The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. The Fatty Acid Composition
2.3. Lipid Quality Indices
2.4. Microbiological Analyses
2.5. Physico-Chemical Analyses
2.6. Measurement of Colour, Instrumental Texture Evaluation, and Sensory Evaluation
3. Materials and Methods
3.1. Materials
3.1.1. Acid Whey
3.1.2. Starters Lactic Acid Bacteria Strains Preparation
3.1.3. Production of Acid-Rennet Cheeses from Cow’s Milk
3.2. Methodology
3.2.1. Chemical Composition
3.2.2. The Fatty Acid
3.2.3. Lipid Quality Indices
3.2.4. Microbiological Analyses
3.2.5. Physico-Chemical Analyses
3.2.6. Instrumental Measurement of Color
3.2.7. Instrumental Texture Evaluation
3.2.8. Sensory Evaluation
3.2.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- De Sant’Anna, F.M.; Acurcio, L.B.; Alvim, L.B.; De Castro, R.D.; De Oliveira, L.G.; Da Silva, A.M.; Nunes, A.C.; Nicoli, J.R.; Souza, M.R. Assessment of the probiotic potential of lactic acid bacteria isolated from Minas artisanal cheese produced in the Campo das Vertentes region. Brazil. Int. J. Dairy Technol. 2017, 70, 592–601. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Veljović, K.; Tolinački, M.; Živković, M.; Lukić, J.; Lozo, J.; Fira, D.; Jovčić, B.; Strahinić, I.; Begović, J.; et al. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries-technological and probiotic properties. Food Res. Int. 2020, 136, 109494. [Google Scholar] [CrossRef] [PubMed]
- Gantzias, C.; Lappa, I.K.; Aerts, M.; Georgalaki, M.; Manolopoulou, E.; Papadimitriou, K.; De Brandt, E.; Tsakalidou, E.; Vandamme, P. MALDI-TOF MS profiling of non-starter lactic acid bacteria from artisanal cheeses of the Greek island of Naxos. Int. J. Food Microbiol. 2020, 323, 108586. [Google Scholar] [CrossRef] [PubMed]
- Zoumpopoulou, G.; Papadimitriou, K.; Alexandraki, V.; Mavrogonatou, E.; Alexopoulou, K.; Anastasiou, R.; Georgalaki, M.; Kletsas, D.; Tsakalidou, E.; Giaouris, E. The microbiota of Kalathaki and Melichloro Greek artisanal cheeses comprises functional lactic acid bacteria. LWT 2020, 130, 109570. [Google Scholar] [CrossRef]
- Voolstra, C.R.; Ziegler, M. Adapting with microbial help: Microbiome flexibility facilitates rapid responses to environmental change. BioEssays 2020, 42, 2000004. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Grupstra, C.G.; Barreto, M.M.; Eaton, M.; BaOmar, J.; Zubier, K.; Al-Sofyani, A.; Turki, A.J.; Ormond, R.; Voolstra, C.R. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tomar, O. The effects of probiotic cultures on the organic acid content. texture profile and sensory attributes of Tulum cheese. Int. J. Dairy Technol. 2019, 72, 218–228. [Google Scholar] [CrossRef]
- Carafa, I.; Clementi, F.; Tuohy, K.; Franciosi, E. Microbial evolution of traditional mountain cheese and characterization of early fermentation cocci for selection of autochtonous dairy starter strains. Food Microbiol. 2016, 53, 94–103. [Google Scholar] [CrossRef]
- Levante, A.; De Filippis, F.; La Storia, A.; Gatti, M.; Neviani, E.; Ercolini, D.; Lazzi, C. Metabolic gene-targeted monitoring of non-starter lactic acid bacteria during cheese ripening. Int. J. Food Microbiol. 2017, 257, 276–284. [Google Scholar] [CrossRef]
- Tilocca, B.; Costanzo, N.; Morittu, V.M.; Spina, A.A.; Soggiu, A.; Britti, D.; Roncada, P.; Piras, C. Milk microbiota: Characterization methods and role in cheese production. J. Proteom. 2020, 210, 103534. [Google Scholar] [CrossRef]
- Santos, M.I.; Lima, A.; Mota, J.; Rebelo, P.; Ferreira, R.B.; Pedroso, L.; Ferreira, M.A.; Sousa, I. Extended Cheese Whey Fermentation Produces a Novel Casein-Derived Antibacterial Polypeptide That Also Inhibits Gelatinases MMP-2 and MMP-9. Int. J. Mol. Sci. 2021, 22, 11130. [Google Scholar] [CrossRef] [PubMed]
- Czárán, T.; Rattray, F.P.; Cleide, O.D.A.; Christensen, B.B. Modelling the influence of metabolite diffusion on non-starter lactic acid bacteria growth in ripening Cheddar cheese. Int. Dairy J. 2018, 80, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Mora, D.; Dal Bello, F.; Arioli, S. Biological traits of lactic acid bacteria: Industrial relevance and new perspectives in dairy applications. In Microbiology in Dairy Processing: Challenges and Opportunities; Poltronieri, P., Ed.; Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 219–232. [Google Scholar] [CrossRef]
