Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil Samples
2.3. Pesticide Standards
2.4. Soil Samples Collection and Preparation
2.5. Extraction and Cleanup of Multi-Pesticide Residue by QuEChERS
2.6. Pesticide Analysis by Gas Chromatography–Mass Spectrometry (GC–MS-TIC)
2.7. Remediation by Photolysis Degradation Experiment
2.8. Soil Sample Treatments
2.9. QAQC Strategies
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Eldridge, B.F. Pesticide Application and Safety Training for Applicators of Public Health Pesticides; Vector-Borne Dis. Sect: Davis, CA, USA, 2008; p. 18. [Google Scholar]
- Yadav, I.C.; Devi, N.L.; Syed, J.H.; Cheng, Z.; Li, J.; Zhang, G.; Jones, K.C. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: A comprehensive review of India. Sci. Total Environ. 2015, 511, 123–137. [Google Scholar] [CrossRef]
- Drum, C. Soil Chemistry of Pesticides; PPG Industries. Inc.: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Yadav, I.C.; Devi, N.L. Pesticides classification and its impact on human and environment. Environ. Sci. Eng. 2017, 6, 140–158. [Google Scholar]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.M.; Ahmad, R.; Estaitieh, H. Organochlorine pesticide residues in dairy products in Jordan. Chemosphere 2009, 77, 673–678. [Google Scholar] [CrossRef]
- Taiwo, A.M. A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 2019, 220, 1126–1140. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, J.; Gong, L.; Yang, X.; Zhang, L.; Chen, X. Photocatalytic degradation investigation of dicofol. Chin. Sci. Bull. 2008, 53, 27–32. [Google Scholar] [CrossRef]
- Fendick, E.A.; Mather-Mihaich, E.; Houck, K.A.; St. Clair, M.B.; Faust, J.B.; Rockwell, C.H.; Owens, M. Ecological Toxicology and Human Health Effects of Heptachlor. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware, G.W., Ed.; Springer: New York, NY, USA, 1990; pp. 61–142. [Google Scholar]
- Weber, J.; Halsall, C.J.; Muir, D.; Teixeira, C.; Small, J.; Solomon, K.; Hermanson, M.; Hung, H.; Bidleman, T. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 2010, 408, 2966–2984. [Google Scholar] [CrossRef]
- Martin, H. Pesticides. Manual, 1st ed.; The British Crop Protection Council: London, UK, 1968; p. 464. [Google Scholar]
- Kumar, S.; Kaushik, G.; Dar, M.A.; Nimesh, S.; LÓPez-Chuken, U.J.; Villarreal-Chiu, J.F. Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere 2018, 28, 190–208. [Google Scholar] [CrossRef]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.K.; Alstrup, A.K.O.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef]
- Evgenidou, E.; Fytianos, K.; Poulios, I. Photocatalytic oxidation of dimethoate in aqueous solutions. J. Photochem. Photobiol. A Chem. 2005, 175, 29–38. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.C.; Mukherjee, I.R.M.; Doss, R.B.; Malik, J.K.; Milatovic, D. Chapter 35-Organophosphates and Carbamates. In Reproductive and Developmental Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 609–631. [Google Scholar]
- Cycoń, M.; Piotrowska-Seget, Z. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Front. Microbiol. 2016, 7, 1463. [Google Scholar] [CrossRef] [Green Version]
- Poudel, S.; Poudel, B.; Acharya, B.; Poudel, P. Pesticide use and its impacts on human health and environment. Environ. Ecosyst. Sci. 2020, 4, 47–51. [Google Scholar] [CrossRef]
- Dawson, A.H.; Eddleston, M.; Senarathna, L.; Mohamed, F.; Gawarammana, I.; Bowe, S.J.; Manuweera, G.; Buckley, N.A. Acute human lethal toxicity of agricultural pesticides: A prospective cohort study. PLoS Med. 2010, 7, e1000357. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Mandal, K. Environmental impact of pesticides belonging to newer chemistry. In Integrated Pest Management, 1st ed.; Dhawan, A.K., Singh, B., Bhullar, M.B., Arora, R., Eds.; Scientific Publishers: Jodhpur, India, 2013; pp. 152–190. [Google Scholar]
- Pan, G. Pesticides and health hazards facts and figures. In Bochum: Pestizide und Gesundheitsgefahren: Daten und Fakten; Pestizid Aktions-Netzwerk (PAN): Hamburg, Germany, 2012. [Google Scholar]
