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Abstract: We report a new method for a tandem Pd-catalyzed intramolecular addition of active
methylene compounds to internal alkynes followed by coupling with aryl and heteroaryl bromides.
Highly substituted vinylidenecyclopentanes were obtained with good yields, complete selectivity,
and excellent functional group tolerance. A plausible mechanism, supported by DFT calculations,
involves the oxidative addition of bromoarene to Pd(0), followed by cyclization and reductive
elimination. The excellent regio- and stereoselectivity arises from the 5-exo-dig intramolecular addition
of the enol form of the substrate to alkyne activated by the π-acidic Pd(II) center, postulated as the
rate-determining step.

Keywords: palladium; homogeneous catalysis; alkynes; cross-coupling; tandem reactions

1. Introduction

Cyclization of alkynes and alkenes bearing a tethered nucleophilic group constitutes
a direct and effective strategy for the construction of a range of carbo- and heterocyclic
scaffolds [1–10]. Since the seminal work by Conia [11,12] on thermal cyclization of un-
saturated carbonyl compounds, a range of catalytic methods towards carbocyclic motifs,
featuring excellent atom economy and high efficiency under mild conditions were de-
veloped (Scheme 1a) [13]. One of the most effective of such strategies relies on the use
of transition metal complexes exhibiting carbophilic Lewis acidic character (e.g., Au, Pd,
Pt, Cu, Ag), capable of coordination to the C-C multiple bond, and in consequence, its
activation for nucleophilic attack [14–22]. This approach offers another opportunity for
harnessing the reactivity of the metal–vinyl intermediate for further functionalization via
cross-coupling, generating higher molecular complexity in a single step [23–28]. In this
regard, palladium complexes are catalysts of choice due to the combination of sufficient
π-acidity with redox activity for driving both cyclization and cross-coupling [1,4,29].

This strategy was first realized by Balme in the early 1990s for acetylenic keto esters
and malonates with simple aryl iodides [30–32]. More recently, employing a catalyst based
on a bulky, electron-rich monophosphine, we have solved one of the major limitations of the
reaction, disclosing mild and functional group-tolerant conditions suitable for considerably
less reactive (hetero)aryl bromides and chlorides [33,34]. However, one of the remaining
challenges of both 5-exo-dig cycloisomerization and cyclization/coupling processes cat-
alyzed by carbophilic Lewis acids is the low reactivity of substrates derived from internal
alkynes. As the challenge arises from steric interactions of metal catalyst with a substituent
at the alkyne terminus, shorter homologues cyclizing through a 5-endo-dig manifold, and
thus lacking such constrains, undergo facile cyclization [16,26,28,35]. Therefore, only few
protocols for Conia-ene 5-exo-dig cyclization of nonterminal acetylenes were reported to
date [16,36–38]. Moreover, as observed for Au-catalyzed cycloisomerization of nonterminal
acetylenic β-keto esters, competition between 5-exo-dig and 6-endo-dig cyclization manifolds
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could be expected, which ultimately could compromise the selectivity of the transformation
(Scheme 1b) [16,37].
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Scheme 1. Strategies and challenges in methodologies involving 5-exo-dig cyclization of acetylenic
active methylene compounds.

Herein, we present a protocol for effective Pd-catalyzed tandem 5-exo-dig carbocycliza-
tion of nonterminal acetylenic active methylene compounds with subsequent coupling
with aryl and heteroaryl bromides. The present method exhibits high efficiency, excel-
lent functional group tolerance and selectivity towards a single isomer of the cyclization/
coupling product.

