Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests
Abstract
:1. Introduction
2. Results and Discussions
2.1. Chemical Composition of Essential Oil
2.2. Toxicity Bioassays
3. Materials and Methods
3.1. Plant Materials and Essential Oils Extraction
3.2. GC×GC-MS Analyses
3.3. Insects
3.4. Toxicity Bioassays
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hasan, M.M.; Phillips, T.W. Mass-rearing of the redlegged ham beetle, Necrobia rufipes De Geer (Coleoptera: Cleridae) for laboratory research. J. Stored Prod. Res. 2010, 46, 38–42. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Semeao, A.A.; Campbell, J.F.; Hutchinson, J.S.; Whitworth, R.J.; Sloderbeck, P.E. Spatio-temporal distribution of stored-product insects around food processing and storage facilities. Agric. Ecosyst. Environ. 2013, 165, 151–162. [Google Scholar] [CrossRef]
- Nayak, M.K.; Daglish, G.J. Importance of stored product insects. In Recent Advances in Stored Product Protection; Springer: Berlin, Heidelberg, 2018; pp. 1–17. [Google Scholar] [CrossRef]
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 2021, 12, 590. [Google Scholar] [CrossRef]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.). J. Stored Prod. Res. 2020, 87, 101611. [Google Scholar] [CrossRef]
- Han, W.; Tian, Y.; Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 2018, 192, 59–65. [Google Scholar] [CrossRef]
- Badr, A.M. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environ. Sci. Pollut. Res. 2020, 27, 21. [Google Scholar] [CrossRef] [PubMed]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 6906105, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Skourti, A.; Karagianni, E.S.; Nika, E.P.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Cianfaglione, K.; et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020, 139, 111255. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century-fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tlak Gajger, I.; Dar, S.A. Plant allelochemicals as sources of insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Régnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oil in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2021, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Hummelbrunner, L.A.; Isman, M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep.; Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Schneidmiller, R.G.; Hoover, D.R. Essential oils and their compositions as spatial repellents for pestiferous social wasps. Pest Manag. Sci. 2013, 69, 542–552. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Arora, D.; Rani, A.; Sharma, A. A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn. Rev. 2013, 7, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Ohle, H. Beiträge zur Taxonomie der Gattung Calendula II. Taxonomische revision der südeuropäischen perennierende Calendula-Sippen. Feddes Rep. 1974, 85, 245–283. [Google Scholar] [CrossRef]
- Conti, F.; Abbate, G.; Alessandrini, A.; Blasi, C. An Annotated Checklist of the Italian Vascular Flora; Palombi: Rome, Italy, 2005; p. 278. [Google Scholar]
- Pignatti, S. Flora d’Italia, 2nd ed.; Edagricole: Bologna, Italy, 2018; Volume 3, pp. 618–621. [Google Scholar]
- Spinozzi, E.; Maggi, F.; Bonacucina, G.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Canale, A.; Romano, D.; Desneux, N.; Wilke, A.B.B.; et al. Apiaceae essential oils and their constituents as insecticides against mosquitoes-A review. Ind. Crops Prod. 2021, 171, 113892. [Google Scholar] [CrossRef]