- Joint FAO; WHO Expert Committee. Evaluation of Certain Veterinary Drug Residues in Food: Fifty-Second Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Dąbrowski, A. Adsorption—from theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem. Eng. J. 2020, 398, 125657. [Google Scholar] [CrossRef]
- Vaya, D.; Surolia, P.K. Semiconductor based photocatalytic degradation of pesticides: An overview. Environ. Technol. Innov. 2020, 20, 101128. [Google Scholar] [CrossRef]
- Lin, C.; Lin, K.-S. Photocatalytic oxidation of toxic organohalides with TiO2/UV: The effects of humic substances and organic mixtures. Chemosphere 2007, 66, 1872–1877. [Google Scholar] [CrossRef]
- Vagi, M.C.; Petsas, A.S. Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007–2018). J. Environ. Chem. Eng. 2020, 8, 102940. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Pirkanniemi, K.; Sillanpää, M. Heterogeneous water phase catalysis as an environmental application: A review. Chemosphere 2002, 48, 1047–1060. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, J.; Yuan, Y.; Liu, H.; Yang, D.; Sarina, S.; Zhang, H.; Waclawika, E.R.; Zhu, H. Tuning the surface structure of nitrogen-doped TiO2 nanofibres—An effective method to enhance photocatalytic activities of visible-light-driven green synthesis and degradation. Chem. A Eur. J. 2013, 19, 5731–5741. [Google Scholar] [CrossRef] [PubMed]
- Takanabe, K. Solar Water Splitting Using Semiconductor Photocatalyst Powders. In Solar Energy for Fuels; Tüysüz, H., Chan, C.K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–103. [Google Scholar]
- EL-Saeid, M.H.; Alotaibi, M.O.; Alshabanat, M.; AL-Anazy, M.M.; Alharbi, K.R.; Altowyan, A.S. Impact of Photolysis and TiO2 on Pesticides Degradation in Wastewater. Water 2021, 13, 655. [Google Scholar] [CrossRef]
- Echavia, G.R.M.; Matzusawa, F.; Negishi, N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 2009, 76, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Jocque, H.; Sirot, L.K.; Fiumera, A.C. Effects of atrazine exposure on male reproductive performance in Drosophila melanogaster. J. Insect Physiol. 2015, 72, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heptachlor, W. Environmental Health Criteria 38; World Health Organization: Geneva, Switzerland, 1984. [Google Scholar]
- Kanan, S.; Moyet, M.A.; Arthur, R.B.; Patterson, H.H. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal. Rev. 2020, 62, 1–65. [Google Scholar] [CrossRef]
- Tyagi, H.; Chawla, H.; Bhandari, H.; Garg, S. Recent-enhancements in visible-light photocatalytic degradation of organochlorines pesticides: A review. Mater. Today: Proc. 2021, 49, 3289–3305. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Abramović, B.F.; Anderluh, V.B.; Topalov, A.S.; Gaál, F.F. Titanium dioxide mediated photocatalytic degradation of 3-amino-2-chloropyridine. Appl. Catal. B Environ. 2004, 48, 213–221. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Gazi, M.; Ifebajo, A.O.; Oladipo, A.S.; Ahaka, E.O. Photocatalytic Degradation of Toxic Pesticides. In Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment; Fosso-Kankeu, E., Pandey, S., Ray, S.S., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2020. [Google Scholar]
- Haque, M.; Muneer, M. Heterogeneous photocatalysed degradation of a herbicide derivative, isoproturon in aqueous suspension of titanium dioxide. J. Environ. Manag. 2003, 69, 169–176. [Google Scholar] [CrossRef]
- Haque, M.; Muneer, M. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. J. Hazard. Mater. 2007, 145, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Jury, W.A.; Wagenet, R.J.; Flury, M. Dependence of pesticide degradation on sorption: Nonequilibrium model and application to soil reactors. J. Contam. Hydrol. 2000, 43, 45–62. [Google Scholar] [CrossRef]
- Frank, M.P.; Graebing, P.; Chib, J. Effect of soil moisture and sample depth on pesticide photolysis. J. Agric. Food Chem. 2002, 50, 2607–2614. [Google Scholar] [CrossRef] [PubMed]
- Shelton, D.R.; Parkin, T.B. Effect of moisture on sorption and biodegradation of carbofuran in soil. J. Agric. Food Chem. 1991, 39, 2063–2068. [Google Scholar] [CrossRef]