2. Results and Discussion

First, in the quest for a method suitable for challenging substrates bearing an internal
alkyene motif, a benchmark reaction of dimethyl hex-4-yn-1-ylmalonate 1 with bromoben-
zene was evaluated over a range of Pd-catalysts and reaction conditions (Table 1) [39].
Third generation Buchwald-type palladacyclic precatalysts were chosen as a platform for
testing of phosphine ligands due to availability, moisture and oxygen insensitivity, and
rapid and clean activation under mildly basic conditions [40]. Initial screening of palla-
dium complexes based on various mono- and bi-dentate phosphines (See Table S1 in the
Supporting Information for details) revealed that bulky, electron-rich monophosphines,
catalysts of choice for analogous terminal acetylenic active methylene compounds, exhibit
poor or at best moderate efficiency in the model reaction involving internal alkyne (Table 1,
entries 1–3). For instance, employment of 2 mol% of Pd-complexes with XPhos or RuPhos
at 60 ◦C provided only 31% and 0% of expected cyclization/coupling product 2, respec-
tively. It sharply contrasts the full conversion and ~90% yields observed for the reaction of
dimethyl pent-4-yn-1-ylmalonate, a terminal analogue of 1. Despite the moderate yield of
the transformation, the product was isolated as a single isomer, constituting a promising
starting point for further optimization. Increase of the temperature to 80 ◦C only slightly
improved the efficiency of the transformation catalyzed by the Pd/XPhos system (Table 1,
entries 1 and 2). Generally, bidentate phosphines exhibited even lower efficiency, except
for diphenyl-2-pyridylphosphine (DPPPY), which performed best of all tested ligands.
Further evaluation of the experimental variables delivered satisfactory conditions (See
Tables S2–S6 in the Supporting Information for details) involving the use of potassium
phosphate in DMF. Employment of less polar solvents, as well as strong organic bases,
resulted in considerably worse results (entries 7–11).
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Table 1. Evaluation of the reaction conditions 1.
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Entry Catalyst Solvent, Base Temp Yield 2

1 XPhos Pd G3 DMF, K3PO4 60 ◦C 31%
2 XPhos Pd G3 DMF, K3PO4 80 ◦C 41%
3 RuPhos Pd G3 DMF, K3PO4 60 ◦C 0 %
4 BINAP Pd G3 DMF, K3PO4 60 ◦C 38%
5 DPPE Pd G3 DMF, K3PO4 60 ◦C 16%
6 DPPPY Pd G3 DMF, K3PO4 60 ◦C 77%
7 DPPPY Pd G3 DMF, K3PO4 80 ◦C 89%
8 DPPPY Pd G3 DMF, MeOK 80 ◦C 0%
9 DPPPY Pd G3 DMF, KHMDS 80 ◦C 28%

10 DPPPY Pd G3 DMF, NaOH 80 ◦C 40%
11 DPPPY Pd G3 THF, K3PO4 80 ◦C 20%
11 DPPPY Pd G3 Toluene, K3PO4 80 ◦C 0%

1 Conditions: L Pd G3 (2 mol%), dimethyl 2-(hex-4-yn-1-yl)malonate (0.100 mmol, 1 equiv.), PhBr (0.150 mmol,
1.5 equiv.), K3PO4 (0.150 mmol, 1.5 equiv.), DMF (0.5 mL), 60–80 ◦C, 6 h. 2 Determined by GC with mesitylene as
an internal standard. Optimal conditions in bold.

Having established satisfactory conditions for a benchmark reaction, we proceeded
to the investigation of the scope of the process. A range of structurally and electronically
diverse aryl and heteroaryl bromides were initially tested in the reaction with malonate
1 (Scheme 2). Generally, electron-deficient coupling partners provided higher yields of
desired products 4–10 (up to 91%). Steric hindrance caused by shift of a substituent to
the ortho position seemed to have little influence on the overall efficiency of the process
(9 and 10). Various functional groups, including amides, ketones, and aldehydes were
well tolerated (7–10, 14). Moreover, a range of heteroaryl bromides, including medicinally
relevant N-heterocycles, were competent reaction partners, generally delivering products
14–24 in very good yields. Finally, vinyl bromide was also compatible with the reaction
conditions, giving rise to diene 25 in 79% yield.

