Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of a UHPLC/IM-QTOF-MS Approach to Separate and Characterize the Multi-Components from PNF by Integrating the Acquisition of HDMSE and DDA Data
2.2. In-Depth Characterization of Ginsenosides from PNF by Analyzing the Negative DDA and HDMSE via the Intelligent UNIFI Workflows
2.2.1. Characterization of PPD-/PPT-Type Ginsenosides
2.2.2. Characterization of Malonyl Ginsenosides
2.3. Identification of the Absorbed Components in Rat Plasma
2.3.1. Prototype Component Identification
2.3.2. Identification of the In Vivo Metabolites
2.3.3. Isomer Verification Based on CCS Prediction
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Preparation
3.3. Animal Experiments and the Preparation of Samples
3.4. UHPLC/IM-QTOF-MS
3.5. Automated Peak Annotation Workflows Facilitated by UNIFITM and Searching an In-House Ginsenoside Library Enabling the Efficient Multicomponent Characterization of PNF
3.6. Identification of the Prototype Compounds and In Vivo Metabolites in Rat Plasma Based on UNIFITM Platform
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Han, C.Y.; Zhang, R.R.; Sun, W.B. Study on seed quality grading standard of Panax notoginseng (Burk.) F.H. Chen. Seed 2014, 33, 116–121. [Google Scholar]
- Zhang, X.; Yu, Y.; Jiang, S.; Yu, H.; Xiang, Y.; Liu, D.; Qu, Y.; Cui, X.; Ge, F. Oleanane-type saponins biosynthesis in Panax notoginseng via transformation of β-amyrin synthase gene from Panax japonicus. J. Agric. Food Chem. 2019, 67, 1982–1989. [Google Scholar] [CrossRef] [PubMed]
- Huan, C.; Zhou, Z.; Yao, J.; Ni, B.; Gao, S. The antiviral effect of Panax notoginseng polysaccharides by inhibiting PRV adsorption and replication in vitro. Molecules 2022, 27, 1254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Zheng, T.; Chang, M.Q.; Ma, W.D.; Chen, L. Pharmacological effects of Panax notoginseng and its application in health care for the middle-aged and elderly. J. Mod. Med. Health 2021, 37, 1134–1136. [Google Scholar]
- Zhuang, L.W.; Ding, Y.; M, S.M.; Xiao, W.; Wang, Z.Z.; Zhu, J.B. Continuous chromatography with multi-zone and multi-column dynamic tandem techniques for the isolation and enrichment of class compounds from natural products of Panax notoginseng. J. Chromatogr. A 2020, 1629, 461499. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.P.; Cui, J.G.; Du, X.Y.; Yang, Q.B.; Jia, C.L.; Xiong, M.Q.; Yu, X.T.; Li, L.; Wang, W.J.; Chen, Y.; et al. Panax notoginseng saponins (PNS) inhibits breast cancer metastasis. J. Ethnopharmacol. 2014, 154, 663–671. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kuang, N.; Hu, W.Y.; Yin, D.; Wei, Y.Y.; Hu, T.J. The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: In vitro and in vivo studies. J. Vet. Sci. 2020, 21, e61. [Google Scholar] [CrossRef]
- Wang, C.Z.; Mcentee, E.; Wicks, S.; Wu, J.A.; Yuan, C.S. Phytochemical and analytical studies of Panax notoginseng (Burk.) F.H. Chen. J. Nat. Med. 2006, 60, 97–106. [Google Scholar] [CrossRef]
- Li, Y.F.; Liang, Y.Z.; Cui, X.M.; Shao, L.J.; Lou, D.J.; Yang, X.Y. Production of minor ginsenosides from Panax notoginseng flowers by Cladosporium xylophilum. Molecules 2022, 27, 6615. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, S.Q.; Lu, W.X.; Shen, S.Z.; Wei, L. Preparation of Panax notoginseng flower saponins enteric-coated sustained-release pellets and its pharmacokinetics and in vitro-in vivo correlation. J. Drug Deliv. Sci. Tec. 2021, 62, 102321. [Google Scholar] [CrossRef]
