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Abstract: Organic pesticides are major sources of soil pollution in agricultural lands. Most of these
pesticides are persistent and tend to bio accumulate in humans upon consumption of contaminated
plants. In this study, we investigate different natural soil samples that were collected from agricultural
lands. The samples revealed the presence of 18 pesticides that belong to four different groups includ-
ing organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth).
The photocatalytic degradation of the five most abundant pesticides was studied in the presence
and absence of 1% TiO2 or ZnO photocatalysts under UV irradiation at a wavelength of 306 nm.
The five abundant pesticides were Atrazine (OCP), Chlorpyrifos methyl (OPP), Dimethoate (OPP),
Heptachlor (OCP), and Methomyl (Carb). The results showed that photolysis of all pesticides was
complete under UV radiation for irradiation times between 64–100 h. However, both photocatalysts
enhanced photocatalytic degradation of the pesticides in comparison with photolysis. The pesticides
were photocatalytically degraded completely within 20–24 h of irradiation. The TiO2 photocatalyst
showed higher activity compared to ZnO. The organochlorine heptachlor, which is very toxic and
persistent, was completely degraded within 30 h using TiO2 photocatalyst for the first time in soil.
The mechanism of photocatalytic degradation of the pesticides was explained and the effects of
different factors on the degradation process in the soil were discussed.

Keywords: pesticides; residue; soil; photocatalytic degradation

1. Introduction

Plants are indispensable sources of food for all living things. They are the sole pro-
ducers in the food chains that are consumed by various consumers such as herbivorous
animals or directly by humans. Therefore, maintaining uncontaminated plants is essential
for the health of not only humans, but also for the entire ecosystem. Pesticides are widely
used as an effective method to increase crops and protect them from “pests”.

The term pesticide means “pest-killer”. It is a substance or mixture of substances
used for controlling, preventing, destroying or reducing the number of pests [1]. Pests
are one of major problems that agriculture faces. They are defined as being any type of
organism that is harmful, destructive, or annoying to humans and plants. They can destroy
crops and cause diseases to humans, animals, or plants [2]. The most common pests are
insects, unwanted plants, microorganisms such as fungi or bacteria, and rodents. Currently,
pesticides are classified based on three criteria: the pest organism they kill, the route of
entry, and the active ingredient of their chemical structure [3]. Based on the pest they
control, pesticides are classified into four main groups: insecticides, fungicides, herbicides,
and rodenticides. Based on the mode of entry, pesticides are mainly classified into systemic
and non-systemic pesticides. Plants or animals absorb systemic pesticides [4].
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Insecticides are classified based on the chemical composition of the active ingredi-
ents. Insecticides are classified into organochlorines pesticides (OCP), organophosphates
pesticides (OPP), carbamates (CARB), and pyrethroids (PYTH).

Organochlorines (OCP), as their name suggests, contain chlorine atoms in addition to
carbon and hydrogen. They are non-selective and they kill a wide range of beneficial and
non-beneficial insects [4]. The most common OCPs include dichlorodiphenyl trichoroethane
(DDT) and its derivatives (DDE and DDD) in addition to benzene hexachloride (BHC) [5–7],
dicofol [8], and heptachlor [9], and endosulfan [10]. The major hazard of this class is
manifested by its persistence and long-term residual effects in the environment. It is
non-biodegradable, may last in the soil, plants, and animal tissues, and bioaccumulate in
humans [4,5].

The main advantage of organophosphates (OPP) over OCPs is being biodegrad-
able and consequently causing minimal environmental pollution [11]. However, they
possess higher toxicity [12]. The most common examples include chlorpyrifos, chlorpyri-
fos methyl [13], dimethoate [14], methidathion [15], parathion, malathion, diaznon and
glyphosate [16].

Carbamates are structurally similar to organophosphates but they originate from car-
bamic acid. They work in a similar manner to organophosphates, causing nerve poisoning
which leads to paralysis and death [3]. They are biodegradable and are easy to degrade
using natural environmental conditions. The most-often used carbamates include carbaryl,
methomyl, carbofuran, propoxur, and aminocarb [16].

Finally, pyrethins and pyrethoids are interesting classes of organic pesticides charac-
terized by their low persistence in soil [17]. They are biodegradable with limited half-lives.
Synthetic pyrethoids are also commonly used pesticides. Their structure offers them en-
hanced stability and therefore more persistent residues than the natural pyrethrins. They
are considered among the safest pesticides to be used in agriculture and farming [4].