- Badalamenti, N.; Ilardi, V.; Bruno, M.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Maggi, F.; Canale, A.; Benelli, G. Chemical composition and broad-spectrum insecticidal activity of the flower essential oil from an ancient sicilian food plant, Ridolfia segetum. Agriculture 2021, 11, 304. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Canale, A.; Benelli, G. Promising insecticidal efficacy of the essential oils from the halophyte Echinophora spinosa (Apiaceae) growing in Corsica Island, France. Environ. Sci. Pollut. Res. 2020, 27, 14454–14464. [Google Scholar] [CrossRef]
- Tavassoli, M.; Shayeghi, M.; Abai, M.R.; Vatandoost, H.; Khoobdel, M.; Salari, M.; Ghaderi, A.; Rafi, F. Repellency effects of essential oils of myrtle (Myrtus communis), Marigold (Calendula officinalis) compared with DEET against Anopheles stephensi on human volunteers. Iran. J. Arthropod-Borne Dis. 2011, 5, 10. [Google Scholar]
- Ullah, R.; Ibrar, M.; Shah, S.; Hameed, I. Phytotoxic, cytotoxic and insecticidal activities of Calendula arvensis L. J. Biotechnol. Pharm. Res. 2012, 3, 104–111. [Google Scholar]
- Trematerra, P.; Fontana, F.; Mancini, M.; Sciarretta, A. Influence of intact and damaged cereal kernels on the behaviour of rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 1999, 35, 265–276. [Google Scholar] [CrossRef]
- Arthur, F.H.; Ondier, G.O.; Siebenmorgen, T.J. Impact of Rhyzopertha dominica (F.) on quality parameters of milled rice. J. Stored Prod. Res. 2012, 48, 137–142. [Google Scholar] [CrossRef]
- Hasan, M.M.; Athanassiou, C.G.; Schilling, M.W.; Phillips, T.W. Biology and management of the red-legged ham beetle, Necrobia rufipes DeGeer (Coleoptera: Cleridae). J. Stored Prod. Res. 2020, 88, 101635. [Google Scholar] [CrossRef]
- Guarino, S.; Basile, S.; Caimi, M.; Carratello, A.; Manachini, B.; Peri, E. Insect pests of the Herbarium of the Palermo botanical garden and evaluation of semiochemicals for the control of the key pest Lasioderma serricorne F. (Coleoptera: Anobiidae). J. Cult. Herit. 2020, 43, 37–44. [Google Scholar] [CrossRef]
- Guarino, S.; Basile, S.; Arif, M.A.; Manachini, B.; Peri, E. Odorants of Capsicum spp. dried fruits as candidate attractants for Lasioderma serricorne F. (Coleoptera: Anobiidae). Insects 2021, 12, 61. [Google Scholar] [CrossRef]
- Edde, P.A. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012, 48, 1–18. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Anany, M.S.; Abdelgaleil, S.A. Enhancement the efficacy of spinosad for the control Sitophilus oryzae by combined application with diatomaceous earth and Trichoderma harzianum. J. Stored Prod. Res. 2020, 88, 101663. [Google Scholar] [CrossRef]
- Edde, P.A. Biology, ecology, and control of Lasioderma serricorne (F.) (Coleoptera: Anobiidae): A review. J. Econ. Entomol. 2019, 112, 1011–1031. [Google Scholar] [CrossRef] [PubMed]
- Savoldelli, S.; Jucker, C.; Peri, E.; Arif, M.A.; Guarino, S. Necrobia rufipes (De Geer) infestation in pet food packaging and setup of a monitoring trap. Insects 2020, 11, 623. [Google Scholar] [CrossRef] [PubMed]
- Golebiowska, Z. The feeding and fecundity of Sitophilus granarius (L.), Sitophilus orvzae (L.) and Rhyzopertha dominica (F.) in wheat grain. J. Stored Prod. Res. 1969, 5, 143–155. [Google Scholar] [CrossRef]
- Padın, S.; Dal Bello, G.; Fabrizio, M. Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. J. Stored Prod. Res. 2002, 38, 69–74. [Google Scholar] [CrossRef]
- Paolini, J.; Barboni, T.; Desjobert, J.M.; Djabou, N.; Muselli, A.; Costa, J. Chemical composition, intraspecies variation and seasonal variation in essential oils of Calendula arvensis L. Biochem. Syst. Ecol. 2010, 38, 865–874. [Google Scholar] [CrossRef]
