HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fermentation Process of Cherry Wines
2.3. HS-GC-IMS Analytical Conditions
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Sweet Cherry Fruit from Three Cultivars
3.2. Characterization of Cherry Wines Derived from Three Cultivars
3.3. The Source of Volatile Compounds in Cherry Wines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ballistreri, G.; Continella, A.; Gentile, A.; Amenta, M.; Fabroni, S.; Rapisarda, P. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 2013, 140, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Oomah, B.D. Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits. Trends Food Sci. Technol. 2019, 86, 517–529. [Google Scholar] [CrossRef]
- Dong, W.; Chen, D.; Chen, Z.; Sun, H.; Xu, Z. Antioxidant capacity differences between the major flavonoids in cherry (Prunus pseudocerasus) in vitro and in vivo models. LWT Food Sci. Technol. 2021, 141, 110938. [Google Scholar] [CrossRef]
- Fonseca, L.R.S.; Silva, G.R.; Luís, A.; Cardoso, H.J.; Correia, S.; Vaz, C.V.; Duarte, A.P.; Socorro, S. Sweet cherries as anti-cancer agents: From bioactive compounds to function. Molecules 2021, 26, 2941. [Google Scholar] [CrossRef] [PubMed]
- Maria, V.V.; Anastasia, V.B.; Stavros, K.; Michael, G.K. Characterization of four popular sweet cherry cultivars grown in Greece by volatile compound and physicochemical data analysis and sensory evaluation. Molecules 2015, 20, 1922–1940. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, N.; Wang, Y.; Jiang, D.M.; Feng, X.Y. Characterization of Phenolic Compounds from Early and Late Ripening Sweet Cherries and Their Antioxidant and Antifungal Activities. J. Agric. Food Chem. 2017, 65, 5413–5420. [Google Scholar] [CrossRef]
- Pereira, N.; Naufel, M.F.; Ribeiro, E.B.; Tufik, S.; Hachul, H. Influence of dietary sources of melatonin on sleep quality: A review. J. Food Sci. 2019, 85, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, N.; Chin, N.L. Application of thermosonication treatment in processing and production of high quality and safe-to-drink fruit juices. Agric. Agric. Sci. Procedia 2014, 2, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Nur, A.R.M.R.; Lai, K.L. Traditional fermented foods as vehicle of non-dairy probiotics: Perspectives in South East Asia countries. Food Res. Int. 2021, 150, 110814. [Google Scholar] [CrossRef]
- Sionek, B.; Tambor, K.; Okon, A.; Szymanski, P.; Zielinska, D.; Neffe-Skocinska, K.; KołozynKrajewska, D. Effects of Lacticaseibacillus rhamnosus LOCK900 on development of volatile compounds and sensory quality of dry fermented sausages. Molecules 2021, 26, 6454. [Google Scholar] [CrossRef]
- Maja, R.; Boris, P.; Krunoslav, D.; Nada, V.; Sinisa SVerica, D.-U.; Zorica, J.; Branka, L. Quality and sensory study of fresh sour cherry juices upon cultivar, growing area and weather conditions. J. Food Sci. 2019, 84, 3264–3274. [Google Scholar] [CrossRef]
- Silva, V.; Pereira, S.; Vilela, A.; Bacelar, E.; Guedes, F.; Ribeiro, C.; Silva, A.P.; Gonçalves, B. Preliminary insights in sensory profile of sweet cherries. Foods 2021, 10, 612. [Google Scholar] [CrossRef]