Next, the scope in respect to various actetylenic active methylenes was investigated
in reactions with three prototypical aryl bromides of various electronic properties: bro-
mobenzene, p-methoxybromobenzene, and p-cyanobromobenzene (Scheme 3). Generally,
β-keto esters (leading to 26–28), cyanomalonates (leading to 29), sulfones (leading to 30–31)
reacted with similar efficiency to model malonate 1, contrary to β-diketones which reacted
in moderate yields (leading to 32). It could be speculated that low reactivity of dikentones
arises from lower nucleophilicity of the enol form. In most cases, better yields were ob-
served for the reaction with electron-deficient aryl bromides. Change of the substituent at
the alkyne terminus to ethyl or phenyl was also tolerated, although slightly lower yields
were observed (leading to 33–34).

As mentioned, all reactions proceeded with complete regio- and stereoselectivity,
delivering products as single isomers. The structure was unambiguously confirmed by
X-ray crystallographic analysis of a representative compound 4 (Figure 1). Mechanistically,
the stereoselectivity of the transformation implies involvement of anti carbometalation
of the alkyne. Such selectivity could be achieved only if the C-nucleophilic fragment of
the molecule (e.g., enolate) attacks the alkyne motif activated through coordination of
the carbophilic Pd(II) centre. Other scenarios involving either simultaneous coordination
of enolate and alkyne moieties, or initial insertion of alkyne to aryl-Pd species would
preferentially lead to syn dicarbofunctionalization products.
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Several control experiments were conducted to gain additional insight into the mecha-
nism of the process. Competition experiments confirmed dramatic difference in reactivity of
substrates based on internal and terminal alkynes (Scheme 4a). Reaction of bromobenzene
with an equimolar mixture of 1 and its terminal analogue 37 delivered exclusively the
product of cyclization/coupling of the latter, without even traces of 2 detected by GC. Simi-
larly, no consumption of 1 was observed in competition experiments with the structurally
related β-keto ester 38 (Scheme 4b). Such a huge difference in the reactivity of malonates
and β-keto esters, differing in acidity by only ca. 1 pKa unit, ref. [41] could suggest that
deprotonation of the starting material is not involved in the rate-determining step (vide in-
fra). The impact of the electronic nature of the electrophilic partner on the reaction progress
was also investigated through a comparison of the reactivity of 1 with three electronically
distinct bromoarenes–bromobenzene, p-bromoanisole, and p-bromobenzonitrile. Higher
rates were observed for more electron-deficient partners (Figure 2).
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Density functional theory (DFT) calculations were conducted to elaborate the detailed
reaction mechanism. All calculations were performed using Gaussian 16 package [42].
Structures of minima and transition states were optimized employing B3LYP and LANL2DZ
basis sets for Pd, 6-31G(d) basis set for the other atoms, D3 version of Grimme’s empirical
dispersion correction [43] and solvation (DMF) with SMD model [44]. Frequency analysis
was performed at the same level to provide correction to thermodynamic functions and
confirm the nature of optimized structures (minima and transition states featured zero or
one imaginary frequency, respectively). Single point energies were calculated at M06 level
of theory employing SDD basis set for Pd, 6-311++g(d,p) basis set for the other atoms and
solvation (DMF) with SMD model [44]. Various conformers of intermediates and transition
states were investigated and only the lowest energy conformers are shown in the work.
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The free energy profile of the postulated pathway for model reaction of β-ketoester 
38 with bromobenzene (black) is shown in Figure 3. Initially, bromobenzene undergoes 
facile oxidative addition to palladium(0) species (ΔG‡ = 38.5 kJ/mol), leading to Pd(II) 
intermediate II. Then, alkyne coordinates to a Pd(II) centre ultimately leading to a com-
plex III, with enol form of the substrate coordinated in the conformation pre-organized 
