Chlorophylls: A Personal Snapshot
Abstract
:Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quinkert, G. Hans Herloff Inhoffen in his times (1906–1992). Eur. J. Org. Chem. 2004, 17, 3727. [Google Scholar] [CrossRef]
- Ruzicka, L. Arthur Stoll, 1887–1971. Biogr. Mem. Fellows R. Soc. 1972, 18, 567. [Google Scholar]
- Katz, J.J.; Janson, T.R. Chlorophyll-Chlorophyll interactions from 1H and 13C nuclear magnetic resonance spectroscopy. Ann. N. Y. Acad. Sci. 1973, 206, 579. [Google Scholar] [CrossRef]
- Norris, J.R.; Scheer, H.; Druyan, M.E.; Katz, J.J. An Electron-nuclear double resonance (ENDOR) study of the special pair model for photo-reactive chlorophyll in photosynthesis. Proc. Natl. Acad. Sci. USA 1974, 71, 4897–4900. [Google Scholar] [CrossRef] [Green Version]
- Senge, M.O.; Richter, J. Adding color to green chemistry? An overview of the fundamentals and potential of chlorophylls. In Biorefineries-Industrial Processes and Products: Status Quo and Future Directions; Kamm, B., Gruber, P.R., Kamm, M., Eds.; Wiley-VCH: Hoboken, NJ, USA, 2005; p. 325. [Google Scholar] [CrossRef]
- Humphrey, A.M. Chlorophyll as a color and functional ingredient. J. Food Sci. 2004, 69, C422. [Google Scholar] [CrossRef]
- Pelletier, P.J.; Caventou, J.B. Sur la matière verte des feuilles. Ann. Chim. Phys. 1818, 9, 194–196. [Google Scholar]
- Stokes, G.G. On the supposed Identity of Biliverdin with Chlorophyll, with remarks on the Constitution of Chlorophyll. Proc. R. Soc. 1864, 13, 144–145. [Google Scholar]
- Stokes, G.G. On the application of the optical properties of bodies to the detection and discrimination of organic substances. J. Chem. Soc. 1864, 17, 304–318. [Google Scholar] [CrossRef] [Green Version]
- Fremy, E. Rechereches chimiques sur la matière verte des feulles. Compt. Rend. 1877, 84, 983–989. [Google Scholar]
- Tswett, M. Adsorptionsanalyse und chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber. Dt. Bot. Ges. 1906, 24, 384–393. [Google Scholar]
- Moss, G.P. IUPAC-IUB Joint commission biochemical nomenclature (JCBN). Nomenclature of Tetrapyrroles. Recommendation 1986. Eur. J. Biochem. 1988, 178, 277–328. [Google Scholar] [CrossRef] [PubMed]
- Willstätter, R.; Hug, R. Isolierung des Chlorophylls. Liebigs Ann. Chem. 1911, 380, 177. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-P.; Charng, Y.-Y. Chlorophyll dephytylation in chlorophyll metabolism: A simple reaction catalyzed by various enzymes. Plant Sci. 2021, 302, 110682. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Orth, H. Die Chemie des Pyrrols; Akademische Verlagsgesellschaft: Leipzig, Germany, 1940; reprinted, Johnson Reprint Corp: New York, NY, USA, 1968; Volume 2, 2nd half. [Google Scholar]
- Brockmann, H., Jr. Stereochemistry and absolute configuration of chlorophylls and linear tetrapyrroles. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, NY, USA, 1978; Volume 2, pp. 288–321. [Google Scholar]
- Strell, M.; Kalojanoff, A. Reactions in the chlorophyll series. VIII. Synth. Pheophorbide Ann. 1962, 652, 218–224. [Google Scholar]
- Woodward, R.B.; Ayer, W.A.; Beaton, J.M.; Bickelhaupt, F.; Bonnett, R.; Buchschacher, P.; Closs, G.L.; Dutler, H.; Hannah, J.; Hauck, F.P.; et al. The total synthesis of Chlorophyll. J. Am. Chem. Soc. 1960, 82, 3800–3802. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Lindsey, J.S. Total synthesis campaigns toward chlorophylls and related natural hydroporphyrins—Diverse macrocycles, unrealized opportunities. Nat. Prod. Rep. 2018, 35, 879–901. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.T.M.; Tran, P.V.; Chau Nguyen, K.; Wang, P.; Lindsey, J.S. Synthesis of model bacteriochlorophylls containing substituents of native rings A, C and E. New J. Chem. 2021, 45, 13302–13316. [Google Scholar] [CrossRef]
