Supercritical CO2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compositions of the SFE-CO2 Extracts
2.2. Antifungal Activities of the SFE-CO2 Extracts
3. Materials and Methods
3.1. Plant Material and Extraction Procedure
3.2. GC–MS Analysis
3.3. Antifungal Activity
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Huang, S.; Xue, Y.; Yu, B.; Wang, L.; Zhou, C.; Ma, Y. A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids. Molecules 2021, 26, 6446. [Google Scholar] [CrossRef]
- Li, X.; Dilokpimol, A.; Kabel, M.A.; de Vries, R.P. Fungal xylanolytic enzymes: Diversity and applications. Bioresour. Technol. 2021, 344, 126290. [Google Scholar] [CrossRef]
- Solomon, L.; Tomii, V.P.; Dick, A.A. Importance of Fungi in the Petroleum, Agro-Allied, Agriculture and Pharmaceutical Industries. N. Y. Sci. J. 2019, 12, 8–15. [Google Scholar]
- Kour, D.; Rana, K.L.; Yadav, N.; Yadav, A.N.; Singh, J.; Rastegari, A.A.; Saxena, A.K. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications; Springer: Cham, Switzerland, 2019; pp. 1–64. [Google Scholar] [CrossRef]
- Hyde, K.D.; Bahkali, A.H.; Moslem, M.A. Fungi–An unusual source for cosmetics. Fungal Divers. 2010, 43, 1–9. [Google Scholar] [CrossRef]
- Davies, C.R.; Wohlgemuth, F.; Young, T.; Violet, J.; Dickinson, M.; Sanders, J.W.; Vallieres, C.; Avery, S.V. Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biol. Rev. 2021, 36, 15–26. [Google Scholar] [CrossRef]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar] [CrossRef]
- Anžlovar, S.; Janeš, D.; Koce, J.D. The Effect of Extracts and Essential Oil from Invasive Solidago spp. and Fallopia japonica on Crop-Borne Fungi and Wheat Germination. Food Technol. Biotechnol. 2020, 58, 273. [Google Scholar] [CrossRef]
- Bhutia, D.D.; Zhimo, Y.; Kole, R.; Saha, J. Antifungal activity of plant extracts against Colletotrichum musae, the post harvest anthracnose pathogen of banana cv. Martaman. Nutr. Food Sci. 2016, 46, 2–15. [Google Scholar] [CrossRef]
- Gonçalves, S.; Romano, A. Application of supercritical CO2 for enhanced oil recovery. In Green Sustainable Process for Chemical and Environmental Engineering and Science. Supercritical Carbon Dioxide as Green Solvent; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–84. [Google Scholar] [CrossRef]
- Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.R.; Reglero, G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Čižmek, L.; Bavcon Kralj, M.; Čož-Rakovac, R.; Mazur, D.; Ul’yanovskii, N.; Likon, M.; Trebše, P. Supercritical Carbon Dioxide Extraction of Four Medicinal Mediterranean Plants: Investigation of Chemical Composition and Antioxidant Activity. Molecules 2021, 26, 5697. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Anžlovar, S.; Likar, M.; Koce, J.D. Antifungal potential of thyme essential oil as a preservative for storage of wheat seeds. Acta Bot. Croat. 2017, 76, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Kovačec, E.; Likar, M.; Regvar, M. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Fungal Biol. 2016, 120, 666–678. [Google Scholar] [CrossRef]
- Barjaktarović, B.; Sovilj, M.; Knez, Ž. Chemical Composition of Juniperus communis L. Fruits Supercritical CO2 Extracts: Dependence on Pressure and Extraction Time. J. Agric. Food Chem. 2005, 53, 2630–2636. [Google Scholar] [CrossRef]
- Ağalar, H.G.; Demirci, B.; Demirci, F.; Kırımer, N. The Volatile Compounds of the Elderflowers Extract and the Essential Oil. Rec. Nat. Prod. 2017, 11, 491–496. [Google Scholar] [CrossRef]