- Ak, G.; Zengin, G.; Ceylan, R.; Fawzi Mahomoodally, M.; Jugreet, S.; Mollica, A.; Stefanucci, A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr. J. 2021, 36, 554–563. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Nesterovitsch, J.; Maidla, K. Analysis of carotenoids, flavonoids and essential oil of Calendula officinalis cultivars growing in Estonia. Nat. Prod. Commun. 2016, 11, 1157–1160. [Google Scholar] [CrossRef] [Green Version]
- Okoh, O.O.; Sadimenko, A.A.; Asekun, O.T.; Afolayan, A.J. The effects of drying on the chemical components of essential oils of Calendula officinalis L. Afr. J. Biotechnol. 2008, 7, 1500–1502. [Google Scholar]
- Chalchat, J.C.; Garry, R.P.; Michet, A. Chemical composition of essential oil of Calendula officinalis L. Flavour Fragr. J. 1991, 6, 189–192. [Google Scholar] [CrossRef]
- Tosun, G.; Yayli, B.; Arslan, T.; Yasar, A.; Alpay Karaoglu, S.; Yayl, N. Comparative essential oil analysis of Calendula arvensis L. extracted by hydrodistillation and microwave distillation and antimicrobial activities. Asian J. Chem. 2012, 24, 1955–1958. [Google Scholar]
- Hussein, K.T. Suppressive effects of Calendula micrantha essential oil and gibberelic acid (PGR) on repro ductive potential of the Mediterranean fruit fly Ceratitis capitata Wied. (Diptera: Tephritidae). J. Egypt. Soc. Parasitol. 2005, 35, 365–377. [Google Scholar]
- Ourabia, I.; Réda, D.; Samira, T.; Nasserdine, S.; Djamila, F.D. Determination of essential oil composition, phenolic content, and antioxidant, antibacterial and antifungal activities of marigold (Calendula officinalis L.) cultivated in Algeria. Carpathian J. Food Sci. Technol. 2019, 11, 93–110. [Google Scholar] [CrossRef]
- Gazim, Z.C.; Rezende, C.M.; Fraga, S.R.; Filho, B.P.D.; Nakamura, C.V.; Cortez, D.A.G. Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures. Braz. J. Pharm. Sci. 2008, 44, 391–395. [Google Scholar] [CrossRef] [Green Version]
- El-Seedi, H.R.; Azeem, M.; Khalil, N.S.; Sakr, H.H.; Khalifa, S.A.M.; Awang, K.; Saeed, A.; Farag, M.A.; Al Ajmi, M.F.; Pålsson, K.; et al. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2017, 73, 139–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, K.A.; El-Ghora, A.K. The effect of presowing low temperature on essential oil content and chemical composition of Calendula officinalis. J. Essent. Oil-Bear. Plants 2006, 9, 32–41. [Google Scholar] [CrossRef]
- Sahingil, D. GC/MS-Olfactometric Characterization of the volatile compounds, determination antimicrobial and antioxidant activity of essential oil from flowers of Calendula (Calendula officinalis L.). J. Essent. Oil-Bear. Plants 2019, 22, 1–10. [Google Scholar] [CrossRef]
- Tirillini, B.; Pagiotti, R.; Angelini, P.; Pintore, G.; Chessa, M.; Menghini, L. Chemical composition and fungicidal activity of the essential oil of Laserpitium garganicum from Italy. Chem. Nat. Compd. 2009, 45, 103–105. [Google Scholar] [CrossRef]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Matejić, J.; Stankov Jovanović, V.; Kocić, B.; Čomić, L. Comparative study of composition, antioxidant, and antimicrobial activities of essential oils of selected aromatic plants from Balkan Peninsula. Planta Med. 2016, 82, 650–661. [Google Scholar] [CrossRef]
- Popovic, V.B.; Petrovic, S.D.; Milenkovic, M.T.; Drobac, M.M.; Couladis, M.A.; Niketic, M.S. Composition and antimicrobial activity of the essential oils of Laserpitium latifolium L. and L. ochridanum Micevski (Apiaceae). Chem. Biodivers. 2015, 12, 170–177. [Google Scholar] [CrossRef]
- Evergetis, E.; Michaelakis, A.; Haroutounian, S.A. Essential Oils of Umbelliferae Family Taxa as Potent Agents for Mosquito Control. In Integrated Pest Management and Pest Control; Larramendy, M.L., Soloneski, L., Eds.; InTech–OpenAccess Publisher: Rijeka, Croatia, 2012; pp. 613–637. Available online: https://www.intechopen.com/books/874 (accessed on 8 December 2021).