- Zapata, M.; Garrido, J.L.; Jeffrey, S.W. Chlorophyll c pigments: Current status. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R., Rüdiger, W., Scheer, H., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 39–53. [Google Scholar]
- Vernon, L.P.; Seely, G.R. The Chlorophylls; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Majumder, E.L.-W.; Wolf, B.M.; Liu, H.; Berg, R.H.; Timlin, J.A.; Chen, M.; Blankenship, R.E. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f. Photosynth. Res. 2017, 134, 183–192. [Google Scholar] [CrossRef]
- Miyashita, H.; Ikemoto, H.; Kurano, N.; Adachi, K.; Chihara, M.; Miyachi, S. Chlorophyll d as a major pigment. Nature 1996, 383, 402. [Google Scholar] [CrossRef]
- Holt, A.S.; Morley, H.V. A proposed structure for Chlorophyll d. Can. J. Chem. 1959, 37, 507–514. [Google Scholar] [CrossRef]
- Willows, R.D.; Li, Y.; Scheer, H.; Chen, M. Structure of Chlorophyll f. Org. Lett. 2013, 15, 1588–1590. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Akiyama, M.; Kise, H.; Watanabe, T. Unusual tetrapyrrole pigments of photosynthetic antennas and reaction centers: Specially tailored chlorophylls. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R., Rüdiger, W., Scheer, H., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 55–66. [Google Scholar]
- Schoch, S. The esterification of Chlorophyllid a in greening bean leaves. Z. Naturforsch. 1978, 33, 712–714. [Google Scholar] [CrossRef]
- Scheer, H. Overview. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R., Rüdiger, W., Scheer, H., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–26. [Google Scholar]
- Kotkowiak, M.; Dudkowiak, A.; Fiedor, L. Intrinsic Photoprotective Mechanisms in Chlorophylls. Angew. Chem. Int. Ed. 2017, 56, 10457–10461. [Google Scholar] [CrossRef] [PubMed]
- Wakao, N.; Yokoi, N.; Isoyama, N.; Hiraishi, A.; Shimada, K.; Kobayashi, M.; Kise, H.; Iwaki, M.; Itoh, S.; Kise, H.; et al. Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol. 1996, 37, 889–893. [Google Scholar] [CrossRef] [Green Version]
- Willstätter, R.; Stoll, A. Untersuchungen über Chlorophyll; Springer: Berlin/Heidelberg, Germany, 1913. [Google Scholar]
- Scheer, H. (Ed.) Chlorophylls; CRC-Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Grimm, B.; Porra, R.; Rüdiger, W.; Scheer, H. (Eds.) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Golovko, T.K.; Gruszecki, W.I.; Prasad, M.N.V.; Strzalka, K. (Eds.) Photosynthetic Pigments: Chemical Structure, Biological Funtion and Ecology; Russian Academy of Sciences: Syktyvkar, Russia, 2014. [Google Scholar]
- Guberman-Pfeffer, M.; Lalisse, R.; Hewage, N.; Brueckner, C.; Gascón, J. Origins of the Electronic Modulations of Bacterio- and Isobacteriodilactone Regioisomers. J. Phys. Chem. A 2019, 123, 7470–7485. [Google Scholar] [CrossRef]
- Fiedor, L.; Kania, A.; Mysliwa-Kurdziel, B.; Orzel, L.; Stochel, G. Understanding chlorophylls: Central magnesium ion and phytyl as structural determinants. Biochim. Biophys. Acta 2008, 1777, 1491–1500. [Google Scholar] [CrossRef] [Green Version]
- Karlický, V.; Kmecová Materová, Z.; Kurasová, I.; Nezval, J.; Štroch, M.; Garab, G.; Špunda, V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: Effects on the organization of light-harvesting complex II and photosystem II functions. Photosynth. Res. 2021, 149, 233–252. [Google Scholar] [CrossRef]
- Leiger, K.; Linnanto, J.M.; Freiberg, A. Establishment of the Qy Absorption Spectrum of Chlorophyll a Extending to Near-Infrared. Molecules 2020, 25, 3796. [Google Scholar] [CrossRef]
- Wilhelm, C.; Jakob, T. Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynth. Res. 2006, 87, 323–329. [Google Scholar] [CrossRef]
- Koehne, B.; Elli, G.; Jennings, R.C.; Wilhelm, C.; Trissl, H. Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim. Biophys. Acta 1999, 1412, 94–107. [Google Scholar] [CrossRef] [Green Version]