- Chen, S.; Rui, R.; Wang, S.; He, X. Comparative analysis of the floral fragrance compounds of Panax notoginseng flowers under the Panax notoginseng-pinus agroforestry system using SPME-GC-MS. Molecules 2022, 27, 3565. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yao, C.; Guo, D.A. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-mass spectrometry. Acta Pharm Sin. B 2021, 11, 1469–1492. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X. Quality study needs innovation. Chin. Herb. Med. 2021, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, Y.; Qin, X. Rapid quantitative analysis of 12 chemical constituents in wild-simulated and cultivated Astragali Radix based on UHPLC-MS. Chin. Herb. Med. 2022, 14, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, Y.; Wu, H.; Wu, H.; Liu, X.; Zhou, A. Rapid identification of chemical profile in Gandou decoction by UPLC-Q-TOF-MSE coupled with novel informatics UNIFI platform. J. Pharm. Anal. 2020, 10, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.Q.; An, H.M.; Yang, H.; Wu, S.Q.; Fan, J.L.; Mi, L.; Wang, H.; Li, P.; Gao, W. Comprehensive chemical profiling of Yindan Xinnaotong soft capsule and its neuroprotective activity evaluation in vitro. J. Chromatogr. A 2019, 1601, 288–299. [Google Scholar] [CrossRef]
- Huang, M.L.; Yu, S.j.; Shao, Q.; Liu, H.; Wang, Y.C.; Chen, H.Z.; Huang, Y.S.; Wang, Y. Comprehensive profiling of Lingzhihuang capsule by liquid chromatography coupled with mass spectrometry-based molecular networking and target prediction. Acupunct. Herb. Med. 2022, 2, 58–67. [Google Scholar] [CrossRef]
- Wang, N.N.; Xu, P.C.; Wang, X.P.; Yao, W.X.; Yu, Z.M.; Wu, R.J.; Huang, X.W.; Si, Y.Y.; Shou, D. Integrated pathological cell fishing and network pharmacology approach to investigate main active components of Er-Xian decoction for treating osteoporosis. J. Ethnopharmacol. 2019, 241, 111977. [Google Scholar] [CrossRef]
- Pirok, B.W.J.; Stoll, D.R.; Schoenmakers, P.J. Recent developments in two-dimensional liquid chromatography: Fundamental improvements for practical applications. Anal. Chem. 2019, 91, 240–263. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.X.; Zhao, D.X.; Wang, H.D.; Sun, H.; Xiong, Y.; Xu, X.Y.; Hu, W.D.; Liu, M.Y.; Chen, B.X.; Hu, Y.; et al. An ion mobility-enabled and high-efficiency hybrid scan approach in combination with ultra-high performance liquid chromatography enabling the comprehensive characterization of the multicomponents from Carthamus tinctorius. J. Chromatogr. A 2022, 1667, 462904. [Google Scholar] [CrossRef]
- Wang, H.D.; Wang, H.M.; Wang, X.Y.; Xu, X.Y.; Hu, Y.; Li, X.; Shi, X.J.; Wang, S.M.; Liu, J.; Qian, Y.X.; et al. A novel hybrid scan approach enabling the ion-mobility separation and the alternate data-dependent and data-independent acquisitions (HDDIDDA): Its combination with off-line two-dimensional liquid chromatography for comprehensively characterizing the multicomponents from Compound Danshen Dripping Pill. Anal. Chim. Acta 2022, 1193, 339320. [Google Scholar] [PubMed]
- Fu, L.L.; Ding, H.; Han, L.F.; Jia, l.; Yang, W.Z.; Zhang, C.X.; Hu, Y.; Zuo, T.T.; Gao, X.M.; Guo, D.A. Simultaneously targeted and untargeted multicomponent characterization of Erzhi Pill by offline two-dimensional liquid chromatography/quadrupole-Orbitrap mass spectrometry. J. Chromatogr. A 2019, 1584, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.F.; Chen, B.X.; Jiang, M.T.; Wang, H.M.; Hu, Y.; Wang, H.D.; Xu, X.Y.; Gao, X.M.; Yang, W.Z. Integrating enhanced profiling and chemometrics to unveil the potential markers for differentiating among the leaves of Panax ginseng, P. quinquefolius, and P. notoginseng by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry. Molecules 2022, 27, 5549. [Google Scholar] [PubMed]