- Formisano, C.; Delfine, S.; Oliviero, F.; Tenore, G.C.; Rigano, D.; Senatore, F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind. Crops Prod. 2015, 63, 256–263. [Google Scholar] [CrossRef]
- Reverchon, E.; Senatore, F. Supercritical Carbon Dioxide Extraction of Chamomile Essential Oil and Its Analysis by Gas Chromatography-Mass Spectrometry. J. Agric. Food Chem. 1994, 42, 154–158. [Google Scholar] [CrossRef]
- Petrović, L.; Lepojević, Ž.; Sovilj, V.; Adamović, D.; Tešević, V. An investigation of CO2 extraction of marigold (Calendula officinalis L.). J. Serbian Chem. Soc. 2007, 72, 407–413. [Google Scholar] [CrossRef]
- Bocevska, M.; Sovová, H. Supercritical CO2 extraction of essential oil from yarrow. J. Supercrit. Fluids 2007, 40, 360–367. [Google Scholar] [CrossRef]
- Mohammadi, S.; Saharkhiz, M.J. Changes in Essential Oil Content and Composition of Catnip (Nepeta cataria L.) During Different Developmental Stages. J. Essent. Oil-Bearing Plants 2011, 14, 396–400. [Google Scholar] [CrossRef]
- Smelcerovic, A.; Lepojevic, Z.; Djordjevic, S. Sub-and Supercritical CO2-Extraction of Hypericum perforatum L. Chem. Eng. Technol. 2004, 27, 1327–1329. [Google Scholar] [CrossRef]
- Rančić, A.; Soković, M.; Vukojević, J.; Simić, A.; Marin, P.; Duletić-Laušević, S.; Djoković, D. Chemical composition and antimicrobial activities of essential oils of Myrrhis odorata (L.) Scop, Hypericum perforatum L. and Helichrysum arenarium (L.) Moench. J. Essent. Oil Res. 2005, 17, 341–345. [Google Scholar] [CrossRef]
- Nagybákay, N.E.; Syrpas, M.; Vilimaitė, V.; Tamkutė, L.; Pukalskas, A.; Venskutonis, P.R.; Kitrytė, V. Optimized Supercritical CO2 Extraction Enhances the Recovery of Valuable Lipophilic Antioxidants and Other Constituents from Dual-Purpose Hop (Humulus lupulus L.) Variety Ella. Antioxidants 2021, 10, 918. [Google Scholar] [CrossRef]
- Bylka, W.; Matlawska, I.; Frański, R. Essential oil Composition of Taraxacum officinale. Acta Physiol. Plant. 2010, 32, 231–234. [Google Scholar] [CrossRef]
- Kowalski, R.; Kowalska, G.; Kalwa, K.; Sujka, M. Essential Oil Composition of Hawthorn Crataegus monogyna Inflorescence. Chem. Nat. Compd. 2018, 54, 995–997. [Google Scholar] [CrossRef]
- Bizaj, K.; Škerget, M.; Košir, I.J.; Knez, Ž. Sub- and Supercritical Extraction of Slovenian Hops (Humulus lupulus L.) Aurora Variety Using Different Solvents. Plants 2021, 10, 1137. [Google Scholar] [CrossRef]
- Glišić, S.; Milojević, S.; Dimitrijević, S.; Orlović, A.; Skala, D. Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J. Serb. Chem. Soc 2007, 72, 311–320. [Google Scholar] [CrossRef]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J. Chemical Composition, Antioxidant and Antimicrobial Activity of Chamomile Flowers Essential Oil (Matricaria chamomilla L.). J. Essent. Oil Bear. Pl. 2016, 19, 2017–2028. [Google Scholar] [CrossRef]
- Jamalian, A.; Shams-Ghahfarokhi, M.; Jaimand, K.; Pashootan, N.; Amani, A.; Razzaghi-Abyaneh, M. Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens. J. Mycol. Med. 2012, 22, 308–315. [Google Scholar] [CrossRef]
- Efstratiou, E.; Hussain, A.I.; Nigam, P.S.; Moore, J.E.; Ayub, M.A.; Rao, J.R. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement. Ther. Clin. Pract. 2012, 18, 173–176. [Google Scholar] [CrossRef]
- Aydin, S.; Sevindik, E. Achillea millefolium L. subsp. millefolium essential oil’s antifungal effect. Eur. J. Biol. Res. 2018, 8, 153–156. [Google Scholar] [CrossRef]