- Orzel, L.; Rutkowska-Zbik, D.; van Eldik, R.; Fiedor, L.; Stochel, G. Chlorophyll a π-Cation Radical as Redox Mediator in Superoxide Dismutase (SOD) Mimetics. ChemPhysChem 2021, 22, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Hatazaki, S.; Sharma, D.; Hirata, S.; Nose, K.; Iyoda, T.; Kölsch, A.; Lokstein, H.; Vacha, M. Identification of Short- and Long-Wavelength Emitting Chlorophylls in Cyanobacterial Photosystem I by Plasmon-Enhanced Single-Particle Spectroscopy at Room Temperature. J. Phys. Chem. Lett. 2018, 9, 6669–6675. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Schliep, M.; Willows, R.D.; Cai, Z.-L.; Neilan, B.A.; Scheer, H. A Red-Shifted Chlorophyll. Science 2010, 329, 1318–1319. [Google Scholar] [CrossRef] [PubMed]
- Psencik, J.; Mancal, T. Light harvesting in green bacteria. In Light Harvesting in Photosynthesis; Croce, R., van Grondelle, R., van Amerongen, H., van Stokkum, I.H.M., Eds.; Taylor & Francis—CRC Press: Boca Raton, FL, USA, 2018; pp. 121–155. [Google Scholar]
- Tros, M.; Mascoli, V.; Shen, G.; Ho, M.-Y.; Bersanini, L.; Gisriel, C.J.; Bryant, D.A.; Croce, R. Breaking the Red Limit: Efficient Trapping of Long-Wavelength Excitations in Chlorophyll-f-Containing Photosystem I. Chem 2021, 7, 155–173. [Google Scholar] [CrossRef]
- Gisriel, C.; Shen, G.; Ho, M.-Y.; Kurashov, V.; Flesher, D.; Wang, J.; Armstrong, W.; Golbeck, J.; Gunner, M.; Vinyard, D.; et al. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. J. Biol. Chem. 2021, 101424. [Google Scholar] [CrossRef]
- Bryant, D.A.; Canniffe, D.P. How nature designs light-harvesting antenna systems: Design principles and functional realization in chlorophototrophic prokaryotes. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 0330011. [Google Scholar] [CrossRef]
- Lokstein, H.; Renger, G.; Götze, J.P. Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions. Molecules 2021, 26, 3378. [Google Scholar] [CrossRef]
- Köhler, J. Optical spectroscopy of individual light-harvesting complexes from purple bacteria. In The Purple Phototrophic Bacteria; Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 877–894. [Google Scholar]
- Günther, L.M.; Knoester, J.; Köhler, J. Limitations of Linear Dichroism Spectroscopy for Elucidating Structural Issues of Light-Harvesting Aggregates in Chlorosomes. Molecules 2021, 26, 899. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Stewart, J.J.; López-Pozo, M.; Polutchko, S.K.; Adams, W.W. Zeaxanthin, a Molecule for Photoprotection in Many Different Environments. Molecules 2020, 25, 5825. [Google Scholar] [CrossRef]
- Makhneva, Z.K.; Bolshakov, M.A.; Moskalenko, A.A. Carotenoids Do Not Protect Bacteriochlorophylls in Isolated Light-Harvesting LH2 Complexes of Photosynthetic Bacteria from Destructive Interactions with Singlet Oxygen. Molecules 2021, 26, 5120. [Google Scholar] [CrossRef]
- AWang, P.; Grimm, B. Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. Trends Plant Sci. 2021, 26, 484–495. [Google Scholar]
- Kräutler, B. Breakdown of Chlorophyll in Higher Plants—Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death. Angew. Chem. Int. Ed. 2016, 55, 4882–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartaxana, P.; Rey, F.; LeKieffre, C.; Lopes, D.; Hubas, C.; Spangenberg, J.E.; Escrig, S.; Jesus, B.; Calado, G.; Domingues, R.; et al. Photosynthesis from stolen chloroplasts can support sea slug reproductive fitness. Proc. R. Soc. B Biol. Sci 2021, 288, 1779. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.; Christa, G.; Gould, S.B. Plastid survival in the cytosol of animal cells. Trends Plant Sci. 2014, 19, 347. [Google Scholar] [CrossRef] [PubMed]
