A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Homo- and Copolymers via ROP
2.3. Methods
2.3.1. Structural Analysis of Polymers
2.3.2. Gel Permeation Chromatography
2.3.3. Cyto- and Genotoxicity
2.3.4. Thermal Properties
3. Results and Discussion
3.1. Synthesis and Characterization of Polyesters
3.2. Structural Characterization of the Synthesized Polyester Carriers
3.3. Cyto- and Genotoxicity
3.4. The Possibility of Employing the Produced Polymers as Carriers of Therapeutic Drugs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Orchel, A.; Jelonek, K.; Kasperczyk, J.; Dobrzynski, P.; Marcinkowski, A.; Pamula, E.; Orchel, J.; Bielecki, I.; Kulczycka, A. The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility. BioMed Res. Int. 2013, 2013, e176946. [Google Scholar] [CrossRef] [PubMed]
- Żółtowska, K.; Sobczak, M.; Olędzka, E. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone. Molecules 2015, 20, 2816–2827. [Google Scholar] [CrossRef] [Green Version]
- Żółtowska, K.; Oledzka, E.; Kuras, M.; Skrzypczak, A.; Nałęcz-Jawecki, G.; Sobczak, M. Cyto- and genotoxicity evaluation of the biomedical polyesters obtained in the presence of new zinc catalytic systems. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 768–772. [Google Scholar] [CrossRef]
- Yang, P.B.; Davidson, M.G.; Edler, K.J.; Brown, S. Synthesis, Properties, and Applications of Bio-Based Cyclic Aliphatic Polyesters. Biomacromolecules 2021, 22, 3649–3667. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Weidner, S.M.; Scheliga, F. Synthesis of cyclic poly(l-lactide) catalyzed by Bismuth Salicylates—A combination of two drugs. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 2056–2063. [Google Scholar] [CrossRef] [Green Version]
- Kasiński, A.; Zielińska-Pisklak, M.; Kowalczyk, S.; Plichta, A.; Zgadzaj, A.; Oledzka, E.; Sobczak, M. Synthesis and Characterization of New Biodegradable Injectable Thermosensitive Smart Hydrogels for 5-Fluorouracil Delivery. Int. J. Mol. Sci. 2021, 22, 8330. [Google Scholar] [CrossRef]
- Kricheldorf, H.R. Syntheses of Biodegradable and Biocompatible Polymers by Means of Bismuth Catalysts. Chem. Rev. 2009, 109, 5579–5594. [Google Scholar] [CrossRef]
- Huang, B.-H.; Dutta, S.; Lin, C.-C. 1.39—Main-Group Catalysts for Lactide Polymerization. In Comprehensive Inorganic Chemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 1, pp. 1217–1249. [Google Scholar] [CrossRef]
- Rodilla, V.; Miles, A.T.; Jenner, W.; Hawksworth, G.M. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: Toxicity and metallothionein induction. Chem. Biol. Interact. 1998, 115, 71–83. [Google Scholar] [CrossRef]
- Kowalik, M.; Masternak, J.; Barszcz, B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. CMC 2019, 26, 729–759. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Rost, S. A-B-A-Triblock and multiblock copolyesters prepared from ε-caprolactone, glycolide and l-lactide by means of bismuth subsalicylate. Polymer 2005, 46, 3248–3256. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Serra, A. Polylactones. 6. Influence of various metal salts on the optical purity of poly(l-lactide). Polym. Bull. 1985, 14, 497–502. [Google Scholar] [CrossRef]
- Żółtowska, K.; Piotrowska, U.; Oledzka, E.; Sobczak, M. Efficient Diethylzinc/Gallic Acid and Diethylzinc/Gallic Acid Ester Catalytic Systems for the Ring-Opening Polymerization of rac-Lactide. Molecules 2015, 20, 21909–21923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasperczyk, J. Copolymerization of glycolide andε-caprolactone, 1. Analysis of the copolymer microstructure by means of 1H and 13C NMR spectroscopy. Macromol. Chem. Phys. 1999, 200, 903–910. [Google Scholar] [CrossRef]