- Saddiqe, Z.; Naeem, I.; Maimoona, A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. 2010, 131, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.M.; Sawhney, S.S.; Manmohan, S.J. Antimicrobial Activity of Various Extracts of Taraxacum officinale. J. Microb. Biochem. Technol. 2016, 8, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Youssef, G.A.; Mohamed, A.S. In-vitro antifungal activity of eco-friendly essential oils against pathogenic seed borne fungi. Egypt. J. Bot. 2020, 60, 381–393. [Google Scholar] [CrossRef]
- Das, S.; Horváth, B.; Šafranko, S.; Jokić, S.; Széchenyi, A.; Koszegi, T. Antimicrobial activity of chamomile essential oil: Effect of different formulations. Molecules 2019, 24, 4321. [Google Scholar] [CrossRef] [Green Version]
- Fırat, Z.; Demirci, F.; Demirci, B. Antioxidant activity of chamomile essential oil and main components. Nat. Volatiles Essent. Oils 2018, 5, 11–16. [Google Scholar]
- Forrer, M.; Kulik, E.M.; Filippi, A.; Waltimo, T. The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis. Arch. Oral Biol. 2013, 58, 10–16. [Google Scholar] [CrossRef]
- Lucca, A.J.D.; Pauli, A.; Schilcher, H.; Sien, T.; Bhatnagar, D.; Walsh, T.J. Fungicidal and bactericidal properties of bisabolol and dragosantol. J. Essent. Oil Res. 2011, 23, 47–54. [Google Scholar] [CrossRef]
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Plant hosts of Botrytis spp. In Botrytis–The Fungus, the Pathogen and its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer: Cham, Switzerland, 2015; pp. 413–486. ISBN 9783319233710. [Google Scholar]
- Boddy, L. Pathogens of Autotrophs. In The Fungi, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 245–292. ISBN 9780123820341. [Google Scholar]
- Pérez-Rodríguez, P.; Soto-Gómez, D.; de la Calle, I. Fungicides: Perspectives, Resistance Management and Risk Assessment; Nova Science Pub Inc.: New York, NY, USA, 2018; ISBN 9781536133080. [Google Scholar]
- Bai, X.N.; Cheng, J.; Liang, W.; Ma, L.Q.; Liu, Y.B.; Shi, G.L.; Wang, Y.N. Antifungal activity of extracts by supercritical carbon dioxide extraction from roots of Stellera chamaejasme L. and analysis of their constituents using GC-MS. In Information Technology and Agricultural Engineering. Advances in Intelligent and Soft Computing; Zhu, E., Sambath, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 134. [Google Scholar] [CrossRef]
- Chebli, B.; Hmamouchi, M.; Achouri, M.; Hassani, L.M.I. Composition and in vitro fungitoxic activity of 19 essential oils against two post-harvest pathogens. J. Essent. Oil Res. 2004, 16, 507–511. [Google Scholar] [CrossRef]
- Behshti, M.; Jahani, M.; Aminifard, M.H.; Hosseini, S.A. Essential oils to control Botrytis cinerea in vitro and in vivo on grape fruits. J. Hortic. Postharvest Res. 2020, 3, 161–172. [Google Scholar] [CrossRef]
- Sernaite, L.; Rasiukeviciute, N.; Valiuškaite, A. Application of plant extracts to control postharvest gray mold and susceptibility of apple fruits to B. cinerea from different plant hosts. Foods 2020, 9, 1430. [Google Scholar] [CrossRef] [PubMed]
- Krzyśko-Łupicka, T.; Sokół, S.; Sporek, M.; Piekarska-Stachowiak, A.; Walkowiak-Lubczyk, W.; Sudoł, A. Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe. Molecules 2021, 26, 6488. [Google Scholar] [CrossRef] [PubMed]
- SFE Bio-Botanical Extraction System BBES. Available online: https://www.waters.com/webassets/cms/library/docs/720005302en.pdf (accessed on 13 January 2022).
- NIST Special Database 14. Available online: https://www.nist.gov/srd/nist-special-database-14 (accessed on 2 December 2021).