- Petrović, S.; Pavlović, M.; Pavlović, V.; Tzakou, O.; Milenković, M.; Vučićević, D.; Niketić, M. Composition and antimicrobial activity of essential oils from flower and leaf of Laserpitium zernyi Hayek. J. Essent. Oil Res. 2009, 21, 467–470. [Google Scholar] [CrossRef]
- Dastan, D.; Salehi, P.; Maroofi, H. Chemical composition, antioxidant, and antimicrobial activities on Laserpitium carduchorum Hedge & Lamond essential oil and extracts during various growing stages. Chem. Biodivers. 2016, 13, 1397–1403. [Google Scholar] [CrossRef]
- Mitic, V.; Stankov-Jovanoviæ, V.; Djordjevic, A.; Ilic, M.; Simonovic, S.; Stojanovic, G. Chemical composition of the essential oil of Laserpitium latifolium from Serbia. Nat. Prod. Commun. 2015, 10, 649–651. [Google Scholar] [CrossRef] [Green Version]
- Baser, K.H.C.; Duman, H. Composition of the essential oil of Laserpitium petrophilum Boiss. et Heldr. J. Essent. Oil Res. 1997, 9, 707–708. [Google Scholar] [CrossRef]
- Maggi, F.; Bartolucci, F.; Conti, F. Chemical variability in volatile composition between several Italian accessions of Siler montanum (S. montanum subsp. montanum and S. montanum subsp. siculum). Biochem. System. Ecol. 2017, 70, 14–21. [Google Scholar] [CrossRef]
- Jankowska, B.; Wilk, A. Effect of pot marigold (Calendula officinalis L.) and cypress spurge (Euphorbia cyparissias L.) plant water extracts on the occurrence of pest insects on white cabbage. Folia Hortic. 2011, 23, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A.D. Toxicity and neurophysiological impacts of plant essential oil components on bed bugs (Cimicidae: Hemiptera). Sci. Rep. 2019, 9, 3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, D.M.; Rocha, J.F.; De Almeida, T.S.; Mota, E.F. Essential oils of Caatinga plants with deletary action for Aedes Aegypti: A review. S. Afr. J. 2021, 143, 69–78. [Google Scholar] [CrossRef]
- Gross, A.D.; Temeyer, K.B.; Day, T.A.; Pérez de León, A.A.; Kimber, M.J.; Coats, J.R. Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target. Chem. Biol. Interact. 2017, 263, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, R.; Herrera, J.M.; Lucini, E.I.; Zunino, M.P.; Pizzolitto, R.P.; Dambolena, J.S.; Zygadlo, J.A. Aceite esencial de Tagetes filifolia contra Tribolium castaneum y su relación con la actividad acetilcolinesterasa y peroxidación de lípidos. AgriScientia 2015, 32, 113–121. [Google Scholar] [CrossRef]