- Perez-galvez, A.; Viera, I.; Benito, I.; Roca, M. HPLC-hrTOF-MS study of copper chlorophylls: Composition of food colorants and biochemistry after ingestion. Food Chem. 2020, 321, 126721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.; Bird, A.; Kopec, R.E. The Metabolism and Potential Bioactivity of Chlorophyll and Metallo-chlorophyll Derivatives in the Gastrointestinal Tract. Mol. Nutr. Food Res. 2021, 65, 2000761. [Google Scholar] [CrossRef] [PubMed]
- Szafraniec, M.J.; Fiedor, L. One ring is not enough to rule them all. Albumin-dependent ABCG2-mediated transport of chlorophyll-derived photosensitizers. Eur. J. Pharm. Sci. 2021, 167, 106001. [Google Scholar] [CrossRef]
- Kashiyama, Y.; Yokoyama, A.; Kinoshita, Y.; Shoji, S.; Miyashita, H.; Shiratori, T.; Suga, H.; Ishikawa, K.; Ishikawa, A.; Inouye, I.; et al. Ubiquity and quantitative significance of detoxification catabolism of chlorophyll associated with protistan herbivory. Proc. Natl. Acad. Sci. USA 2012, 109, 17328–17335. [Google Scholar] [CrossRef] [Green Version]
- Scheer, H.; Katz, J.J. New type of metalcomplexes related to chlorophyll. J. Am. Chem. Soc. 1975, 97, 3273–3275. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, Y.; Demise, A.; Ishikawa, H.; Tamiaki, H. Synthesis of 132,173-cyclopheophorbides and their optical properties. J. Photochem. Photobiol. A 2021, 420, 113490. [Google Scholar] [CrossRef]
- Porra, R.J.; Scheer, H. Towards a more accurate future for chlorophyll a and b determinations: The inaccuracies of Daniel Arnon’s assay. Photosynth. Res. 2019, 140, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Esteban, R.; García-Plazaola, J.I.; Hernández, A.; Fernández-Marín, B. On the recalcitrant use of Arnon’s method for chlorophyll determination. New Phytol. 2018, 217, 474–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenthaler, H.K. Multi-colour fluorescence imaging of photosynthetic activity and plant stress. Photosynthetica 2021, 59, 364–380. [Google Scholar] [CrossRef]
- Herppich, W.B. Chlorophyll fluorescence imaging for process optimisation in horticulture and fresh food production. Photosynthetica 2021, 59, 422–437. [Google Scholar] [CrossRef]
- Valcke, R. Can chlorophyll fluorescence imaging make the invisible visible? Photosynthetica 2021, 59, 381–398. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Malenovsky, Z.; Magney, T.; Van Wittenberghe, S.; Fernandez-Marin, B.; Maignan, F.; Zhang, Y.; Maseyk, K.; Atherton, J.; Albert, L.P.; et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 2021, 7, 998–1009. [Google Scholar] [CrossRef]
- Hikosaka, K.; Tsujimoto, K. Linking remote sensing parameters to CO2 assimilation rates at a leaf scale. J. Plant Res. 2021, 134, 695–711. [Google Scholar] [CrossRef]
- Noda, H.M.; Muraoka, H.; Nasahara, K.N. Plant ecophysiological processes in spectral profiles: Perspective from a deciduous broadleaf forest. J. Plant Res. 2021, 134, 737–751. [Google Scholar] [CrossRef]
- Schreiber, U.; Klughammer, C. Evidence for variable chlorophyll fluorescence of photosystem I in vivo. Photosynth. Res. 2021, 149, 213–231. [Google Scholar] [CrossRef]
- Chand, B.; Priyamvda; Kumar, M.; Prasher, S.; Kumar, M. Feasibility study of a chlorophyll dosimeter for high energy X-ray beam used in radiotherapy. J. Radioanal. Nucl. Chem. 2021, 1–7. [Google Scholar] [CrossRef]
- Suvorov, N.; Pogorilyy, V.; Diachkova, E.; Vasil’ev, Y.; Mironov, A.; Grin, M. Derivatives of natural chlorophylls as agents for antimicrobial photodynamic therapy. Int. J. Mol. Sci. 2021, 22, 6392. [Google Scholar] [CrossRef] [PubMed]
- Weishaupt, K.R.; Gomer, C.J.; Dougherty, T.J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976, 36, 2326–2329. [Google Scholar] [PubMed]
- Sternberg, E.D.; Dolphin, D.; Bruckner, C. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 1998, 54, 4151–4202. [Google Scholar] [CrossRef]