- Kasperczyk, J.; Bero, M. Coordination polymerization of lactides, 2. Microstructure determination of poly[(l,l-lactide)-co-(ε-caprolactone)] with 13C nuclear magnetic resonance spectroscopy. Makromol. Chem. 1991, 192, 1777–1787. [Google Scholar] [CrossRef]
- Kasperczyk, J.; Bero, M. Coordination polymerization of lactides, 4. The role of transesterification in the copolymerization of l,l-lactide and ε-caprolactone. Makromol. Chem. 1993, 194, 913–925. [Google Scholar] [CrossRef]
- Bero, M.; Czapla, B.; Dobrzyński, P.; Janeczek, H.; Kasperczyk, J. Copolymerization of glycolide and ɛ-caprolactone, 2a Random copolymerization in the presence of tin octoate. Macromol. Chem. Phys. 1999, 200, 911–916. [Google Scholar] [CrossRef]
- Dobrzynski, P. Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis and chain-microstructure analysis of terpolymer obtained from l-lactide, glycolide, and ɛ-caprolactone initiated by zirconium(IV) acetylacetonate. J. Polym. Sci. A Polym. Chem. 2002, 40, 3129–3143. [Google Scholar] [CrossRef]
- International Organization for Standardization. EN ISO 10993-5:2009 Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity (ISO 10993-5:2009); Annex A Neutral Red Uptake (NRU) Cytotoxicity Test; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- International Organization for Standardization. ISO/FDIS 13829:2000 Water Quality-Determination of the Genotoxocity of Water and Waste Water Using the Umu-Test; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Sarasua, J.-R.; Prud’homme, R.E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and Melting Behavior of Polylactides. Macromolecules 1998, 31, 3895–3905. [Google Scholar] [CrossRef]
- Tiptipakorn, S.; Keungputpong, N.; Phothiphiphit, S.; Rimdusit, S. Effects of polycaprolactone molecular weights on thermal and mechanical properties of polybenzoxazine. J. Appl. Polym. Sci. 2015, 132, 41915. [Google Scholar] [CrossRef]
- Magazzini, L.; Grilli, S.; Fenni, S.E.; Donetti, A.; Cavallo, D.; Monticelli, O. The Blending of Poly(glycolic acid) with Polycaprolactone and Poly(l-lactide): Promising Combinations. Polymers 2021, 13, 2780. [Google Scholar] [CrossRef]
- Cieśla, K.; Watzeels, N.; Rahier, H. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films. Radiat. Phys. Chem. 2014, 99, 18–22. [Google Scholar] [CrossRef]
- Rzepna, M.; Sadło, J.; Przybytniak, G.; Iuliano, A. Impact of electron beam treatment on copolymers of polylactide and poly(trimethylene carbonate) in an air atmosphere. J. Appl. Polym. Sci. 2021, 138, 50184. [Google Scholar] [CrossRef]
- Plichta, A.; Kowalczyk, S.; Olędzka, E.; Sobczak, M.; Strawski, M. Effect of structural factors on release profiles of camptothecin from block copolymer conjugates with high load of drug. Int. J. Pharm. 2018, 538, 231–242. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, Y.; Sha, L. Study of the relationship between characteristics of aramid fibrids and mechanical property of aramid paper using DSC. e-Polymers 2014, 14, 139–144. [Google Scholar] [CrossRef]
- Derakhshandeh, M.; Noroozi, N.; Schafer, L.L.; Vlassopoulos, D.; Hatzikiriakos, S.G. Dynamics of partially miscible polylactide-poly(ε-caprolactone) blends in the presence of cold crystallization. Rheol. Acta 2016, 55, 657–671. [Google Scholar] [CrossRef]
- Bliley, J.M.; Marra, K.G. Chapter 11—Polymeric Biomaterials as Tissue Scaffolds. In Stem Cell Biology and Tissue Engineering in Dental Sciences; Vishwakarma, A., Sharpe, P., Shi, S., Ramalingam, M., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 149–161. [Google Scholar] [CrossRef]