- Zuo, T.T.; Zhang, C.X.; Li, W.W.; Wang, H.D.; Hu, Y.; Yang, W.Z.; Jia, L.; Wang, X.Y.; Gao, X.M.; Guo, D.A. Offline two-dimensional liquid chromatography coupled with ion mobility-quadrupole time-of-flight mass spectrometry enabling four-dimensional separation and characterization of the multicomponents from white ginseng and red ginseng. J. Pharm. Anal. 2020, 10, 597–609. [Google Scholar] [CrossRef]
- Jia, L.; Zuo, T.T.; Zhang, C.X.; Li, W.W.; Wang, H.D.; Hu, Y.; Wang, X.Y.; Qian, Y.X.; Yang, W.Z.; Yu, H.S. Simultaneous profiling and holistic comparison of the metabolomes among the flower buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMSE-based metabolomics analysis. Molecules 2019, 24, 2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.M.; Qian, Y.X.; Sun, M.X.; Jia, L.; Hu, Y.; Li, X.; Wang, H.D.; Huo, J.H.; Wang, W.M.; Yang, W.Z. Holistic quality evaluation of Saposhnikoviae Radix (Saposhnikovia divaricata) by reversed-phase ultra-high performance liquid chromatography and hydrophilic interaction chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry-based untargeted metabolomics. Arab. J. Chem. 2020, 13, 8835–8847. [Google Scholar]
- Wang, H.D.; Wang, S.M.; Zhao, D.X.; Xie, H.M.; Wang, H.M.; Sun, M.X.; Yang, X.N.; Qian, Y.X.; Wang, X.Y.; Li, X.; et al. A novel ion mobility separation-enabled and precursor ions list-included high-definition data-dependent acquisition (HDDDA) approach: Method development and its application to the comprehensive multicomponent characterization of Fangji Huangqi Decoction. Arab. J. Chem. 2021, 14, 103087. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhang, C.X.; Hu, Y.; Zhang, M.H.; Wang, Y.N.; Qian, Y.X.; Yang, J.; Yang, W.Z.; Jiang, M.M.; Guo, D.A. Application of multiple chemical and biological approaches for quality assessment of Carthamus tinctorius L. (safflower) by determining both the primary and secondary metabolites. Phytomedicine 2019, 58, 152826. [Google Scholar]
- Guo, J.; Shen, S.; Xing, S.P.; Huan, T. DADIA: Hybridizing data-dependent and data-independent acquisition modes for generating high-quality metabolomic data. Anal. Chem. 2021, 93, 2669–2677. [Google Scholar] [CrossRef]
- Chen, B.X.; Wang, H.D.; Liu, M.Y.; Hu, W.D.; Qian, Y.X.; Wang, J.L.; Liu, J.; Li, X.; Wang, J.; Yang, W.Z. Rapid profiling and characterization of the multicomponents from the root and rhizome of Salvia miltiorrhiza by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry in combination with computational peak annotation workflows. Phyton Int. J. Exp. Bot. 2022, 91, 1073–1088. [Google Scholar]
- Duan, X.C.; Pan, L.Y.; Peng, D.Y.; Bao, Q.Y.; Xiao, L.; Zhou, A.; Wu, H.; Peng, C.; Chen, W.D. The analysis of the active components and metabolites of Taohong Siwu Decoction based on ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2020, 43, 4131–4147. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Hu, W.D.; Wang, H.D.; Wang, Y.F.; Yang, W.Z. Comprehensive multicomponent characterization and fingerprinting analysis of Lanqin Oral Liquid by ultra-high performance liquid chromatography coupled with ion mobility-quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2021, 44, 4111–4122. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.X.; Li, W.W.; Wang, H.M.; Hu, W.D.; Wang, H.D.; Zhao, D.X.; Hu, Y.; Li, X.; Gao, X.M.; Yang, W.Z. A four-dimensional separation approach by offline 2D-LC/IM-TOF-MS in combination with database-driven computational peak annotation facilitating the in-depth characterization of the multicomponents from Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala). Arab. J. Chem. 2021, 14, 102957. [Google Scholar]