- Castillo-Morales, R.M.; Carreño Otero, A.L.; Mendez-Sanchez, S.C.; da Silva, M.A.N.; Stashenko, E.E.; Duque, J.E. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 221, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Guarino, S.; Abbate, L.; Mercati, F.; Fatta Del Bosco, S.; Motisi, A.; Arif, M.A.; Cencetti, G.; Palagano, E.; Michelozzi, M. Citrus varieties with different tolerance grades to Tristeza virus show dissimilar volatile terpene profiles. Agronomy 2021, 11, 1120. [Google Scholar] [CrossRef]
- Gu, H.J.; Cheng, S.S.; Huang, C.G.; Chen, W.J.; Chang, S.T. Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitol. Res. 2009, 105, 1455–1458. [Google Scholar] [CrossRef]
- Tamdem, G.M.; Ntonga, P.A.; Tsila, H.G.; Tonga, C.; Nkouandou, P.M.; Djeukam, C.A.; Ngaha, R.; Hondt, O.E.N.; Mbongue, R.; Soh, W.T.; et al. Biological activities of the essential oils of Cupressus macrocarpa, Lantana camara and Psidium littorale against Plasmodium falciparum Welch, 1897 and Anopheles gambiae Giles, 1902. J. Entomol. Zool. Stud. 2020, 8, 854–862. [Google Scholar] [CrossRef]
- Espinoza, J.; Urzúa, A.; Bandele, L.; Quiroz, A.; Echeverría, J.; González-Teuber, M. Antifeedant effects of essential oil, extracts, and isolated sesquiterpenes from Pilgerodendron uviferum (D. Don) florin heartwood on red clover borer Hylastinus obscurus (Coleoptera: Curculionidae). Molecules 2018, 23, 1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.J.; Yang, K.; You, C.X.; Wang, C.F.; Geng, Z.F.; Su, Y.; Wang, Y.; Du, S.S.; Deng, Z.W. Contact toxicity and repellency of the essential oil from Mentha haplocalyx Briq. against Lasioderma serricorne. Chem. Biodivers. 2015, 12, 832–839. [Google Scholar] [CrossRef]
- Teke, M.A.; Mutlu, Ç. Insecticidal and behavioral effects of some plant essential oils against Sitophilus granarius L. and Tribolium castaneum (Herbst). J. Plant Dis. Prot. 2021, 128, 109–119. [Google Scholar] [CrossRef]
- Bachrouch, O.; Jemâa, J.B.; Talou, T.; Marzouk, B.; Abderraba, M. Fumigant toxicity of Pistacia lentiscus essential oil against Tribolium castaneum and Lasioderma serricorne. Bull. Insectology 2010, 63, 129–135. [Google Scholar]
No | t1R (min.s) | t2R (min.s) | Compounds | LRIexp a | LRIlit b | Content (%) c | Ident. d |
---|---|---|---|---|---|---|---|
1 | 17.08 | 1.79 | β-Pinene | 977 | 981 | t | 1, 2, 3 |
2 | 17.24 | 1.63 | 2-Pentylfuran | 991 | 993 | t | 1, 2 |
3 | 18.33 | 0.61 | p-Cymene | 1026 | 1028 | t | 1, 2, 3 |
4 | 18.60 | 1.72 | Limonene | 1031 | 1028 | t | 1, 2, 3 |
5 | 18.87 | 1.32 | Benzeneacetaldehyde | 1046 | 1045 | 0.08 ± 0.001 | 1, 2, 3 |
6 | 19.00 | 1.41 | β-Terpinene | 1048 | 1056 | t | 1, 2, 3 |
7 | 20.32 | 1.83 | Nonanal | 1106 | 1109 | t | 1, 2 |
8 | 25.11 | 1.86 | Decanal | 1206 | 1210 | t | 1, 2, 3 |
9 | 27.13 | 1.59 | α-Cubebene | 1359 | 1365 | 1.33 ± 0.02 | 1, 2 |