- Fernández, J.; Etxeberria, A.; Sarasua, J.-R. Synthesis, structure and properties of poly(l-lactide-co-ɛ-caprolactone) statistical copolymers. J. Mech. Behav. Biomed. Mater. 2012, 9, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Tabuani, D.; Abbate, C.; Arena, M.; Rizzarelli, P. Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. Eur. Polym. J. 2011, 47, 139–152. [Google Scholar] [CrossRef]
- Burg, K. Poly(α-ester)s’. In Natural and Synthetic Biomedical Polymers; Kumbar, S.G., Laurencin, C.T., Deng, M., Eds.; Elsevier: Oxford, UK, 2014; pp. 115–121. [Google Scholar] [CrossRef]
- D’Auria, I.; Lamberti, M.; Rescigno, R.; Venditto, V.; Mazzeo, M. Copolymerization of l-Lactide and ε-Caprolactone promoted by zinc complexes with phosphorus based ligands. Heliyon 2021, 7, e07630. [Google Scholar] [CrossRef]
- Pamula, E.; Dryzek, E. Structural Changes in Surface-Modified Polymers for Medical Applications. Acta Phys. Pol. A 2008, 113, 1485–1493. [Google Scholar] [CrossRef]
- Turek, A.; Stoklosa, K.; Borecka, A.; Paul-Samojedny, M.; Kaczmarczyk, B.; Marcinkowski, A.; Kasperczyk, J. Designing Biodegradable Wafers Based on Poly(l-lactide-co-glycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme. Pharm. Res. 2020, 37, 90. [Google Scholar] [CrossRef]
- Ahmed, J.; Varshney, S.K. Polylactides—Chemistry, Properties and Green Packaging Technology: A Review. Int. J. Food Prop. 2011, 14, 37–58. [Google Scholar] [CrossRef]
- Liu, C.B.; Gong, C.Y.; Huang, M.J.; Wang, J.W.; Pan, Y.F.; Zhang, Y.D.; Li, G.Z.; Gou, M.L.; Wang, K.; Tu, M.J.; et al. Thermoreversible gel–sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J. Biomed. Mater. Res. 2008, 84B, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Deng, X.; Hao, J. Thermogelling hydrogels of poly(ɛ-caprolactone-co-d,l-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-d,l-lactide) and poly(ɛ-caprolactone-co-l-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-l-lactide) aqueous solutions. J. Polym. Sci. A Polym. Chem. 2007, 45, 4091–4099. [Google Scholar] [CrossRef]
- Efthimiadou, E.K.; Theodosiou, M.; Toniolo, G.; Abu-Thabit, N.Y. Stimuli-responsive biopolymer nanocarriers for drug delivery applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Makhlouf, A.S.H., Abu-Thabit, N.Y., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 405–432. [Google Scholar] [CrossRef]
- Żółtowska, K.; Piotrowska, U.; Oledzka, E.; Luchowska, U.; Sobczak, M.; Bocho-Janiszewska, A. Development of biodegradable polyesters with various microstructures for highly controlled release of epirubicin and cyclophosphamide. Eur. J. Pharm. Sci. 2017, 96, 440–448. [Google Scholar] [CrossRef]
- Xu, Y.; Kim, C.-S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1692–1716. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Bornhorst, K.; Hachmann-Thiessen, H. Bismuth(III) n-Hexanoate and Tin(II) 2-Ethylhexanoate Initiated Copolymerizations of ε-Caprolactone and l -Lactide. Macromolecules 2005, 38, 5017–5024. [Google Scholar] [CrossRef]
Sample | Molar Ratio | Temp. (°C) | Yield (%) | Convia (%) | Mnb (kDa) | Mnc (kDa) | Đc |
---|---|---|---|---|---|---|---|
PLA poly(l-lactide) | L-LA = 1.0 | 110 | 73 | 100 | 11.7 | 15.5 | 1.23 |
L-LA = 1.0 | 130 | 85 | 100 | 13.9 | 15.3 | 1.64 | |
PCL poly(ε-caprolactone) | CL = 1.0 | 110 | 50 | 94 | 11.4 | 8.8 | 1.67 |
CL = 1.0 | 130 | 68 | 100 | 12.2 | 6.9 | 2.33 | |
PLACL poly(l-lactide-co-ε-caprolactone) | L-LA = 0.45 CL = 0.55 | 110 | 64 | 99 (L-LA) 90 (CL) | 13.6 | 7.3 | 2.50 |
L-LA = 0.50 CL = 0.50 | 130 | 56 | 100 (L-LA) 100 (CL) | 10.2 | 9.7 | 1.87 | |