- Legua, P.; Domenech, A.; Martínez, J.J.; Sanchez-Rodriguez, L.; Hernandez, F.; Carbonell-Barrachina, A.A.; Melgarejo, P. Bioactive and volatile compounds in sweet cherry cultivars. J. Food Nutr. Res. 2017, 5, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.Q.; He, F.; Zhu, B.Q.; Lan, Y.B.; Pan, Q.H.; Li, C.Y.; Reeves, M.J.; Wang, J. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chem. 2014, 152, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Nategh, N.A.; Dalvand, M.J.; Anvar, A. Detection of toxic and nontoxic sweet cherries at different degrees of maturity using an electronic nose. J. Food Meas. Charact. 2020, 15, 1213–1224. [Google Scholar] [CrossRef]
- Sun, S.Y.; Jiang, W.G.; Zhao, Y.P. Characterization of the aroma-active compounds in five sweet cherry cultivars grown in yantai (China). Flavour Fragr. J. 2010, 25, 206–213. [Google Scholar] [CrossRef]
- Claudio, P.; Nathalie, K.; Macarena, A.; Alson, T.; Salvatore, M.; Stefan, M.; Esther, C.; Boris, S.; José, M.D.; Lee, A.M. Differential phenolic compounds and hormone accumulation patterns between early- and mid-maturing sweet cherry (Prunus avium L.) cultivars during fruit development and ripening. J. Agric. Food Chem. 2021, 69, 8850–8860. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.M.; Peng, F.T.; He, N.B.; Zhao, D.C. Changes of aroma components in hongdeng sweet cherry during fruit development. Agric. Sci. China 2007, 6, 1376–1382. [Google Scholar] [CrossRef]
- Li, H.M.; Jiang, D.Q.; Dai, Z.G.; Zhang, Y.S.; Zhang, Y.; Sun, S.Y.; Zhao, Y.P. Aromatic property of cherry wine produced by malolactic fermentation of controlled and spontaneous on the bacterial evolution. Int. J. Food Prop. 2019, 22, 1270–1282. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.W.; Wang, P.P.; Xiao, Z.B.; Zhu, J.C.; Sun, X.X.; Wang, R.L. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem. 2019, 275, 143–153. [Google Scholar] [CrossRef]
- Sun, S.Y.; Gong, H.S.; Liu, W.L.; Jin, C.W. Application and validation of autochthonous Lactobacillus plantarum starter cultures for controlled malolactic fermentation and its influence on the aromatic profile of cherry wines. Food Microbiol. 2016, 55, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Natalie, G.; Markus, B.; Daniel, S.; Sascha, R.; Philipp, W. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal. Bioanal. Chem. 2017, 409, 3933–3942. [Google Scholar] [CrossRef]
- Gao, C.; Wang, R.; Zhang, F.; Sun, Z.C.; Meng, X.H. The process monitors of probiotic fermented sour cherry juice based on the HS-GC-IMS. Microchem. J. 2022, 180, 107537. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Gu, X.; Li, D.; Chen, L.; Wang, Z. Characterization of aroma, sensory and taste properties of angelica keiskei tea. Eur. Food Res. Technol. 2021, 247, 1665–1677. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, Y.C.; Gu, S.Q.; Zhu, S.C.; Zhou, X.X.; Ding, Y.T. Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Res. Int. 2020, 137, 109339. [Google Scholar] [CrossRef]
- Cozzolino, D.; Power, A.; Chapman, J. Interpreting and reporting principal component analysis in food science analysis and beyond. Food Anal. Methods 2019, 12, 2469–2473. [Google Scholar] [CrossRef]