- Flavors and Fragrances Natural and Synthetic Compounds spectral library (FFNSC 3). Available online: https://mswil.com/wp-content/uploads/2020/02/FFNSC3_MSWIL.pdf (accessed on 2 December 2021).
- Anžlovar, S.; Dolenc Koce, J. Antibacterial and antifungal activity of aqueous and organic extracts from indigenous and invasive species of Goldenrod (Solidago spp.) grown in Slovenia. Phyt. Ann. Rei Bot. 2014, 54, 135–147. [Google Scholar] [CrossRef]
RI | RPI | |||
---|---|---|---|---|
Species | Compound | Db | Ms | (%) |
Juniperus communis | α-pinene | 933 | 932 | 2.71 |
sabinene | 972 | 972 | 1.80 | |
myrcene | 991 | 990 | 1.64 | |
terpinen-4-ol | 1184 | 1180 | 2.41 | |
β-elemene | 1390 | 1389 | 1.64 | |
caryophyllene, (E) | 1424 | 1419 | 3.54 | |
α-humulene | 1454 | 1455 | 3.03 | |
germacrene D | 1480 | 1481 | 18.46 | |
bicyclogermacrene | 1497 | 1495 | 1.81 | |
γ-cadinene | 1512 | 1513 | 1.12 | |
δ-cadinene | 1518 | 1518 | 1.21 | |
germacrene B | 1557 | 1559 | 6.63 | |
81 (100), 43 (43), 41 (22), 123 (21) | 7.61 | |||
oplopanone | 1738 | 1732 | 1.57 | |
abietatriene | 2052 | 2058 | 1.69 | |
93 (100), 81 (94), 79 (84), 41 (81) | 2.28 | |||
sandaracopimarinal | 2187 | 2183 | 7.90 | |
larixol | 2263 | 2257 | 1.47 | |
81 (100), 109 (72), 107 (71), 55 (68) | 5.3 | |||
dehydro-abietol | 2371 | 2359 | 1.16 | |
81 (100), 41 (73), 93 (72), 107 (72) | 1.38 | |||
Sambucus nigra | neophytadiene | 1836 | 1838 | 1.44 |
n-nonadecane | 1900 | 1902 | 4.78 | |
ethyl-palmitate | 1993 | 1994 | 12.46 | |
n-heneicosane | 2100 | 2102 | 10.09 | |
ethyl-linoleate | 2164 | 2159 | 10.06 | |
79 (100), 67 (63), 95 (60), 93 (55) | 18.75 | |||
ethyl-oleate | 2173 | 2173 | 4.04 | |
ethyl-stearate | 2198 | 2194 | 1.68 | |
n-docosane | 2200 | 2202 | 2.26 | |
n-tricosane | 2300 | 2303 | 10.76 | |
ethyl-eicosanoate | 2394 | 2395 | 1.07 | |
n-tetracosane | 2400 | 2403 | 1.35 | |
n-pentacosane | 2500 | 2503 | 11.09 | |
Chamomilla recutita | β-farnesene, (E) | 1452 | 1451 | 6.56 |
α-bisabolol oxide B | 1655 | 1652 | 8.32 | |
α-bisabolone oxide A | 1682 | 1678 | 2.69 | |
epi-alpha-bisabolol | 1679 | 1683 | 1.97 | |
hernianin | 1720 | 1715 | 2.07 | |
chamazulene | 1728 | 1726 | 2.80 | |
α-bisabolol oxide A | 1748 | 1746 | 21.71 | |
tonghaosu, (Z) | 1883 | 1874 | 18.39 | |
tonghaosu, (E) | 1895 | 1887 | 2.97 | |
228 (100), 199 (100), 171 (81), 43 (81) | 1.01 | |||
228 (100), 185 (90), 43 (85), 213 (83) | 1.05 | |||
n-tricosane | 2300 | 2300 | 2.41 | |
244 (100), 43 (99), 159 (65), 91 (58) | 2.25 | |||
n-pentacosane | 2500 | 2500 | 14.08 | |
Calendula officinalis | α-humulene | 1454 | 1456 | 1.02 |