10 | 27.64 | 1.56 | α-Copaene | 1387 | 1381 | 0.12 ± 0.004 | 1, 2 |
11 | 27.88 | 1.63 | β-Cubebene | 1391 | 1397 | 1.15 ± 0.03 | 1, 2 |
12 | 28.85 | 1.53 | cis-Muurola-3,5-diene | 1432 | 1431 | 1.20 ± 0.02 | 1, 2 |
13 | 31.83 | 1.37 | γ-Muurolene | 1479 | 1480 | 0.39 ± 0.008 | 1, 2 |
14 | 32.04 | 1.03 | 4-epi-Cubebol | 1491 | 1497 | 23.11 ± 0.74 | 1, 2 |
15 | 34.24 | 1.28 | Cubebol | 1518 | 1525 | 35.84 ± 0.69 | 1, 2 |
16 | 34.26 | 1.71 | δ-Cadinene | 1522 | 1523 | 0.71 ± 0.02 | 1, 2 |
17 | 34.32 | 1.34 | α-Calacorene | 1525 | 1526 | 0.80 ± 0.007 | 1, 2 |
18 | 35.21 | 0.89 | Calamenene | 1528 | 1531 | 1.02 ± 0.02 | 1, 2 |
19 | 35.91 | 1.13 | Cadala-1(10),3,8-triene | 1544 | 1552 | 1.43 ± 0.07 | 1, 2 |
20 | 36.23 | 0.81 | Ledol | 1549 | 1553 | 0.70 ± 0.010 | 1, 2, 3 |
21 | 40.75 | 1.27 | Cubenol | 1647 | 1648 | 12.59 ± 0.39 | 1, 2 |
22 | 40.84 | 1.03 | τ-Muurolol | 1651 | 1654 | 13.15 ± 0.44 | 1, 2 |
23 | 40.91 | 1.42 | Ledene oxide-(II) | 1653 | 1655 | 2.19 ± 0.08 | 1, 2 |
24 | 57.83 | 0.84 | Hexahydrofarnesyl acetone | 1842 | 1845 | 0.59 ± 0.010 | 1, 2 |
Monoterpene Hydrocarbons | t | ||||||
Sesquiterpene Hydrocarbons | 8.150 ± 0.199 | ||||||
Oxygenated Sesquiterpenes | 88.17 ± 2.360 | ||||||
Others | 0.090 ± 0.002 | ||||||
Total | 96.410 ± 2.561 |
No | t1R (min.s) | t2R (min.s) | Compounds | LRIexp a | LRIlit b | Content (%) c | Ident. d |
---|---|---|---|---|---|---|---|
1 | 12.59 | 0.68 | 3-Hexanone | 782 | 775 | t | 1, 2 |
2 | 13.05 | 0.94 | 2-Hexanone | 798 | 791 | t | 1, 2, 3 |
3 | 14.91 | 1.30 | cis-4-Nonene | 891 | 885 | 0.07 ± 0.002 | 1, 2 |
4 | 16.19 | 1.46 | α-Pinene | 937 | 936 | t | 1, 2, 3 |
5 | 16.72 | 1.56 | Camphene | 959 | 954 | 0.93 ± 0.010 | 1, 2, 3 |
6 | 17.02 | 1.77 | β-Pinene | 977 | 981 | 3.14 ± 0.15 | 1, 2, 3 |
7 | 17.29 | 1.67 | 2-Butyltetrahydro-furan | 999 | 986 | t | 1, 2 |
8 | 17.50 | 1.72 | 2-Carene | 1001 | 1003 | 2.07 ± 0.04 | 1, 2 |
9 | 17.62 | 1.51 | α-Phellandrene | 1003 | 1005 | 0.38 ± 0.010 | 1, 2, 3 |
10 | 17.91 | 1.15 | Sylvestrene | 1014 | 1021 | 0.11 ± 0.004 | 1, 2 |
11 | 17.96 | 1.62 | 3-Carene | 1015 | 1010 | 0.23 ± 0.001 | 1, 2 |
12 | 18.23 | 1.82 | α-Terpinene | 1019 | 1017 | 3.57 ± 0.11 | 1, 2, 3 |
13 | 18.37 | 1.93 | 4-Carene | 1022 | 1018 | 0.82 ± 0.010 | 1, 2 |
14 | 18.40 | 0.63 | o-Cymene | 1023 | 1022 | 0.55 ± 0.02 | 1, 2 |
15 | 18.56 | 1.72 | β-Phellandrene | 1029 | 1028 | 41.98 ± 0.93 | 1, 2, 3 |
16 | 18.60 | 1.72 | Limonene | 1031 | 1028 | 23.76 ± 0.78 | 1, 2, 3 |
17 | 19.00 | 1.41 | β-Terpinene | 1048 | 1056 | 11.83 ± 0.08 | 1, 2, 3 |
18 | 19.73 | 2.03 | α-Terpinolene | 1082 | 1087 | 0.73 ± 0.02 | 1, 2 |