- Staron, J.; Boron, B.E.; Karcz, D.; Szczygiel, M.; Fiedor, L. Recent Progress in Chemical Modifications of Chlorophylls and Bacteriochlorophylls for the Applications in Photodynamic Therapy. Curr. Med. Chem. 2015, 22, 3054–3074. [Google Scholar] [CrossRef] [PubMed]
- Brandis, A.; Salomon, Y.; Scherz, A. Bacteriochlorophyll sensitizers in photodynamic therapy. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R., Rüdiger, W., Scheer, H., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 485–494. [Google Scholar]
- Sjoberg, H.T.; Philippou, Y.; Magnussen, A.L.; Tullis, I.D.C.; Bridges, E.; Chatrian, A.; Lefebvre, J.; Tam, K.H.; Murphy, E.A.; Rittscher, J.; et al. Tumor irradiation combined with vascular-targeted photodynamic therapy enhances antitumor effects in pre-clinical prostate cancer. Br. J. Cancer 2021, 125, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Brekelmans, J.; Dickman, M.M.; Verma, S.; Arba-Mosquera, S.; Goldschmidt, R.; Goz, A.; Brandis, A.; Berendschot, T.T.J.M.; Saelens, I.E.Y.; Marcovich, A.L.; et al. Excimer laser-assisted corneal epithelial pattern ablation for corneal cross-linking. Acta Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Morozova, N.; Pavlova, M.; Plyutinskaya, A.; Pankratov, A.; Efendiev, K.; Semkina, A.; Pritmov, D.; Mironov, A.; Panchenko, P.; Fedorova, O. Photodiagnosis and photodynamic effects of bacteriochlorin-naphthalimide conjugates on tumor cells and mouse model. J. Photochem. Photobiol. B 2021, 223, 112294. [Google Scholar] [CrossRef]
- Janik-Zabrotowicz, E.; Arczewska, M.; Prochniewicz, P.; Swietlicka, I.; Terpiłowski, K. Stability of Chlorophyll a Monomer Incorporated into Cremophor EL Nano-Micelles under Dark and Moderate Light Conditions. Molecules 2020, 25, 5059. [Google Scholar] [CrossRef]
- Pinto, S.; Almeida, S.; Tomé, V.; Prata, A.J.F.; Calvete, M.; Serpa, C.; Pereira, M. Water soluble near infrared dyes based on PEGylated-Tetrapyrrolic macrocycles. Dyes Pigments 2021, 195, 109677. [Google Scholar] [CrossRef]
- Sulaiman, L.; Abidin, Z.H.Z.; Yunus, S.A.M.; Mazni, N.A.; Hadi, A.N.; Arof, A.K.; Simarani, K. Dual functions of Cu(NO3)2 as antifungal and colour stabilizer for coating paint film consisting of chlorophyll. Pigment. Resin. Technol. 2021, 50, 177. [Google Scholar] [CrossRef]
- Nouri, E.; Abbasi, H.; Rahimi, E. Effects of processing on stability of water- and fat-soluble vitamins, pigments (C-phycocyanin, carotenoids, chlorophylls) and colour characteristics of Spirulina platensis. Qual. Assur. Saf. Crops Foods 2018, 10, 335. [Google Scholar] [CrossRef]
- Duan, S.; Zhou, Q.; Li, A.; Wang, X.-F.; Sasaki, S.-I.; Tamiaki, H. Semisynthetic Chlorophyll Derivatives Toward Solar Energy Applications. Sol. RRL 2020, 4, 2000162. [Google Scholar] [CrossRef]
- Stojanovic, M.; Flores-Diaz, N.; Ren, Y.; Vlachopoulos, N.; Pfeifer, L.; Shen, Z.; Liu, Y.; Zakeeruddin, S.M.; Milic, J.V.; Hagfeldt, A. The Rise of Dye-Sensitized Solar Cells: From Molecular Photovoltaics to Emerging Solid-State Photovoltaic Technologies. Helv. Chim. Acta 2021, 104, e2000230. [Google Scholar] [CrossRef]
- Anonymous. The Chemical Record Lectureship for Michael Graetzel/Baizer Award for Flavio Maran/And also in the News. Angew. Chem. Int. Ed. 2018, 57, 877. [Google Scholar]
- Kathpalia, R.; Verma, A.K. Bio-inspired nanoparticles for artificial photosynthesis. Mater. Today Proc. 2021, 45, 3825–3832. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheer, H. Chlorophylls: A Personal Snapshot. Molecules 2022, 27, 1093. https://doi.org/10.3390/molecules27031093
Scheer H. Chlorophylls: A Personal Snapshot. Molecules. 2022; 27(3):1093. https://doi.org/10.3390/molecules27031093
Chicago/Turabian StyleScheer, Hugo. 2022. "Chlorophylls: A Personal Snapshot" Molecules 27, no. 3: 1093. https://doi.org/10.3390/molecules27031093
APA StyleScheer, H. (2022). Chlorophylls: A Personal Snapshot. Molecules, 27(3), 1093. https://doi.org/10.3390/molecules27031093