γ-muurolene | 1478 | 1476 | 1.13 | |
germacrene D | 1480 | 1482 | 1.04 | |
207 (100), 43 (97), 161 (81), 93 (67) | 1.28 | |||
α-muurolene | 1497 | 1499 | 2.3 | |
γ-cadinene | 1512 | 1514 | 7.42 | |
δ-cadinene | 1518 | 1519 | 12.45 | |
α-cadinene | 1538 | 1538 | 1.5 | |
epi-alpha-cadinol | 1640 | 1643 | 3.64 | |
t-muurolol | 1645 | 1645 | 2.26 | |
cadin-4-en-10-ol | 1659 | 1656 | 7.39 | |
oplopanone | 1738 | 1733 | 1.23 | |
n-nonadecane | 1900 | 1903 | 3.33 | |
n-heneicosane | 2100 | 2103 | 5.32 | |
43 (100), 58 (91), 55 (67), 57 (57) | 1.53 | |||
55 (100), 79 (66), 91 (45), 41 (42) | 1.88 | |||
n-nonacosane | 2305 | 2303 | 7.46 | |
79 (100), 43 (74), 55 (71), 80 (67) | 1.5 | |||
79 (100), 43 (71), 55 (65), 41 (60) | 6.78 | |||
n-tetracosane | 2400 | 2403 | 1.06 | |
n-pentacosane | 2500 | 2503 | 14.49 | |
Achillea millefolium | sabinene | 972 | 972 | 4.26 |
β-pinene | 978 | 977 | 5.48 | |
eucalyptol | 1032 | 1032 | 6.36 | |
camphor | 1149 | 1147 | 1.53 | |
borneol | 1173 | 1172 | 1.91 | |
terpinen-4-ol | 1184 | 1181 | 2.54 | |
α-terpineol | 1195 | 1195 | 1.79 | |
caryophyllene, (E) | 1424 | 1420 | 12.17 | |
α-humulene | 1456 | 1454 | 1.22 | |
germacrene D | 1480 | 1482 | 5.42 | |
α-zingiberene | 1496 | 1496 | 1.54 | |
caryophyllene oxide | 1587 | 1583 | 5.39 | |
43 (100), 108 (64), 93 (56), 67 (30) | 1682 | 2.35 | ||
137 (100), 84 (74), 119 (73), 41 (62) | 1688 | 1.39 | ||
neophytadiene | 1836 | 1839 | 1.13 | |
109 (100), 110 (71), 69 (50), 43 (44) | 4.42 | |||
phytol | 2106 | 2111 | 1.59 | |
69 (100), 81 (64), 41 (51), 93 (32) | 2.24 | |||
43 (100), 55 (70), 41 (56), 81 (53) | 3.45 | |||
95 (100), 81 (81), 55 (61), 73 (57) | 1.22 | |||
n-nonacosane | 2305 | 2303 | 2.21 | |
43 (100), 213 (34), 228 (33), 185 (23) | 2.82 | |||
231 (100), 232 (17), 246 (11), 121 (10) | 10.6 | |||
57 (100), 43 (91), 82 (88), 96 (71) | 2.59 | |||
67 (100), 81 (84), 55 (81), 95 (60) | 1.55 | |||
73 (100), 355 (59), 281 (46), 221 (42) | 2.05 | |||
n-pentacosane | 2500 | 2504 | 6.75 | |
2-ethylhexylbisphthalic acid | 2531 | 2529 | 1.09 | |
55 (100), 228 (84), 213 (54), 172 (41) | 1.07 | |||
Nepeta cataria | eucalyptol | 1032 | 1031 | 30.28 |
α-terpineol | 1195 | 1194 | 2.34 | |
β-bourbonene | 1382 | 1383 | 1.67 | |
caryophyllene, (E) | 1424 | 1419 | 9.89 | |
α-humulene | 1454 | 1455 | 1.88 | |
germacrene D | 1480 | 1481 | 33.01 | |
caryophyllene oxide | 1587 | 1581 | 5.19 | |
phytol | 2106 | 2108 | 1.42 | |
n-pentacosane | 2500 | 2501 | 2.67 | |
Hypericum perforatum | 43 (100), 57 (69), 71 (47), 41 (36) | 1.94 | ||
α-pinene | 933 | 933 | 1.71 | |
43 (100), 57 (33), 41 (31), 85 (27) | 1.28 | |||
