.; Trigo, J.M.; Wheeler, C.; Barge, A.; Rowbottom, J.; Sledge, G.; Baselga, J. a multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin. Cancer Res. 2005, 11, 3369–3376. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Minami, H.; Yamada, Y.; Yamamoto, N.; Shimoyama, T.; Murakami, H.; Horiike, A.; Fujisaka, Y.; Shinkai, T.; Tahara, M.; et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J. Thorac. Oncol. 2006, 1, 1002–1009. [Google Scholar] [CrossRef]
- De La Guardia, M.; Armenta, S. Green Analytical Chemistry: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2010; Volume 57. [Google Scholar]
- García Alvarez-Coque, M.; Carda Broch, S. Direct injection of physiological fluids in micellar liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Baranczewski, P.; Stańczak, A.; Sundberg, K.; Svensson, R.; Wallin, A.; Jansson, J.; Garberg, P.; Postlind, H. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol. Rep. 2006, 58, 453–472. [Google Scholar] [PubMed]
- Attwa, M.W.; Darwish, H.W.; Alhazmi, H.A.; Kadi, A.A. Investigation of metabolic degradation of new ALK inhibitor: Entrectinib by LC-MS/MS. Clin. Chim. Acta 2018, 485, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.M.; Kadi, A.A.; Darwish, H.W.; Attwa, M.W. LC–MS/MS method for the quantification of masitinib in RLMs matrix and rat urine: Application to metabolic stability and excretion rate. Chem. Cent. J. 2017, 11, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwa, M.W.; Kadi, A.A.; Abdelhameed, A.S.; Alhazmi, H.A. Metabolic Stability Assessment of New PARP Inhibitor Talazoparib Using Validated LC–MS/MS Methodology: In silico Metabolic Vulnerability and Toxicity Studies. Drug Des. Dev. Ther. 2020, 14, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Goyal, S.; Chauhan, K. A review on analytical method development and validation. Int. J. Appl. Pharm. 2018, 10, 8–15. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pearson Education: London, UK, 2005. [Google Scholar]
- Kadi, A.A.; Angawi, R.F.; Attwa, M.W.; Darwish, H.W.; Abdelhameed, A.S. High throughput quantitative bioanalytical LC/MS/MS determination of gemifloxacin in human urine. J. Chem. 2013, 2013, 905704. [Google Scholar] [CrossRef] [Green Version]
- Darwish, H.W.; Kadi, A.A.; Attwa, M.W.; Almutairi, H.S. Investigation of metabolic stability of the novel ALK inhibitor brigatinib by liquid chromatography tandem mass spectrometry. Clin. Chim. Acta 2018, 480, 180–185. [Google Scholar] [CrossRef]
- Al-Shakliah, N.S.; Attwa, M.W.; Kadi, A.A.; AlRabiah, H. Identification and characterization of in silico, in vivo, in vitro, and reactive metabolites of infigratinib using LC-ITMS: Bioactivation pathway elucidation and in silico toxicity studies of its metabolites. RSC Adv. 2020, 10, 16231–16244. [Google Scholar] [CrossRef] [Green Version]