- Hilarides, R.J.; Gray, K.A.; Guzzetta, J.; Cortellucci, N.; Sommer, C. Radiolytic degradation of 2, 3, 7, 8-TCDD in artificially contaminated soils. Environ. Sci. Technol. 1994, 28, 2249–2258. [Google Scholar] [CrossRef]
- Graebing, P.; Frank, M.P.; Chib, J. Soil photolysis of herbicides in a moisture-and temperature-controlled environment. J. Agric. Food Chem. 2003, 51, 4331–4337. [Google Scholar] [CrossRef]
- Higarashi, M.M.; Jardim, W.F. Remediation of pesticide contaminated soil using TiO2 mediated by solar light. Catal. Today 2002, 76, 201–207. [Google Scholar] [CrossRef]
- Xu, X.; Ji, F.; Fan, Z.; He, L. Degradation of Glyphosate in Soil Photocatalyzed by Fe3O4/SiO2/TiO2 under Solar Light. Int. J. Environ. Res. Public Health 2011, 8, 1258–1270. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Li, P.; Li, X.; Xu, C.; Gong, D.; Zhang, Y.; Zhao, Q.; Li, P. Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV-irradiation. Chem. Eng. J. 2010, 158, 378–383. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Shaghaleh, H.; Hamoud, Y.A.; Holford, P.; Shao, H.; Qi, W.; Hashmi, M.Z.; Wu, T. Zinc oxide nanoparticles: Potential effects on soil properties, crop production, food processing, and food quality. Environ. Sci. Pollut. Res. Int. 2021, 28, 36942–36966. [Google Scholar] [CrossRef]
- Timoshenko, A.; Kolesnikov, S.; Rajput, V.D.; Minkina, T. Chapter 14-Effects of zinc-oxide nanoparticles on soil microbial community and their functionality. In Zinc-Based Nanostructures for Environmental and Agricultural Applications; Abd-Elsalam, K.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Thiagarajan, V.; Ramasubbu, S. Fate and Behaviour of TiO2 Nanoparticles in the Soil: Their Impact on Staple Food Crops. Water Air Soil Pollut. 2021, 232, 274. [Google Scholar] [CrossRef]
- Chavan, S.; Sarangdhar, V.; Nadanathangam, V. Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria. Emerg. Contam. 2020, 6, 87–92. [Google Scholar] [CrossRef]
Pesticide Trade Name | IUPAC Name of Active Ingredient | Chemical Class | Use | Entry Route |
---|---|---|---|---|
Atrazine | 2-Chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine | Triazine | Herbicide | Systemic |
Chlorpyrifos methyl | Cimethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-yl)oxy-λ5-phosphane | OPP | Insecticide | Non-systemic |
Dimethoate | O,O-Dimethyl-S-(N-methylcarbamoylmethyl) phosphorodithioate | OPP | Insecticide | Systemic |
Heptachlor | 1,4,5,6,7,8,8-Heptachloro-3a,4,7,7a-tetrahydro-1H-4,7-methanoindene | OCP | Insecticide | Systemic |
Methomyl | Methyl N-(methylcarbamoyloxy)ethanimidothioate) | Carbamates | Insecticide | Systemic |
Parameter | Conditions | Parameter | Conditions |
---|---|---|---|
Carrier gas | Helium, 2 mL/min | Holdup Time | 1.3466 min |
Inlet temp. | 250 °C | Run Time | 49.667 min |
Mode | Splitless | Solvent Delay | 3.00 min |
Pressure | 9.954 psi | EMV Mode | Relative |
Injection Source | GC ALS | EM Voltage | 1482 |
Total Flow | 65 mL/min | MS Source | 230 °C |
Thermal Aux Temp. | 281 °C | MS Quad | 155 °C |
Injection Volume | 1 µL | Actual EMV | 1482.35 |
Column | Agilent DB-5 ms 350 °C: 30 m × 250 µm × 0.25 µm | Gain Factor | 0.46 |
Oven Program | Initial temp. 90 °C for 2 min then 6 °C/min to 150 °C for 5 min then 5 °C/min to 220 °C for 5 min then 6 °C/min to 290 °C for 2 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
EL-Saeid, M.H.; BaQais, A.; Alshabanat, M. Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils. Molecules 2022, 27, 634. https://doi.org/10.3390/molecules27030634
EL-Saeid MH, BaQais A, Alshabanat M. Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils. Molecules. 2022; 27(3):634. https://doi.org/10.3390/molecules27030634
Chicago/Turabian StyleEL-Saeid, Mohamed H., Amal BaQais, and Mashael Alshabanat. 2022. "Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils" Molecules 27, no. 3: 634. https://doi.org/10.3390/molecules27030634
APA StyleEL-Saeid, M. H., BaQais, A., & Alshabanat, M. (2022). Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils. Molecules, 27(3), 634. https://doi.org/10.3390/molecules27030634