- Santo, D.E.; Galego, L.; Gonalves, T.; Quintas, C. Yeast diversity in the Mediterranean strawberry tree (Arbutus unedo L.) fruits’ fermentations. Food Res. Int. 2012, 47, 45–50. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhou, X.; Xiao, Z.; Niu, Y.W. Characterization of the differences in the aroma of cherry wines from different price segments using gas chromatography-mass spectrometry, odor activity values, sensory analysis, and aroma reconstitution. Food Sci. Biotechnol. 2017, 26, 331–338. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran J-MMaris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.M.; Yang, K.; Qi, Y.M.; Zhang, J.M.; Fan, T.; Wei, X.Y. Fermentation temperature and the phenolic and aroma profile of persimmon wine. J. Inst. Brew. 2018, 124, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.B.; Liu, B.X.; Ma, C. Analyses of the volatile compounds in cherry wine during fermentation and aging in bottle using HS-GC-IMS. Food Sci. Technol. Res. 2021, 27, 599–607. [Google Scholar] [CrossRef]
- Cherry, J.M.; Hong, E.L.; Amundsen, C. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2012, 40, 700–705. [Google Scholar] [CrossRef] [Green Version]
- Mantzouridou, F.; Paraskevopoulou, A. Volatile bio-ester production from orange pulp-containing medium using Saccharomyces cerevisiae. Food Bioprocess Technol. 2013, 6, 3326–3334. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, 95–128. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.S.; Kou, C.C.; Shen, Y.S.; Xi, P.S.; Cao, X.H.; Liu, H.; Li, J.R. Effects of different processing steps on the flavor and colloidal properties of cloudy apple juice. J. Sci. Food Agric. 2021, 101, 3819–3826. [Google Scholar] [CrossRef]
Gas Phase-Ion Mobility Spectrometry Unit | |
---|---|
Analysis time | 30 min |
Column type | MXT-5, 15 m, 0.53 mm ID, 1 μm FT |
Column temperature | 60 °C |
Carrier gas/drift gas | N2 |
IMS temperature | 45 °C |
Automatic Headspace Sampling Unit | |
Injection volume | 500 μL |
Incubation time | 20 min |
Incubation temperature | 40 °C |
Syringe temperature | 85 °C |
Incubation speed | 500 rpm |
No. | Compounds | CAS | Formula | MW | RI | RT [sec] | DT [a.u.] |
---|---|---|---|---|---|---|---|
1 | Propionic acid | C79094 | C3H6O2 | 74.1 | 1705.6 | 1534.95 | 1.10999 |
2 | Acetic acid | C64197 | C2H4O2 | 60.1 | 1511.2 | 1181.04 | 1.1571 |
3 | Ethyl octanoate-M | C106321 | C10H20O2 | 172.3 | 1455.8 | 1080.20 | 1.48292 |
4 | Ethyl octanoate-D | C106321 | C10H20O2 | 172.3 | 1455.8 | 1080.20 | 2.02662 |
5 | 1-Hexanol-M | C111273 | C6H14O | 102.2 | 1361.3 | 908.19 | 1.32393 |
6 | 1-Hexanol-D | C111273 | C6H14O | 102.2 | 1360.9 | 907.54 | 1.64526 |
7 | 3-Methyl-1-butanol-M | C123513 | C5H12O | 88.1 | 1212.9 | 673.05 | 1.24442 |
8 | 3-Methyl-1-butanol-D | C123513 | C5H12O | 88.1 | 1210.4 | 669.48 | 1.50227 |
9 | Ethyl hexanoate | C123660 | C8H16O2 | 144.2 | 1238.5 | 708.71 | 1.79654 |
10 | Hexyl acetate-M | C142927 | C8H16O2 | 144.2 | 1281.7 | 769.01 | 1.3894 |
11 | Hexyl acetate-D | C142927 | C8H16O2 | 144.2 | 1277.8 | 763.52 | 1.89309 |
12 | (E)-2-hexenal-M | C6728263 | C6H10O | 98.1 | 1225.9 | 691.14 | 1.18288 |
13 | (E)-2-hexenal-D | C6728263 | C6H10O | 98.1 | 1234.8 | 703.62 | 1.51499 |
14 | 3-Methyl-3-buten-1-ol | C763326 | C5H10O | 86.1 | 1253.6 | 729.77 | 1.17268 |