- Attwa, M.W.; Kadi, A.A.; Darwish, H.W.; Amer, S.M.; Alrabiah, H. A reliable and stable method for the determination of foretinib in human plasma by LC-MS/MS: Application to metabolic stability investigation and excretion rate. Eur. J. Mass Spectrom. 2018, 24, 344–351. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Methods Validation: Chemistry, Manufacturing and Controls Documentation, Availability. Fed. Regist. 2000, 65, 52776–52777. [Google Scholar]
- ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1). In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, November 2005; pp. 11–12. [Google Scholar]
- Abdelhameed, A.S.; Attwa, M.W.; Al-Shaklia, N.S.; Kadi, A.A. A highly sensitive LC-MS/MS method to determine novel Bruton’s tyrosine kinase inhibitor spebrutinib: Application to metabolic stability evaluation. R. Soc. Open Sci. 2019, 6, 190434. [Google Scholar] [CrossRef] [PubMed]
Parameter | Pure | Urine | Plasma | HLMs |
---|---|---|---|---|
Linearity range (ng ml−1) | (30–500) | (50–500) | (50–500) | (50–500) |
Intercept (a) | 0.6889 | 0.6397 | 0.5748 | 0.6629 |
Slope (b) | 0.0123 | 0.0127 | 0.0128 | 0.0109 |
Correlation coefficient (r) | 0.9998 | 0.9995 | 0.9996 | 0.9995 |
S.D. of residuals(Sy/x) | 0.0600 | 0.0855 | 0.0808 | 0.0748 |
S.D. of intercept (Sa) | 0.0360 | 0.0561 | 0.0531 | 0.0491 |
S.D. of slope (Sb) | 0.0001 | 0.0002 | 0.0002 | 0.0002 |
Limit of detection, LOD (ng mL−1) | 8.8600 | 13.280 | 12.450 | 13.560 |
Limit of quantitation, LOQ (ng mL−1) | 29.530 | 44.270 | 41.490 | 45.210 |
Parameter | VNB |
---|---|
No. of theoretical plates, N | 2025.0 |
High equivalent theoritical plates, HETP | 0.1235 |
Capacity factor, k | 1.2500 |
Tailing factor, T | 1.0435 |
Assymmetry factor, Af | 1.0870 |
VNB | |||||||||||||||
Inter-Day (n = 11) | |||||||||||||||
Conc (ng mL−1) | Pure | Conc (ng mL−1) | Urine | Conc (ng mL−1) | Plasma | Conc (ng mL−1) | HLMs | ||||||||
Mean a ± SD | Precision | % Accuracy | Mean a ± SD | Precision | % Accuracy | Mean a ± SD | Precision | % Accuracy | Mean a ± SD | Precision | % Accuracy | ||||
40 | 39.56 ± 0.72 | 1.83 | 98.91 | 60 | 59.84 ± 0.81 | 1.36 | 99.73 | 60 | 59.51 ± 1.02 | 1.71 | 99.19 | 60 | 59.71 ± 0.68 | 1.15 | 99.51 |
200 | 199.7 ± 0.44 | 0.22 | 99.85 | 200 | 199.7 ± 0.78 | 0.39 | 99.85 | 200 | 199.6 ± 0.44 | 0.22 | 99.79 | 200 | 199.6 ± 0.66 | 0.33 | 99.78 |
400 | 399.7 ± 0.46 | 0.12 | 99.93 | 400 | 399.9 ± 0.84 | 0.21 | 99.98 | 400 | 399.9 ± 0.94 | 0.24 | 99.97 | 400 | 399.9 ± 0.58 | 0.14 | 99.96 |
Intra-Day (n = 5) | |||||||||||||||
Conc (ng mL−1) 40 200 300 | Pure | Conc (ng mL−1) | Urine | Conc (ng mL−1) | Plasma | Conc (ng mL−1) | HLMs | ||||||||
Mean a ± SD | Precision | % Accuracy | Mean a ± SD | Precision | % Accuracy | Mean a ± SD | Precision | % Accuracy | Mean a ± SD | Precision | % Accuracy | ||||
40 | 39.94 ± 0.72 | 1.80 | 99.85 | 60 | 59.61 ± 1.06 | 1.78 | 99.34 | 60 | 59.60 ± 1.14 | 1.91 | 99.33 | 60 | 59.80 ± 0.62 | 1.03 | 99.66 |
200 | 199.8 ± 0.42 | 0.21 | 99.90 | 200 | 199.8 ± 0.83 | 0.42 | 99.89 | 200 | 199.7 ± 0.48 | 0.24 | 99.84 | 200 | 199.7 ± 0.64 | 0.32 | 99.87 |
400 | 399.8 ± 0.44 | 0.11 | 99.95 | 400 | 399.3 ± 0.86 | 0.22 | 99.96 | 400 | 400.4 ± 0.60 | 0.15 | 100.1 | 400 | 400.3 ± 0.56 | 0.14 | 100.1 |