- Poltronieri, P.; Rossi, F.; Cammà, C.; Pomilio, F.; Randazzo, C. Genomics of LAB and dairy-associated species. In Microbiology in Dairy Processing: Challenges and Opportunities; Poltronieri, P., Ed.; Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 71–95. Available online: https://www.wiley.com/en-us/Microbiology+in+Dairy+Processing%3A+Challenges+and+Opportunities-p-9781119114987 (accessed on 28 December 2021).
- Codex Alimentarius. International Food Standards. General Standard for Cheese. CXS 283-1978. Formerly CODEX STAN A-6-1973. 1978. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B283-1978%252FCXS_283e.pdf (accessed on 28 December 2021).
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Palacios, V.V.; Revilla, I.; Vivar-Quintana, A.M.; Hernández-Hierro, J.M. Discrimination between cheeses made from cow’s, ewe’s and goat’s milk from unsaturated fatty acids and use of the canonical biplot method. J. Food Compos. Anal. 2017, 56, 34–40. [Google Scholar] [CrossRef]
- Dachev, M.; Bryndová, J.; Jakubek, M.; Moučka, Z.; Urban, M. The Effects of Conjugated Linoleic Acids on Cancer. Processes 2021, 9, 454. [Google Scholar] [CrossRef]
- Yang, B.; Gao, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, H.; Chen, W. Bacterial conjugated linoleic acid production and their applications. Prog. Lipid Res. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Sneddon, A.A.; Tsofliou, F.; Fyfe, C.L.; Matheson, I.; Jackson, D.M.; Horgan, G.; Winzell, M.S.; Wahle, K.W.J.; Ahren, B.; Williams, L.M. Effect of a conjugated linoleic acid and ω-3 fatty acid mixture on body composition and adiponectin. Obesity 2008, 16, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Białek, A.; Białek, M.; Lepionka, T.; Czerwonka, M.; Czauderna, M. Chemometric Analysis of Fatty Acids Profile of Ripening Chesses. Molecules 2020, 25, 1814. [Google Scholar] [CrossRef] [Green Version]
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Lauciene, L.; Kasetiene, N.; Sekmokiene, D.; Andruleviciute, V.; Malakauskas, M. Quality and nutritional characteristics of traditional curd cheese enriched with thermo-coagulated acid whey protein and indigenous Lactococcus lactis strain. Int. J. Food Sci. Technol. 2021, 56, 2853–2863. [Google Scholar] [CrossRef]
- Paszczyk, B.; Polak-Śliwińska, M.; Łuczyńska, J. Fatty acids profile. trans isomers. and lipid quality indices in smoked and unsmoked cheeses and cheese-like products. Int. J. Environ. Res. Public Health 2020, 17, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Chapter 14. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schimdt, S.J., Labuza, T.P., Eds.; Blackwell Publishing and the Institute of Food Technologists: Chicago, IL, USA, 2020; pp. 323–355. [Google Scholar] [CrossRef]
- Salazar, J.K.; Gonsalves, L.J.; Fay, M.; Ramachandran, P.; Schill, K.M.; Tortorello, M.L. Metataxonomic Profiling of Native and Starter Microbiota During Ripening of Gouda Cheese Made with Listeria monocytogenes—Contaminated Unpasteurized Milk. Front. Microbiol. 2021, 12, 642789. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Velázquez, R.; Salvador-Figueroa, M.; Adriano-Anaya, L.; DeGyves–Córdova, G.; Vázquez-Ovando, A. Use of starter culture of native lactic acid bacteria for producing an artisanal Mexican cheese safe and sensory acceptable. CyTA-J. Food. 2018, 16, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Kilcawley, K.N.; Faulkner, H.; Clarke, H.J.; O’Sullivan, M.G.; Kerry, J.P. Factors influencing the flavour of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Priyashantha, H.; Johansson, M.; Langton, M.; Sampels, S.; Jayarathna, S.; Hetta, M.; Saedén, K.H.; Höjer, A.; Lundh, Å. Variation in Dairy Milk Composition and Properties Has Little Impact on Cheese Ripening: Insights from a Traditional Swedish Long-Ripening Cheese. Dairy 2021, 2, 336–355. [Google Scholar] [CrossRef]