43 (100), 45 (51), 41 (30), 85 (29) | 1.29 | |||
57 (100), 71 (67), 43 (47), 41 (37) | 1.62 | |||
57 (100), 43 (98), 71 (69), 41 (39) | 1.76 | |||
57 (100), 43 (89), 71 (57), 85 (51) | 3.31 | |||
caryophyllene, (E) | 1424 | 1420 | 5.7 | |
β-farnesene, (E) | 1452 | 1453 | 2.37 | |
germacrene D | 1480 | 1475 | 2.38 | |
caryophyllene oxide | 1587 | 1582 | 12.67 | |
tetradec-2-enal, (trans) | 1673 | 1678 | 3.4 | |
n-nonadecane | 1900 | 1902 | 3.17 | |
n-heneicosane | 2100 | 2102 | 7.44 | |
phytol | 2106 | 2109 | 7.39 | |
69 (100), 43 (79), 41 (76), 109 (48) | 3.24 | |||
n-nonacosane | 2305 | 2302 | 4.25 | |
69 (100), 41 (57), 43 (56), 398 (38) | 3.66 | |||
69 (100), 43 (98), 123 (83), 41 (68) | 4.87 | |||
43 (100), 69 (91), 41 (71), 71 (42) | 7.02 | |||
73 (100), 355 (62), 147 (45), 221 (43) | 2.68 | |||
69 (100), 41 (69), 43 (51), 193 (50) | 4.51 | |||
n-pentacosane | 2500 | 2502 | 3.13 | |
69 (100), 43 (75), 41 (65), 113 (50) | 4.57 | |||
57 (100), 85 (48), 69 (44), 41 (43) | 2.37 | |||
41 (100), 69 (99), 57 (62), 43 (58) | 2.27 | |||
Helichrysum arenarium | α-pinene | 933 | 933 | 4.19 |
geranyl acetate, (cis) | 1361 | 1359 | 3.1 | |
italicene | 1410 | 1406 | 1.25 | |
caryophyllene, (E) | 1424 | 1420 | 3.23 | |
55 (100), 133 (99), 43 (98), 41 (84) | 1.2 | |||
γ-curcumene | 1482 | 1478 | 12.74 | |
α-curcumene | 1480 | 1481 | 2.62 | |
β-selinene | 1492 | 1489 | 3.73 | |
α-selinene | 1501 | 1496 | 2.17 | |
205 (100), 83 (45), 55 (24), 79 (16) | 1.27 | |||
43 (100), 145 (78), 218 (36), 157 (31) | 7.36 | |||
43 (100), 145 (81), 200 (67), 160 (30) | 1359 | 6.48 | ||
219 (100), 234 (95), 43 (62), 201 (57) | 3.91 | |||
181 (100), 43 (68), 236 (58), 165 (42) | 9.94 | |||
145 (100), 200 (90), 43 (88), 160 (49) | 7 | |||
219 (100), 248 (50), 177 (32), 233 (30) | 2.16 | |||
165 (100), 221 (36), 264 (19), 69 (15) | 6.84 | |||
83 (100), 82 (78), 55 (48), 57 (35) | 3.21 | |||
83 (100), 82 (54), 55 (42), 57 (22) | 10.64 | |||
73 (100), 355 (61), 281 (47), 221 (47) | 2.07 | |||
n-pentacosane | 2500 | 2503 | 4.89 | |
Humulus lupulus | 69 (100), 41 (61), 70 (15), 82 (15) | 1.49 | ||
α-humulene | 1454 | 1456 | 1.38 | |
248 (100), 136 (85), 233 (67), 41 (51) | 1.26 | |||
69 (100), 197 (87), 41 (58), 266 (21) | 2.88 | |||
69 (100), 41 (68), 57 (49), 248 (41) | 2.44 | |||
135 (100), 69 (98), 181 (97), 105 (71) | 1.29 | |||
238 (100), 239 (63), 223 (46), 182 (46) | 2.07 | |||
182 (100), 238 (61), 277 (59), 119 (55) | 1.16 | |||
69 (100), 41 (53), 197 (36), 57 (29) | 1.45 | |||
69 (100), 275 (87), 41 (84), 263 (48) | 39.79 | |||
289 (100), 69 (92), 41 (82), 233 (49) | 8.51 | |||