Parameter | Conc (ng ml−1) | Urine | Plasma | HLMs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean a ± SD | % Recovery | % Precision | Mean a ± SD | % Recovery | % Precision | Mean a ± SD | % Recovery | % Precision | ||
Freeze–thaw stability (3 cycle, −20 °C) | 60 | 59.50 ± 0.87 | 99.17 | 1.46 | 59.32 ± 1.06 | 98.87 | 1.03 | 59.85 ± 1.06 | 99.76 | 1.77 |
400 | 399.9 ± 0.51 | 99.97 | 0.13 | 399.9 ± 1.21 | 99.97 | 0.17 | 399.8 ± 0.67 | 99.94 | 0.17 | |
Room temp. stability (8 h at RT) | 60 | 60.13 ± 1.03 | 100.2 | 1.71 | 59.67 ± 1.15 | 99.44 | 1.94 | 59.95 ± 0.08 | 99.91 | 0.14 |
400 | 399.9 ± 1.01 | 99.98 | 0.25 | 399.6 ± 0.51 | 99.89 | 0.13 | 399.9 ± 1.02 | 99.98 | 0.26 | |
Stored for 24 h at 4 °C (24 h at 4 °C) | 60 | 60.33 ± 1.15 | 100.6 | 1.91 | 60.17 ± 1.01 | 100.3 | 1.68 | 60.32 ± 1.17 | 100.5 | 1.94 |
400 | 400.7 ± 0.96 | 100.2 | 0.24 | 399.8 ± 0.96 | 99.94 | 0.24 | 400.7 ± 1.04 | 100.2 | 0.26 | |
Long-term stability (30 days at −20 °C) | 60 | 59.92 ± 1.04 | 99.87 | 1.74 | 60.81 ± 0.91 | 101.3 | 1.49 | 60.22 ± 0.77 | 100.4 | 1.28 |
400 | 399.2 ± 1.03 | 99.81 | 0.26 | 399.7 ± 0.60 | 99.93 | 0.15 | 400.5 ± 0.64 | 100.1 | 0.16 |
Pharmaceutical Dosage Forms | Caprelsa (Vandetanib)® (300 mg) Tablets | Reference Method [8] | ||
---|---|---|---|---|
Parameters | Taken (ng mL−1) | Found a | % Recovery | % Recovery |
40 | 39.80 | 99.50 | 98.00 | |
100 | 100.0 | 100.0 | 100.0 | |
400 | 399.0 | 99.75 | 99.33 | |
Mean a | 99.75 | 99.11 | ||
±S.D. | 0.250 | 1.018 | ||
n | 3.000 | 3.000 | ||
t-test | 0.71 (2.13) b | |||
F-ratio | 16.3 (19.0) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, M.M.; Obaidullah, A.J.; Attwa, M.W. A Novel Green Micellar HPLC-UV Method for the Estimation of Vandetanib in Pure Form, Human Urine, Human Plasma and Human Liver Microsomes Matrices with Application to Metabolic Stability Evaluation. Molecules 2022, 27, 9038. https://doi.org/10.3390/molecules27249038
Alanazi MM, Obaidullah AJ, Attwa MW. A Novel Green Micellar HPLC-UV Method for the Estimation of Vandetanib in Pure Form, Human Urine, Human Plasma and Human Liver Microsomes Matrices with Application to Metabolic Stability Evaluation. Molecules. 2022; 27(24):9038. https://doi.org/10.3390/molecules27249038
Chicago/Turabian StyleAlanazi, Mohammed M., Ahmad J. Obaidullah, and Mohamed W. Attwa. 2022. "A Novel Green Micellar HPLC-UV Method for the Estimation of Vandetanib in Pure Form, Human Urine, Human Plasma and Human Liver Microsomes Matrices with Application to Metabolic Stability Evaluation" Molecules 27, no. 24: 9038. https://doi.org/10.3390/molecules27249038
APA StyleAlanazi, M. M., Obaidullah, A. J., & Attwa, M. W. (2022). A Novel Green Micellar HPLC-UV Method for the Estimation of Vandetanib in Pure Form, Human Urine, Human Plasma and Human Liver Microsomes Matrices with Application to Metabolic Stability Evaluation. Molecules, 27(24), 9038. https://doi.org/10.3390/molecules27249038