- Demirci, T.; Akin, N.; Atik, D.S.; Özkan, E.R.; Dertli, E.; Akyol, İ. Lactic acid bacteria diversity and dynamics during ripening of traditional Turkish goatskin Tulum cheese produced in Mut region assessed by culturing and PCR-DGGE. LWT 2021, 138, 110701. [Google Scholar] [CrossRef]
- Rola, J.G.; Czubkowska, A.; Korpysa-Dzirba, W.; Osek, J. Occurrence of Staphylococcus aureus on farms with small scale production of raw milk cheeses in Poland. Toxins 2016, 8, 62. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; AbuNaser, R.A.; Olaimat, A.N.; Ayyash, M.; Al-Holy, M.A.; Kadora, K.M.; Holley, R.A. Factors affecting the viability of Staphylococcus aureus and production of enterotoxin during processing and storage of white-brined cheese. J. Dairy Sci. 2020, 103, 6869–6881. [Google Scholar] [CrossRef]
- Schubert, J.; Krakowiak, S.; Bania, J. Wytwarzanie enterotoksyn gronkowcowych w żywności. Med. Weter 2018, 74, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Olivo, P.M.; Dos Santos, G.T.; Rodrigues, B.M.; Osmari, M.P.; Marchi, F.E.D.; Madrona, G.S.; Pozza, M.S. Starter bacteria as producers of CLA in ripened cheese. An. Acad. Bras. Ciências 2021, 93, e20190677. [Google Scholar] [CrossRef]
- Jia, R.; Zhang, F.; Song, Y.; Lou, Y.; Zhao, A.; Liu, Y.; Peng, H.; Hui, Y.; Ren, R.; Wang, B. Physicochemical and textural characteristics and volatile compounds of semihard goat cheese as affected by starter cultures. J. Dairy Sci. 2021, 104, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.B. Redox reactions in food fermentations. Curr. Opin. Food Sci. 2018, 19, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Xia, Y.; Yang, Y.; Wang, G.; Zhou, W.; Ai, L. Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant. LWT 2020, 126, 109278. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, X.; Gu, S.; Yan, X.; Li, R.; Xia, S.; Chen, H.; Ge, J. Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China. Probiotics Antimicrob. Proteins 2019, 11, 1086–1099. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Iacurto, M.; Tripaldi, C. Chemical Characteristics and Oxidative Stability of Buffalo Mozzarella Cheese Produced with Fresh and Frozen Curd. Molecules 2021, 26, 1405. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Soto, E.; Cenobio-Galindo AD, J.; Espino-Manzano, S.O.; Franco-Fernández, M.J.; Ludeña-Urquizo, F.E.; Jiménez-Alvarado, R.; Zepeda-Velázquez, A.P.; Campos-Montiel, R.G. The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese. Molecules 2021, 26, 2170. [Google Scholar] [CrossRef]
- Pena-Serna, C.; Penna, A.L.B.; Lopes Filho, J.F. Zein-based blend coatings: Impact on the quality of a model cheese of short ripening period. J. Food Eng. 2016, 171, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Konkit, M.; Kim, W. Activities of amylase. proteinase. and lipase enzymes from Lactococcus chungangensis and its application in dairy products. J. Dairy Sci. 2016, 99, 4999–5007. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, D.; Marciniak-Lukasiak, K.; Karbowiak, M.; Lukasiak, P. Effects of Fructose and Oligofructose Addition on Milk Fermentation Using Novel Lactobacillus Cultures to Obtain High-Quality Yogurt-like Products. Molecules 2021, 26, 5730. [Google Scholar] [CrossRef]
- Ołdak, A.; Zielińska, D.; Rzepkowska, A.; Kołożyn-Krajewska, D. Comparison of antibacterial activity of Lactobacillus plantarum strains isolated from two different kinds of regional cheeses from Poland: Oscypek and Korycinski cheese. BioMed Res. Int. 2017, 6820369. [Google Scholar] [CrossRef] [Green Version]
- Ołdak, A.; Zielińska, D.; Łepecka, A.; Długosz, E.; Kołożyn-Krajewska, D. Lactobacillus plantarum strains isolated from Polish regional cheeses exhibit anti-Staphylococcal activity and selected probiotic properties. Probiotics Antimicrob. Proteins 2020, 12, 1025–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 1442:1997 Meat and Meat Products—Determination of Moisture Content (Reference Method). Available online: https://www.iso.org/standard/6037.html (accessed on 28 December 2021).