289 (100), 69 (82), 41 (72), 277 (50) | 29.98 | |||
Taraxacum officinale | caryophyllene, (E) | 1424 | 1419 | 1.45 |
neophytadiene | 1836 | 1836 | 3.05 | |
phytone | 1841 | 1840 | 1.54 | |
n-nonadecane | 1900 | 1900 | 1.63 | |
methyl-hexadecanoate | 1925 | 1924 | 2.01 | |
methyl-linoleate | 2093 | 2089 | 2.06 | |
n-heneicosane | 2100 | 2100 | 28.16 | |
phytol | 2106 | 2108 | 8.96 | |
84 (100), 43 (43), 41 (41), 57 (35) | 1.76 | |||
tributyl-citrate acetate | 2243 | 2246 | 1.31 | |
n-nonacosane | 2305 | 2300 | 6.62 | |
69 (100), 81 (57), 41 (40), 93 (39) | 1.84 | |||
231 (100), 232 (17), 246 (12), 121 (10) | 19.3 | |||
69 (100), 81 (82), 93 (49), 41 (48) | 1.49 | |||
57 (100), 82 (93), 43 (82), 96 (68) | 4.18 | |||
73 (100), 355 (66), 221 (52), 281 (48) | 2.03 | |||
n-pentacosane | 2500 | 2500 | 3.92 | |
59 (100), 58 (88), 43 (76), 71 (46) | 8.69 | |||
Cratageus sp. | n-tricosane | 2300 | 2305 | 46.23 |
n-pentacosane | 2500 | 2498 | 53.77 |
SFE-CO2 Extract | Inhibition of Growth of Fungal Mycelia (%) | ||||
---|---|---|---|---|---|
A. alternata | E. nigrum | F. poae | F. oxysporum | B. cinerea | |
German chamomile | 86.75 ± 1.67 * | 100.00 ± 0.00 * | 88.15 ± 7.17 * | 57.61 ± 18.19 * | 100.00 ± 0.00 * |
Sandy everlasting | 79.13 ± 2.84 * | 79.70 ± 2.67 * | 44.82 ± 11.06 * | 72.52 ± 3.37 * | 49.81 ± 8.36 |
Common hops | 72.32 ± 7.49 * | 81.18 ± 7.60 * | 21.46 ± 4.38 | 67.10 ± 2.72 * | 76.87 ± 14.47 * |
Common juniper | 38.89 ± 5.89 * | 54.79 ± 5.80 * | 46.04 ± 13.47 * | 9.30 ± 4.21 | 67.01 ± 7.85 |
Yarrow | 21.46 ± 4.67 * | 49.54 ± 13.44 * | 21.95 ± 5.05 * | 6.41 ± 3.23 | 100.00 ± 0.00 * |
Common marigold | 42.02 ± 3.67 * | 58.06 ± 12.28 | 11.19 ± 8.01 | 15.59 ± 4.18 * | 69.57 ± 6.59 * |
Black elderberry | −2.13 ± 2.09 | 11.36 ± 8.53 | 75.21 ± 2.70 | 18.66 ± 1.82 * | 81.13 ± 3.68 * |
Catnip | 36.01 ± 1.54 * | 41.23 ± 5.74 | 33.82 ± 2.84 * | 21.32 ± 10.25 | 87.57 ± 2.19 * |
St. John’s wort | 14.78 ± 6.28 * | 65.96 ± 15.67 * | 17.05 ± 8.14 * | 24.24 ± 7.72 * | −11.86 ± 3.47 * |
Dandelion | −4.55 ± 0.68 | 7.67 ± 2.95 | −1.39 ± 2.20 | 16.58 ± 5.65 | 44.76 ± 12.83 |
Hawthorn | 21.40 ± 8.43 | 7.06 ±6.53 | −9.65 ± 3.88 | −7.37 ± 5.31 | 79.43 ± 5.14 * |
Extract | Inhibition of Growth of Fungal Mycelia (%) | ||||
---|---|---|---|---|---|
Concentration (%) | A. alternata | E. nigrum | F. poae | F. oxysisporum | B. cinerea |
50 | 97.07 ± 1.10 | 100.00 ± 0.00 | 93.72 ± 5.68 | 77.79 ± 15.18 | 100.00 ± 0.00 |
25 | 94.34 ± 2.50 | 98.30 ± 2.94 | 92.35 ± 6.95 | 65.32 ± 5.46 | 100.00 ± 0.00 |
12.5 | 90.50 ± 5.81 | 96.03 ± 3.88 | 90.13 ± 7.50 | 68.52 ± 18.99 | 100.00 ± 0.00 |