for the cyclization, featuring ΔG‡ = 107.5 kJ/mol. Due to attack of the C-nucleophilic cen-
ter of the enol from the opposite side of the alkyne in respect to the coordinated metal 
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acids. [37] Interestingly, steric hindrance caused by the substituent at the alkyne moiety 
seems to have little if any effect on the coordination of the C-C triple bond to the Pd(II) 
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The free energy profile of the postulated pathway for model reaction of β-ketoester
38 with bromobenzene (black) is shown in Figure 3. Initially, bromobenzene undergoes
facile oxidative addition to palladium(0) species (∆G‡ = 38.5 kJ/mol), leading to Pd(II)
intermediate II. Then, alkyne coordinates to a Pd(II) centre ultimately leading to a complex
III, with enol form of the substrate coordinated in the conformation pre-organized for the
cyclization, featuring ∆G‡ = 107.5 kJ/mol. Due to attack of the C-nucleophilic center of
the enol from the opposite side of the alkyne in respect to the coordinated metal centre,
the carbopalladation can proceed only in the anti fashion. The cyclization of the terminal
analogue proceeds through a considerably lower barrier (∆G‡ = 79.7 kJ/mol, green path).
It is fully consistent with previously discussed competition experiments (Scheme 1a) and
known examples of Conia-ene reactions catalyzed by carbophilic Lewis acids [37]. Interest-
ingly, steric hindrance caused by the substituent at the alkyne moiety seems to have little if
any effect on the coordination of the C-C triple bond to the Pd(II) species (cf. intermediates
IIIa and IIIb). On the contrary, cyclization of the related malonate 1 (red path) is consid-
erably more difficult than β-ketoester 38 (∆G‡ = 142.1 vs. 107.5 kJ/mol) which is also in
line with the competition experiment depicted in Scheme 1b. A significant fraction of the
barrier arises from unfavorable enolization of the malonate, which is reflected in ender-
gonic formation of intermediate IIIc. An alternative path involving deprotonation prior to
the cyclization was also considered. However, the calculated barriers for the cyclization
involving deprotonated malonate and keto ester fragments exhibited similar magnitudes
(∆G‡ = 41.5 and 40.4 kJ/mol, respectively). Taking into account the small difference in
acidity (ca. 1 pKa unit at ambient temperature), formation of at least some amount of both
products should be observed in the competition experiment (see Scheme 1b). Therefore, this
path is less probable, at least if the reaction is carried out with a relatively weak, insoluble
base (K3PO4). The other important factor associated with the cyclization step is the observed
preference of 5-exo-dig over 6-endo-dig manifold which determines the excellent regioselec-
tivity of the overall process. In fact, the calculated barrier for 6-endo-dig carbocyclization
(grey path) is higher by 18.7 kJ/mol than the observed 5-exo-dig (black path). Furthermore,
the vinyl–palladium intermediate IVa, bearing a protonated ketone moiety undergoes
facile deprotonation to VIa. It then undergoes isomerization to VIIa, with vinyl and
phenyl ligands in the cis position required for reductive elimination, which proceeds with
∆G‡ = 53.1 kJ/mol (through a transition state TS4a). Reductive elimination from the
malonate analogue (red path) is similarly easy (∆G‡ = 52.8 kJ/mol).
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Figure 3. Gibbs free energy profile.

As previously mentioned, the reaction with electron-deficient bromoarenes proceeds
with slightly higher rates (see Figure 2). Presumably, substituent at the arene moiety
perturbs the Lewis acidity of the Pd(II) centre and thus exerts impact on the facility of the
cyclization step, considered rate-determining. Free energies of activation for the cyclization
step were calculated for a series of three electronically distinct arylpalladium species
bearing CN, H, and OMe at the para position of the phenyl moiety (Table 1). The lowest
barrier was found for the complex with the most electron-deficient arene. To complete the
mechanistic picture of the overall transformation, barriers for reductive elimination were
also calculated and are summarized in Table 2.