- PN-A-04018:1975/Az3:2002 Produkty Rolniczo-Żywnościowe—Oznaczanie Azotu Metodą Kjeldahla I Przeliczanie Na Białko. Available online: https://sklep.pkn.pl/pn-a-04018-1975-az3-2002p.html (accessed on 28 December 2021).
- ISO 8262-3:2005 [IDF 124-3:2005] Milk Products and Milk-Based Foods—Determination of Fat Content by the Weibull-Berntrop Gravimetric Method (Reference Method)—Part 3: Special Cases. Available online: https://www.iso.org/standard/42700.html (accessed on 28 December 2021).
- ISO 1841-2:1996 Meat and Meat Products—Determination of Chloride Content—Part 2: Potentiometric Method. Available online: https://www.iso.org/standard/23756.html (accessed on 28 December 2021).
- PN-A-82060:1999 Mięso i Przetwory Mięsne —Oznaczanie Zawartości Fosforu. Available online: https://sklep.pkn.pl/pn-a-82060-1999p.html (accessed on 28 December 2021).
- ISO 12966-1:2014 Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. Available online: https://www.iso.org/standard/52294.html (accessed on 28 December 2021).
- Osmari, E.K.; Cecato, U.; Macedo, F.A.F.; Souza, N.E. Nutritional quality indices of milk fat from goats on diets supplemented with different roughages. Small Rumin. Res. 2011, 98, 128–132. [Google Scholar] [CrossRef]
- Paszczyk, B.; Łuczyńska, J. The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow. Sheep and Goat Cheeses. Foods 2020, 9, 1667. [Google Scholar] [CrossRef] [PubMed]
- ISO 21528-2:2017 Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. Available online: https://www.iso.org/standard/63504.html (accessed on 28 December 2021).
- ISO 21527-1:2008 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95. Available online: https://www.iso.org/standard/38275.html (accessed on 28 December 2021).
- ISO 21527-2:2008 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less Than or Equal to 0.95. Available online: https://www.iso.org/standard/38276.html (accessed on 23 December 2021).
- ISO 6888-1:2021 Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus Aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. Available online: https://www.iso.org/standard/76672.html (accessed on 28 December 2021).
- ISO 6579-1:2017 Microbiology of the Food Chain—Horizontal Method for the Detection. Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. Available online: https://www.iso.org/standard/56712.html (accessed on 28 December 2021).
- ISO 11290-2:2017 Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria Spp.—Part 2: Enumeration Method. Available online: https://www.iso.org/standard/60314.html (accessed on 28 December 2021).
- ISO 18787:2017 Foodstuffs—Determination of Water Activity. Available online: https://www.iso.org/standard/63379.html (accessed on 23 December 2021).
- Surmacka Szczesniak, A. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- ISO 4121:2003 Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. Available online: https://www.iso.org/standard/33817.html (accessed on 28 December 2021).
- ISO 8586:2012 Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. Available online: https://www.iso.org/standard/45352.html (accessed on 28 December 2021).