6.25 | 86.36 ± 6.50 | 82.58 ± 10.91 | 80.34 ± 9.88 | 59.64 ± 13.64 | 75.62 ± 10.87 |
3.125 | 63.66 ± 5.44 | 61.84 ± 11.28 | 25.75 ± 12.38 | 14.76 ± 9.72 | 39.74 ± 18.89 |
Extract | Inhibition of Growth of Fungal Mycelia (%) | ||||
---|---|---|---|---|---|
Concentration (%) | A. alternata | E. nigrum | F. poae | F. oxysisporum | B. cinerea |
50 | 97.95 ± 3.55 | 85.41 ± 7.49 | 77.44 ± 13.26 | 89.79 ± 10.11 | 94.66 ± 5.06 |
25 | 87.33 ± 7.10 | 85.25 ± 2.84 | 64.73 ± 9.85 | 77.05 ± 4.47 | 85.78 ± 4.29 |
12.5 | 85.11 ± 7.87 | 83.10 ± 4.60 | 56.50 ± 11.19 | 63.37 ± 7.60 | 82.16 ± 9.08 |
6.25 | 82.48 ± 11.95 | 83.05 ± 2.96 | 51.96 ± 8.76 | 69.85 ± 6.91 | 81.38 ± 4.90 |
3.125 | 82.64 ± 10.68 | 86.23 ± 3.93 | 39.27 ± 11.73 | 54.13 ± 0.28 | 80.90 ± 7.56 |
Plant | Species | Family | Plant Part | Extraction Parameter | |
---|---|---|---|---|---|
Pressure (bar) | Temperature (°C) | ||||
Yarrow | Achillea millefolium | Asteraceae | Flowering herb | 250 | 45 |
Common marigold | Calendula officinalis | Asteraceae | Flower | 200 | 45 |
German chamomile | Chamomilla recutita | Asteraceae | Flower | 200 | 45 |
Sandy everlasting | Helichrysum arenarium | Asteraceae | Flower | 230 | 40 |
Common hops | Humulus lupulus | Cannabaceae | Flower | 300 | 40 |
Dandelion | Taraxacum officinale | Cichoriaceae | Flower | 250 | 50 |
Common juniper | Juniperus communis | Cupressaceae | Fruit | 250 | 45 |
St. John’s wort | Hypericum perforatum | Hypericaceae | Flowering herb | 230 | 40 |
Catnip | Nepeta cataria | Lamiaceae | Herb | 300 | 45 |
Hawthorn | Crataegus sp. | Rosaceae | Flower | 300 | 40 |
Black elderberry | Sambucus nigra | Sambucaceae | Flower | 300 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoss, K.; Kočevar Glavač, N.; Dolenc Koce, J.; Anžlovar, S. Supercritical CO2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi. Molecules 2022, 27, 1132. https://doi.org/10.3390/molecules27031132
Schoss K, Kočevar Glavač N, Dolenc Koce J, Anžlovar S. Supercritical CO2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi. Molecules. 2022; 27(3):1132. https://doi.org/10.3390/molecules27031132
Chicago/Turabian StyleSchoss, Katja, Nina Kočevar Glavač, Jasna Dolenc Koce, and Sabina Anžlovar. 2022. "Supercritical CO2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi" Molecules 27, no. 3: 1132. https://doi.org/10.3390/molecules27031132
APA StyleSchoss, K., Kočevar Glavač, N., Dolenc Koce, J., & Anžlovar, S. (2022). Supercritical CO2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi. Molecules, 27(3), 1132. https://doi.org/10.3390/molecules27031132