Table 2. Free energy of activation for cyclization and reductive elimination steps in the reaction of 38
with aryl bromides.
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Entry R ∆G‡ (cycl.) ∆G‡ (RE)

1 H 107.5 kJ/mol 53.1 kJ/mol
2 CN 101.3 kJ/mol 38.8 kJ/mol
3 OMe 107.9 kJ/mol 50.6 kJ/mol

3. Conclusions

In conclusion, we developed a broadly applicable method for the carbocyclization-
coupling of active methylene compounds bearing internal alkyne motif with aryl and
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heteroaryl bromides. The tandem Pd-catalyzed process exhibits excellent regio- and stere-
oselectivity, functional group tolerance, and high efficiency of the challenging 5-exo-dig
intramolecular addition to nonterminal alkynes activated by a carbophilic Lewis acid. The
mechanistic investigations, involving computational studies, support a mechanism involv-
ing oxidative addition, cyclization, and reductive elimination. The 5-exo-dig intramolecular
nucleophilic addition of the enol form of the substrate to alkyne activated through co-
ordination to the Pd(II) centre was identified as the rate- and configuration-determining
step.

4. Experimental Section

General procedure for Pd-catalyzed carbocyclization-coupling of aryl bromides
with acetylenic active methylene compounds: In a drybox, a 4 mL screw-cap vial was
charged with DPPPY Pd G3 (5.10 mg, 8 mmol), aryl halide (0.5 mmol), K3PO4 (127.2 mg,
0.6 mmol), DMF (1 mL), and a magnetic stirring bar. Then, acetylenic active methylene
compound (e.g., dimethyl 2-(hex-4-yn-1-yl)malonate) was added (0.4 mmol), the vial was
tightly sealed and removed from drybox. The reaction mixture was stirred for 24 h at 80 ◦C
in a heating block, then cooled to room temperature, quenched with 20 mL of a saturated
NH4Cl solution, added to 10 mL of water, and extracted with MTBE (3 × 10 mL). The
combined organic phases were dried with Na2SO4, filtered, and concentrated. The crude
product was purified by column chromatography on silica gel.

Dimethyl (E)-2-(1-phenylethylidene)cyclopentane-1,1-dicarboxylate was prepared
in a reaction of dimethyl 2-(hex-4-yn-1-yl)malonate and bromobenzene following a general
procedure (98 mg, yield 85%). Product was isolated as an oil after column chromatography
on silica gel (15g, hex/AcOEt 9:1). 1H NMR (400 MHz, CDCl3) δ 7.34–7.28 (m, 2H),
7.23–7.16 (m, 3H), 3.79 (s, 6H), 2.42 (t, J = 6.8 Hz, 2H), 2.29–2.22 (m, 2H), 1.96 (t, J = 2.0 Hz,
3H), 1.64 (p, J = 7.0 Hz, 2H);13C NMR (101 MHz, CDCl3) δ 172.0, 145.2, 135.8, 135.5, 128.1,
127.3, 126.3, 63.4, 52.5, 39.2, 33.5, 24.8, 22.3; IR(CH2Cl2): 2952, 2879, 2850, 1732, 1599, 1436,
1252, 1157, 1074, 988, 919, 764, 700, 429 cm−1; MS (EI): m/z (%) = 289(9), 288(43) [M+],
256(27), 230(24), 229(97), 228(59), 197(23), 170(24), 169(100), 168(27), 141(27), 128(16), 115(17),
105(7), 91(27), 77(10), 59(11); HRMS (EI): m/z calcd for C17H20O4 288.1362; found 288.1364.

Supplementary Materials: The following supporting information can be downloaded. Details of
optimization and control experiments, experimental procedures and characterization of all com-
pounds, crystallographic data, details of DFT calculations (atom coordinates, energies and corrections
to thermodynamic functions for calculated structures).
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