CLGA poly(ε-caprolactone-co-glycolide) | CL = 0.84 GG = 0.16 | 110 | 60 | 100 (Gly) 99 (CL) | 11.5 | 6.8 | 2.59 |
CL = 0.86 GG = 0.14 | 130 | 73 | 100 (Gly) 100 (CL) | 10.3 | 11.8 | 1.66 |
Sample | Monomer/ Catalyst Molar Ratio | Molar Ratio | Yield (%) | Convia (%) | Mnb (kDa) | Mnc (kDa) | Đ c |
---|---|---|---|---|---|---|---|
PLA | 500 | L-LA = 1.0 | 90 | 98 | 12.1 | 12.3 | 1.29 |
PCL | 400 | CL = 1.0 | 70 | 100 | 11.7 | 10.8 | 1.59 |
PLACL | 300 | L-LA = 0.52 CL = 0.48 | 79 | 99 (L-LA) 99 (CL) | 12.6 | 14.9 | 1.55 |
PCLGA | 1000 | CL = 0.85 GG = 0.15 | 78 | 100 (Gly) 98 (CL) | 11.8 | 10.4 | 1.75 |
Sample | Δm150 (%) | Δmt (%) | T5% (°C) | T50% (°C) | T95% (°C) | Tmax (°C) | Tf (°C) |
---|---|---|---|---|---|---|---|
PLA | 0.02 | 98.77 | 304.5 | 371.2 | 394.6 | 377.9 | 414.9 |
PCL | 0.01 | 100.00 | 351.4 | 408.8 | 434.4 | 413.3 | 464.5 |
PLACL | 0.62 | 99.03 | 339.3 | 389.6 | 424.9 | 393.3 | 464.0 |
PCLGA | 0.58 | 99.50 | 365.4 | 406.9 | 433.8 | 409.8 | 475.6 |
Sample | Tg (°C) | Tc (°C) | Tona (°C) | Tm (°C) | Tonb (°C) | ΔHc (J g−1) | ΔHm (J g−1) | Xc (%) |
---|---|---|---|---|---|---|---|---|
PLA | 54.4 | 104.6 | 102.1 | 158.9 | 156.9 | 15.5 | 51.4 | 33.9 |
PCL | −62.9 | nd | nd | 60.8 | 55.7 | nd | 128.5 | 98.1 |
PLACL | −12.3 | nd | nd | nd | nd | nd | nd | 0.0 c |
PCLGA | −56.2 | −23.1 | −29.1 | 20.0 28.3 | 13.8 | 54.7 | 76.5 | 15.1 |
Signal | δ [ppm] | Sequence |
---|---|---|
a | 4.79 | G G G |
b | 4.73 | Cap G G |
c | 4.68 | G G Cap |
d | 4.64 | Cap G G Cap |
e | 4.60 | Cap G Cap |
f | 4.16 | G Cap |
g | 4.06 | Cap Cap |
Signal | δ [ppm] | Sequence |
---|---|---|
a | 173.59 | Cap Cap Cap |
b | 173.45 | Cap L Cap Cap |
c | 173.43 | L L Cap Cap |
d | 172.86 | Cap Cap L L |
e | 172.79 | L L Cap L L |
f | 172.73 | Cap L Cap L Cap |
g | 172.71 | L L Cap L Cap |
h | 170.82 | Cap L Cap |
i | 170.33 | Cap L L L Cap + L L L L Cap |
j | 170.26 | Cap L L Cap |
k | 170.21 | Cap L L Cap |
l | 170.09 | Cap L L L Cap |
m | 170.06 | Cap L L L L |
n | 160.73 | L L L L Cap |
o | 169.66 | Cap L L L Cap |
p | 169.57 | L L L L L + Cap L L L L |
Kind of Copolymer/Molar Ratio | The Average Length of the Blocks | TII | R |
---|---|---|---|
poly(l-lactide-co-ε-caprolactone) PLACL/50:50 | lLe = 2.80 lCLe = 1.41 | 0.70 | 1.07 |
poly(ε-caprolactone-co-glycolide) PCLGA/85:15 | lGe = 1.02 lCLe = 2.82 | 0.96 | 1.33 |
Sample | Genotoxicity Assay | Cytotoxicity Assay | |
---|---|---|---|
IR a ± SD | IR b ± SD | Cells Viability ± SD [%] | |
PLA | 0.96 ± 0.02 | 0.75 ± 0.11 | 102 ± 2 |
PCL | 0.94 ± 0.11 | 0.79 ± 0.08 | 100 ± 1 |
PLACL | 0.87 ± 0.03 | 0.82 ± 0.14 | 108 ± 6 |
PCLGA | 1.04 ± 0.11 | 0.78 ± 0.14 | 97 ± 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domańska, I.M.; Zgadzaj, A.; Kowalczyk, S.; Zalewska, A.; Oledzka, E.; Cieśla, K.; Plichta, A.; Sobczak, M. A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst. Molecules 2022, 27, 1139. https://doi.org/10.3390/molecules27031139
Domańska IM, Zgadzaj A, Kowalczyk S, Zalewska A, Oledzka E, Cieśla K, Plichta A, Sobczak M. A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst. Molecules. 2022; 27(3):1139. https://doi.org/10.3390/molecules27031139
Chicago/Turabian StyleDomańska, Izabela M., Anna Zgadzaj, Sebastian Kowalczyk, Aldona Zalewska, Ewa Oledzka, Krystyna Cieśla, Andrzej Plichta, and Marcin Sobczak. 2022. "A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst" Molecules 27, no. 3: 1139. https://doi.org/10.3390/molecules27031139
APA StyleDomańska, I. M., Zgadzaj, A., Kowalczyk, S., Zalewska, A., Oledzka, E., Cieśla, K., Plichta, A., & Sobczak, M. (2022). A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst. Molecules, 27(3), 1139. https://doi.org/10.3390/molecules27031139