- Zhang, C.X.; Zuo, T.T.; Wang, X.Y.; Wang, H.D.; Hu, Y.; Li, Z.; Li, W.W.; Jia, L.; Qian, Y.X. Integration of data-dependent acquisition (DDA) and data-independent high-definition MSE (HDMSE) for the comprehensive profiling and characterization of multicomponents from Panax japonicus by UHPLC/IM-QTOF-MS. Molecules 2019, 24, 2708. [Google Scholar] [CrossRef] [Green Version]
- Zuo, T.T.; Qian, Y.X.; Zhang, C.X.; Wei, Y.X.; Wang, X.Y.; Wang, H.D.; Hu, Y.; Li, W.W.; Wu, X.H. Data-dependent acquisition and database-driven efficient peak annotation for the comprehensive profiling and characterization of the multicomponents from Compound Xueshuantong Capsule by UHPLC/IM-QTOF-MS. Molecules 2019, 24, 3431. [Google Scholar] [CrossRef] [Green Version]
- Ganzera, M.; Sturm, S. Recent advances on HPLC/MS in medicinal plant analysis-an update covering 2011–2016. J. Pharm. Biomed. Anal. 2018, 147, 211–233. [Google Scholar] [CrossRef]
- Li, W.W.; Yang, X.N.; Chen, B.X.; Zhao, D.X.; Wang, H.D.; Sun, M.X.; Li, X.; Xu, X.Y.; Liu, J.; Wang, S.M.; et al. Ultra-high performance liquid chromatography/ion mobility time-of-flight mass spectrometry-based untargeted metabolomics combined with quantitative assay unveiled the metabolic difference among the root, leaf, and flower bud of Panax notoginseng. Arab. J. Chem. 2021, 14, 103409. [Google Scholar] [CrossRef]
- Wang, S.M.; Li, X.; Chen, B.X.; Li, S.T.; Wang, J.L.; Wang, J.; Yang, M.S.; Xu, X.Y.; Wang, H.D.; Yang, W.Z. Dimension-enhanced ultra-high performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry combined with intelligent peak annotation for rapid characterization of the multiple components from the seeds of Descurainia sophia. Phyton Int. J. Exp. Bot. 2022, 91, 541–567. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Zuo, T.T.; Hu, Y.; Li, Z.; Wang, H.D.; Xu, X.Y.; Yang, W.Z.; Guo, D.A. Advances and challenges in ginseng research from 2011 to 2020: The phytochemistry, quality control, metabolism, and biosynthesis. Nat. Prod. Rep. 2022, 39, 875–909. [Google Scholar] [CrossRef]
- Li, L.; Liu, C.M.; Wu, W.; Yue, H.; Liu, Z.Q.; Liu, S.Y.; Tian, C. Determination of saponins in Panax ginseng and Panax quinquefolius by high performance liquid chromatography-electrospray mass spectrometry. Chin. J. Anal. Chem. 2015, 33, 1087–1090. [Google Scholar]
- Qiu, S.; Yang, W.Z.; Shi, X.J.; Yao, C.L.; Yang, M.; Liu, M.; Jiang, B.H.; Wu, W.Y.; Guo, D.A. A green protocol for efficient discovery of novel natural compounds characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study. Anal. Chim. Acta 2015, 893, 65–76. [Google Scholar] [CrossRef]
- Jia, L.; Wang, H.D.; Xu, X.Y.; Wang, H.M.; Li, X.; Hu, Y.; Chen, B.X.; Liu, M.Y.; Gao, X.M.; Li, H.F.; et al. An off-line three-dimensional liquid chromatography/Q-Orbitrap mass spectrometry approach enabling the discovery of 1561 potentially unknown ginsenosides from the flower buds of Panax ginseng, Panax quinquefolius and Panax notoginseng. J. Chromatogr. A 2022, 1675, 463177. [Google Scholar] [CrossRef]