Content | Cheese Symbol | ||
---|---|---|---|
AW | B1 | Os2 | |
Water (%) | 42.98 ± 0.10 A | 43.75 ± 0.17 A | 44.68 ± 0.79 B |
Protein (%) | 26.93 ± 0.10 A | 26.41 ± 0.79 A | 26.90 ± 0.41 A |
Fat (%) | 21.65 ± 0.33 A | 23.28 ± 0.33 B | 21.25 ± 0.04 A |
Cholesterol (mg/100 g) | 49.90 ± 1.89 B | 47.83 ± 1.66 A | 47.05 ± 0.68 A |
NaCl (%) | 1.33 ± 0.05 B | 1.15 ± 0.06 A | 1.70 ± 0.00 C |
Phosphorus (%) | 1.23 ± 0.00 A | 1.19 ± 0.01 A | 1.24 ± 0.05 A |
Lactose (mg/100 g) | <0.5 A | <0.5 A | <0.5 A |
Sum | Cheese Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
AW | B1 | Os2 | |||||||
SFA | 58.63 ± 0.05 bA | 59.15 ± 0.06 bB | 59.45 ± 0.17 aB | 59.03 ± 0.10 cA | 59.70 ± 0.08 cB | 59.95 ± 0.13 bB | 58.40 ± 0.08 aA | 58.93 ± 0.19 aB | 59.30 ± 0.08 aC |
MUFA | 27.05 ± 0.24 aB | 27.08 ± 0.05 aB | 26.78 ± 0.15 aA | 27.18 ± 0.10 aB | 27.15 ± 0.13 aB | 26.70 ± 0.18 aA | 27.30 ± 0.08 aB | 27.48 ± 0.13 bC | 26.83 ± 0.10 aA |
PUFA | 4.45 ± 0.10 aC | 3.98 ± 0.10 cB | 3.88 ± 0.05 bA | 4.40 ± 0.08 aC | 3.68 ± 0.05 aA | 3.80 ± 0.00 aB | 4.48 ± 0.10 aB | 3.85 ± 0.10 bA | 3.80 ± 0.00 aA |
Trans | 7.08 ± 0.05 cA | 7.03 ± 0.05 cA | 7.10 ± 0.00 bA | 6.73 ± 0.05 aA | 6.73 ± 0.05 aA | 6.80 ± 0.08 aA | 6.95 ± 0.06 bA | 6.90 ± 0.00 bA | 6.88 ± 0.05 aA |
Ω-3 | 1.60 ± 0.00 aA | 1.50 ± 0.00 bA | 1.60 ± 0.00 aA | 1.60 ± 0.00 aB | 1.40 ± 0.00 aA | 1.60 ± 0.00 aB | 1.60 ± 0.00 aA | 1.60 ± 0.00 cA | 1.60 ± 0.00 aA |
Ω-6 | 2.85 ± 0.10 aB | 2.28 ± 0.10 bA | 2.28 ± 0.05 bA | 2.80 ± 0.08 aB | 2.78 ± 0.05 cB | 2.30 ± 0.00 bA | 2.88 ± 0.10 aB | 2.15 ± 0.10 aA | 2.20 ± 0.00 aA |
Ω-9 | 20.93 ± 0.13 aC | 20.80 ± 0.08 aB | 20.48 ± 0.15 bA | 20.93 ± 0.05 aC | 20.70 ± 0.14 aB | 20.33 ± 0.17 aA | 21.18 ± 0.15 bC | 20.85 ± 0.06 aB | 20.35 ± 0.06 aA |
0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | |
Time (month) |
LQI | Cheese Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
AW | B1 | Os2 | |||||||
AI | 2.10 aA | 2.14 aA | 2.16 aA | 2.13 aA | 2.21 aA | 2.13 aA | 2.09 aA | 2.09 aA | 2.19 aA |
TI | 1.49 aA | 1.51 aB | 1.50 bB | 1.50 aA | 1.54 aB | 1.34 aA | 1.48 aA | 1.38 aA | 1.42 aB |
DFA | 42.95 cA | 42.39 bB | 42.01 aB | 42.58 bA | 41.66 aA | 41.43 aA | 42.81 bA | 42.01 aA | 41.53 aA |
OFA | 36.75 aA | 36.78 aA | 36.78 aA | 37.45 aB | 37.68 bB | 37.75 bB | 37.15 aB | 37.03 aA | 37.25 aB |
H/H | 0.67 aA | 0.66 aA | 0.65 aA | 0.66 aA | 0.66 aA | 0.62 aA | 0.67 aA | 0.66 aA | 0.63 aA |
HPI | 0.48 aA | 0.47 aA | 0.46 aA | 0.47 aA | 0.46 aA | 0.45 aA | 0.48 aA | 0.47 aA | 0.46 aA |