19 | 19.99 | 1.62 | 2,4-Dimethylstyrene | 1089 | - | 0.09 ± 0.003 | 1, 2 |
20 | 25.15 | 1.77 | α-Terpineol | 1207 | 1199 | 0.19 ± 0.002 | 1, 2, 3 |
21 | 26.54 | 2.14 | 4-Terpinenyl acetate | 1291 | 1282 | 5.28 ± 0.24 | 1, 2 |
22 | 27.28 | 1.62 | β-Bourbonene | 1368 | 1385 | t | 1, 2 |
23 | 27.31 | 1.82 | α-Ylangene | 1369 | 1373 | t | 1, 2 |
24 | 27.64 | 1.56 | α-Copaene | 1387 | 1381 | 0.15 ± 0.003 | 1, 2 |
25 | 27.93 | 1.98 | 1,7-Dimethylnaphthalene | 1396 | 1410 | 0.05 ± 0.001 | 1, 2 |
26 | 28.53 | 1.77 | Caryophyllene | 1425 | 1417 | 1.12 ± 0.03 | 1, 2, 3 |
27 | 28.61 | 1.98 | β-Ylangene | 1427 | 1422 | 0.59 ± 0.010 | 1, 2 |
28 | 28.87 | 1.51 | β-Copaene | 1433 | 1432 | t | 1, 2 |
29 | 29.45 | 1.62 | γ-Elemene | 1439 | 1434 | 0.21 ± 0.004 | 1, 2 |
30 | 30.01 | 1.98 | Humulene | 1455 | 1453 | 0.12 ± 0.002 | 1, 2 |
31 | 31.17 | 2.03 | Patchoulene | 1468 | 1467 | 0.44 ± 0.007 | 1, 2 |
32 | 31.79 | 0.63 | α-Curcumene | 1478 | 1483 | 0.06 ± 0.001 | 1, 2 |
33 | 33.66 | 0.21 | α-Bulnesene | 1511 | 1506 | 0.09 ± 0.006 | 1, 2 |
34 | 34.21 | 0.31 | δ-Cadinene | 1519 | 1522 | 0.16 ± 0.009 | 1, 2 |
35 | 35.43 | 0.99 | β-Vatirenene | 1536 | 1542 | 0.09 ± 0.006 | 1, 2 |
36 | 42.67 | 1.88 | trans-Nuciferol | 1698 | - | 0.19 ± 0.008 | 1, 2 |
37 | 48.07 | 1.93 | β-Nootkatol | 1725 | 1712 | 0.05 ± 0.002 | 1, 2 |
38 | 51.15 | 0.63 | Chamazulene | 1731 | 1730 | 0.13 ± 0.005 | 1, 2 |
Monoterpene Hydrocarbons | 90.19 ± 2.168 | ||||||
Oxygenated Monoterpenes | 5.47 ± 0.242 | ||||||
Sesquiterpene Hydrocarbons | 3.16 ± 0.083 | ||||||
Oxygenated Sesquiterpenes | 0.24 ± 0.010 | ||||||
Others | 0.13 ± 0.004 | ||||||
Total | 99.19 ± 2.507 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basile, S.; Badalamenti, N.; Riccobono, O.; Guarino, S.; Ilardi, V.; Bruno, M.; Peri, E. Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests. Molecules 2022, 27, 588. https://doi.org/10.3390/molecules27030588
Basile S, Badalamenti N, Riccobono O, Guarino S, Ilardi V, Bruno M, Peri E. Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests. Molecules. 2022; 27(3):588. https://doi.org/10.3390/molecules27030588
Chicago/Turabian StyleBasile, Sara, Natale Badalamenti, Ornella Riccobono, Salvatore Guarino, Vincenzo Ilardi, Maurizio Bruno, and Ezio Peri. 2022. "Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests" Molecules 27, no. 3: 588. https://doi.org/10.3390/molecules27030588
APA StyleBasile, S., Badalamenti, N., Riccobono, O., Guarino, S., Ilardi, V., Bruno, M., & Peri, E. (2022). Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests. Molecules, 27(3), 588. https://doi.org/10.3390/molecules27030588