- Yao, C.L.; Wang, J.; Li, Z.W.; Qu, H.; Pan, H.Q.; Li, J.Y.; Wei, W.L.; Zhang, J.Q.; Bi, Q.R.; Guo, D.A. Characteristic malonyl ginsenosides from the leaves of Panax notoginseng as potential quality markers for adulteration detection. J. Agric. Food Chem. 2021, 69, 4849–4857. [Google Scholar] [CrossRef]
- Shi, X.J.; Yang, W.Z.; Huang, Y.; Hou, J.J.; Qiu, S.; Yao, C.L.; Feng, Z.J.; Wei, W.L.; Wu, W.Y.; Guo, D.A. Direct screening of malonylginsenosides from nine Ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap/Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography. J. Chromatogr. A 2018, 1571, 213–222. [Google Scholar]
- Yang, M.J.; Jing, Y.P.; Lu, L.D.; Wang, L.Y. Study on toicological safety of Panax notoginseng flower saponins. Jiangsu J. Prev. Med. 2010, 21, 12–14. [Google Scholar]
- Cao, M.; Wang, G.Y.; Fang, B.J.; Zhou, R.; Wang, Y.H.; Yuan, S.Y.; Liang, Y.Q.; Wei, Y.H.; Wu, S. Effect research of Panax notoginseng flower saponins on spontaneous hypertension rats’ target organ and hemorheology. J. Emerg. Tradit. Chin. Med. 2013, 22, 701–702, 709. [Google Scholar]
- Wang, M.; Xu, X.Y.; Wang, H.D.; Wang, H.M.; Liu, M.Y.; Hu, W.D.; Chen, B.X.; Jiang, M.T.; Jing, Q.; Li, X.H.; et al. A multi-dimensional liquid chromatography/high-resolution mass spectrometry approach combined with computational data processing for the comprehensive characterization of the multicomponents from Cuscuta chinensis. J. Chromatogr. A 2022, 1675, 463162. [Google Scholar] [CrossRef]
- Kreimer, S.; Belov, M.E.; Danielson, W.F.; Levitsky, L.I.; Gorshkov, M.V.; Karger, B.L.; Ivanov, A.R. Advanced precursor ion selection algorithms for increased depth of bottom-up profiling. J. Proteome Res. 2016, 15, 3563–3573. [Google Scholar] [CrossRef] [Green Version]
- Paglia, G.; Angel, P.; Williams, J.P.; Richardson, K.; Olivos, H.J.; Thompson, J.W.; Menikarachchi, L.; Lai, S.; Walsh, C.; Moseley, A.; et al. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal. Chem. 2015, 87, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Mi, Y.G.; Wang, X.Y.; Jiang, M.T.; Liu, M.Y.; Xu, X.Y.; Hu, Y.; Wang, H.D.; Yang, F.F.; Wang, J.; Liu, J.; et al. Comparative identification of the metabolites of dehydrocorydaline from rat plasma, bile, urine and feces by both the targeted and untargeted liquid chromatography/mass spectrometry strategies. Arab. J. Chem. 2022, 15, 103968. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Xiong, Y.; Wang, H.; Jiang, M.; Xu, X.; Mi, Y.; Lou, J.; Li, X.; Sun, H.; Zhao, Y.; et al. Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry. Molecules 2022, 27, 9049. https://doi.org/10.3390/molecules27249049
Yang X, Xiong Y, Wang H, Jiang M, Xu X, Mi Y, Lou J, Li X, Sun H, Zhao Y, et al. Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry. Molecules. 2022; 27(24):9049. https://doi.org/10.3390/molecules27249049
Chicago/Turabian StyleYang, Xiaonan, Ying Xiong, Hongda Wang, Meiting Jiang, Xiaoyan Xu, Yueguang Mi, Jia Lou, Xiaohang Li, He Sun, Yuying Zhao, and et al. 2022. "Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry" Molecules 27, no. 24: 9049. https://doi.org/10.3390/molecules27249049
APA StyleYang, X., Xiong, Y., Wang, H., Jiang, M., Xu, X., Mi, Y., Lou, J., Li, X., Sun, H., Zhao, Y., Li, X., & Yang, W. (2022). Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry. Molecules, 27(24), 9049. https://doi.org/10.3390/molecules27249049