0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | |
Time (month) |
Analysys | Cheese Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
AW | B1 | Os2 | |||||||
LAB [log CFU g−1] | 8.64 ± 0.21 bA | 8.12 ± 0.19 aA | 7.98 ± 0.01 aA | 8.62 ± 0.02 aA | 8.70 ± 0.10 aB | 8.70 ± 0.02 aC | 8.56 ± 0.25 aA | 8.54 ± 0.22 aB | 8.48 ± 0.11 aB |
ENT [log CFU g−1] | 4.89 ± 0.53 bA | 4.68 ± 0.45 bA | 4.42 ± 0.11 aA | 5.40 ± 0.09 aB | 5.70 ± 1.10 aB | 5.62 ± 0.17 aC | 5.42 ± 0.09 bB | 5.16 ± 0.06 aB | 5.00 ± 0.11 aB |
Y&M [log CFU g−1] | 4.02 ± 0.17 aA | 4.85 ± 0.11 bC | 5.15 ± 0.84 bB | 3.88 ± 0.10 aA | 4.50 ± 0.10 bB | 3.98 ± 0.08 aA | 3.79 ± 0.07 aA | 4.04 ± 0.03 bA | 3.99 ± 0.26 bA |
STA [log CFU g−1] | 4.12 ± 0.22 bA | 3.59 ± 0.16 aA | 3.42 ± 0.12 aA | 4.31 ± 0.06 aA | 4.93 ± 4.10 bB | 4.69 ± 0.20 aB | 4.17 ± 0.13 aA | 5.32 ± 0.03 bC | 5.05 ± 0.33 bC |
SALM | nd | nd | nd | nd | nd | nd | nd | nd | nd |
LIST | nd | nd | nd | nd | nd | nd | nd | nd | nd |
0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | |
Time (month) |
Parameter | Cheese Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
AW | B1 | Os2 | |||||||
aw | 0.96 ± 0.01 aA | 0.95 ± 0.01 aA | 0.94 ± 0.01 aA | 0.95 ± 0.01 aA | 0.95 ± 0.00 aA | 0.94 ± 0.01 aA | 0.96 ± 0.01 aA | 0.94 ± 0.00 aA | 0.93 ± 0.01 aA |
pH | 5.03 ± 0.05 aA | 5.21 ± 0.02 aC | 5.13 ± 0.03 aB | 5.14 ± 0.03 bA | 5.45 ± 0.04cC | 5.33 ± 0.06 bB | 5.08 ± 0.07 aA | 5.38 ± 0.02 bB | 5.34 ± 0.02 bB |
TA [°SH] | 103.50 ± 16.92 aA | 106.25 ± 25.02 bA | 99.00 ± 2.16 bA | 86.00 ± 4.32 aA | 93.50 ± 4.65 bA | 86.75 ± 4.57 aA | 113.50 ± 10.63 bB | 72.25 ± 3.30 aA | 79.75 ± 8.02 aA |
ORP [mV] | 338.03 ± 31.67 bA | 478.48 ± 30.29 bB | 453.33 ± 7.33 bB | 299.98 ± 8.96 bA | 456.93 ± 10.48 bC | 436.53 ± 10.43 bB | 258.80 ± 14.85 aA | 428.50 ± 4.76 aB | 418.53 ± 12.23 aB |
0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | |
Time (month) |
Parameter | Cheese Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
AW | B1 | Os2 | |||||||
L* | 74.89 ± 0.48 aC | 71.49 ± 0.15 bB | 67.23 ± 0.73 aA | 78.94 ± 0.22 bC | 72.86 ± 1.70 cB | 68.77 ± 0.40 aA | 78.33 ± 1.76 bC | 69.85 ± 0.35 aB | 67.50 ± 0.71 aA |
a* | −0.44 ± 0.03 aB | −0.56 ± 0.03 bA | −0.57 ± 0.02 aA | 0.18 ± 0.03cC | −0.47 ± 0.04 cB | −0.57 ± 0.01 aA | −0.30 ± 0.14 bC | −0.79 ± 0.05 aA | −0.51 ± 0.09 aB |
b* | 20.78 ± 0.30 bB | 20.52 ± 0.24 bB | 20.02 ± 0.73 bA | 20.69 ± 0.13 bA | 20.46 ± 0.24 bA | 20.53 ± 0.48 bA | 19.98 ± 0.62 aB | 19.80 ± 0.50 aB | 19.33 ± 0.50 aA |