15 | 3-Hydroxy-2-butanone-M | C513860 | C4H8O2 | 88.1 | 1291.3 | 782.35 | 1.06755 |
16 | 3-Hydroxy-2-butanone-D | C513860 | C4H8O2 | 88.1 | 1291.7 | 782.92 | 1.33107 |
17 | Benzaldehyde-M | C100527 | C7H6O | 106.1 | 1577 | 1300.77 | 1.14883 |
18 | Butanol-M | C71363 | C4H10O | 74.1 | 1146.3 | 564.09 | 1.18197 |
19 | Butanol-D | C71363 | C4H10O | 74.1 | 1147.8 | 566.62 | 1.38972 |
20 | Isoamyl acetate-M | C123922 | C7H14O2 | 130.2 | 1128.4 | 532.65 | 1.30544 |
21 | Isoamyl acetate-D | C123922 | C7H14O2 | 130.2 | 1127.9 | 531.92 | 1.74943 |
22 | 2-Methyl-1-propanol-M | C78831 | C4H10O | 74.1 | 1099.6 | 482.38 | 1.17133 |
23 | 2-Methyl-1-propanol-D | C78831 | C4H10O | 74.1 | 1098.3 | 480.17 | 1.37408 |
24 | 1-Propanol | C71238 | C3H8O | 60.1 | 1039.7 | 413.82 | 1.26147 |
25 | Isobutyl acetate | C110190 | C6H12O2 | 116.2 | 1015.7 | 387.03 | 1.61493 |
26 | Ethyl propionate | C105373 | C5H10O2 | 102.1 | 958.9 | 339.85 | 1.44949 |
27 | Propyl acetate | C109604 | C5H10O2 | 102.1 | 951 | 334.50 | 1.47663 |
28 | Hexanal-M | C66251 | C6H12O | 100.2 | 1090.6 | 470.71 | 1.26538 |
29 | Hexanal-D | C66251 | C6H12O | 100.2 | 1090.7 | 470.79 | 1.55908 |
30 | Ethanol | C64175 | C2H6O | 46.1 | 927.5 | 318.59 | 1.13044 |
31 | 1-Penten-3-ol | C616251 | C5H10O | 86.1 | 1163.2 | 593.48 | 0.94008 |
32 | Heptanal | C111717 | C7H14O | 114.2 | 1190.1 | 640.59 | 1.33915 |
33 | Ethyl acetate | C141786 | C4H8O2 | 88.1 | 892.7 | 295.00 | 1.33551 |
34 | Methyl acetate | C79209 | C3H6O2 | 74.1 | 855.8 | 270.00 | 1.19134 |
35 | Butanal | C123728 | C4H8O | 72.1 | 837 | 257.28 | 1.28121 |
36 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 918.3 | 312.37 | 1.39874 |
37 | Propionaldehyde | C123386 | C3H6O | 58.1 | 831.9 | 253.80 | 1.14343 |
38 | 2-Methyl-1-butanol | C137326 | C5H12O | 88.1 | 1212.2 | 672.02 | 1.23289 |
39 | Butyl acetate | C123864 | C6H12O2 | 116.2 | 1075.5 | 453.80 | 1.23674 |
40 | Trans-2-methyl-2-butenal-M | C497030 | C5H8O | 84.1 | 1051.5 | 426.957 | 1.09627 |
41 | Trans-2-methyl-2-butenal-D | C497030 | C5H8O | 84.1 | 1047.4 | 422.414 | 1.33819 |
42 | Butan-2-ol | C78922 | C4H10O | 74.1 | 1024 | 396.256 | 1.14746 |
43 | 4-Methyl-2-pentanone | C108101 | C6H12O | 100.2 | 1013.7 | 384.747 | 1.17867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Yang, Y.; Ren, L.; Su, Z.; Bian, X.; Fan, J.; Wang, Y.; Han, B.; Zhang, N. HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China. Molecules 2022, 27, 9056. https://doi.org/10.3390/molecules27249056
Liu B, Yang Y, Ren L, Su Z, Bian X, Fan J, Wang Y, Han B, Zhang N. HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China. Molecules. 2022; 27(24):9056. https://doi.org/10.3390/molecules27249056
Chicago/Turabian StyleLiu, Baoxiang, Yang Yang, Likun Ren, Zhengbo Su, Xin Bian, Jing Fan, Yuanyuan Wang, Bing Han, and Na Zhang. 2022. "HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China" Molecules 27, no. 24: 9056. https://doi.org/10.3390/molecules27249056
APA StyleLiu, B., Yang, Y., Ren, L., Su, Z., Bian, X., Fan, J., Wang, Y., Han, B., & Zhang, N. (2022). HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China. Molecules, 27(24), 9056. https://doi.org/10.3390/molecules27249056