Hardness Cycle 1 [N] | 65.08 ± 14.48 aA | x | 91.15 ± 10.82 bB | 60.56 ± 12.98 aA | x | 72.99 ± 12.43 aA | 57.21 ± 8.39 aA | x | 81.64 ± 13.08 aB |
Adhesiveness [mJ] | 1.18 ± 0.97 aA | x | 1.77 ± 1.02 bA | 0.93 ± 0.83 aA | x | 1.32 ± 0.61 bA | 1.58 ± 0.75 aB | x | 0.50 ± 0.18 aA |
Hardness Cycle 2 [N] | 48.14 ± 14.16 aA | x | 59.21 ± 9.44 aA | 48.95 ± 9.52 aA | x | 61.81 ± 10.00 aB | 45.38 ± 6.12 aA | x | 68.80 ± 9.78 aB |
Cohesiveness | 0.58 ± 0.09 aB | x | 0.44 ± 0.05 aA | 0.67 ± 0.03 bA | x | 0.68 ± 0.02 bA | 0.67 ± 0.04 bA | x | 0.70 ± 0.02 bA |
Springiness [mm] | 8.57 ± 0.50 aA | x | 13.32 ± 9.07 aA | 8.51 ± 0.11 aA | x | 10.48 ± 5.47 aA | 8.55 ± 0.31 aA | x | 8.56 ± 0.17 aA |
Gumminess [N] | 38.45 ± 13.53 aA | x | 40.74 ± 8.95 aA | 40.47 ± 7.78 aA | x | 49.86 ± 8.14 aA | 38.20 ± 5.01 aA | x | 57.37 ± 8.44 bB |
Chewiness [mJ] | 332.08 ± 121.71 aA | x | 594.70 ± 529.40 aB | 344.42 ± 67.84 aA | x | 537.60 ± 340.91 aB | 326.82 ± 45.24 aA | x | 491.90 ± 78.48 aB |
Average Peak Load [N] | 52.37 ± 14.27 aA | x | 67.19 ± 12.31 aB | 51.85 ± 10.37 aA | x | 64.60 ± 10.54 aA | 46.66 ± 7.04 aA | x | 72.01 ± 10.68 aB |
0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | |
Time (month) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łepecka, A.; Okoń, A.; Szymański, P.; Zielińska, D.; Kajak-Siemaszko, K.; Jaworska, D.; Neffe-Skocińska, K.; Sionek, B.; Trząskowska, M.; Kołożyn-Krajewska, D.; et al. The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk. Molecules 2022, 27, 1097. https://doi.org/10.3390/molecules27031097
Łepecka A, Okoń A, Szymański P, Zielińska D, Kajak-Siemaszko K, Jaworska D, Neffe-Skocińska K, Sionek B, Trząskowska M, Kołożyn-Krajewska D, et al. The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk. Molecules. 2022; 27(3):1097. https://doi.org/10.3390/molecules27031097
Chicago/Turabian StyleŁepecka, Anna, Anna Okoń, Piotr Szymański, Dorota Zielińska, Katarzyna Kajak-Siemaszko, Danuta Jaworska, Katarzyna Neffe-Skocińska, Barbara Sionek, Monika Trząskowska, Danuta Kołożyn-Krajewska, and et al. 2022. "The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk" Molecules 27, no. 3: 1097. https://doi.org/10.3390/molecules27031097
APA StyleŁepecka, A., Okoń, A., Szymański, P., Zielińska, D., Kajak-Siemaszko, K., Jaworska, D., Neffe-Skocińska, K., Sionek, B., Trząskowska, M., Kołożyn-Krajewska, D., & Dolatowski, Z. J. (2022). The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk. Molecules, 27(3), 1097. https://doi.org/10.3390/molecules27031097