Despite the importance of pesticides in saving crops, they can cause soil, water, and
air pollution. The severity of harmful effects on human health depends on the route of
exposure, the dose, and the length of exposure [18]. Consequently, there are two types of
toxicity, acute and chronic. Acute toxicity results from single exposure to high dose of the
pesticide and chronic toxicity results from long-term exposure to small, repeated doses
of the pesticide for years or even decades [4,18–20]. Consuming contaminated food leads
to bioaccumulation of the non-biodegradable pesticides in the human body. This causes
chronic illness in humans and indirect effects such as birth defects, genetic modification,
nervous disorders, cancers, and reproduction diseases [21]. Pesticides lead to fatalities of
5000–20,000 people and the poisoning of 500,000 to 1 million people every year [22]. Half
of the intoxicated are farmers and agricultural workers while the other half are poisoned
through food. Therefore, degrading pesticide residues is highly crucial. Several approaches
have been reported for pesticide degradation in water such as oxidation, adsorption [23],
biological treatment [24], photocatalysis [25], and coagulation [26]. Photocatalysis remains
the most advanced and suitable technique for pesticide treatment due to its simplicity and
sustainability [27]. Since the first report by Honda and Fujishima [28], several metal oxide
semiconductors have been reported to act as heterogeneous photocatalysts for removing
organic contaminants such as oxides of (Cu, Mn, Co, Cr, V, Ti, Bi, and Zn) [29]. Zinc oxide
(ZnO) and titanium oxides (TiO2) are characterized by several interesting physical proper-
ties such as high refractive index, ultraviolet (UV) absorption, and dielectric constants. They
are photoactive with excellent incident photoelectric conversion efficiency, are chemically
stable, have high photo stability, and they possess a long-term corrosion resistance [30].
In addition, they are non-toxic, green, and cheap [31]. These properties render them as
suitable candidates for various applications, especially degradation of chemicals in the
water and in the air.

In our work, we are concerned with photodegradation of the five pesticides summa-
rized in Table 1, particularly organochlorines due to their persistence in the soil and due to
their nature of being systemic insecticides. This work investigates the presence of pesticide
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residues in soil samples of dates and vegetables in natural soils. Treatment of the five most
abundant pesticides with highest concentrations was studied. Moreover, the photolysis of
the pesticides was performed in absence of catalyst and photocatalytic degradation using
1% TiO2 and 1% ZnO as photocatalysts for pesticide degradation under UV radiation at
wavelength of 306 nm.

Table 1. Summary of the properties of the photodegraded pesticides [15].

Pesticide Trade Name IUPAC Name of Active Ingredient Chemical Class Use Entry Route

Atrazine 2-Chloro-4-ethylamino-6-isopropylamino-1,3,5-
triazine Triazine Herbicide Systemic

Chlorpyrifos methyl Cimethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-
yl)oxy-λ5-phosphane OPP Insecticide Non-systemic

Dimethoate O,O-Dimethyl-S-(N-methylcarbamoylmethyl)
phosphorodithioate OPP Insecticide Systemic

Heptachlor 1,4,5,6,7,8,8-Heptachloro-3a,4,7,7a-tetrahydro-1H-
4,7-methanoindene OCP Insecticide Systemic

Methomyl Methyl N-(methylcarbamoyloxy)ethanimidothioate) Carbamates Insecticide Systemic

The degradation of pesticides in aqueous solutions is widely studied [25], however
there are limited studies on the degradation in soil. Our work presents an important and
vital study for the photodegradation of dangerous pesticides in the soil. To the best of our
knowledge, this is the first Saudi Arabian report that investigates treating soil samples
using photocatalysis under UV radiation using photocatalysts such as TiO2 and ZnO.

2. Materials and Methods
2.1. Chemicals

TiO2 (Sigma-Aldrich Chemie GmbH, Germany (molecular weight: 79.87, CAS Number:
1317-80-2, 637,262 nanopowder, <100 nm particle size, 99.5% trace metals basis ZnO (Sigma-
Aldrich Chemie GmbH, Germany (molecular weight: 81.39, CAS Number: 1314-13-2,
544,906 nanopowder, <100 nm particle size.

Residue-analysis grade solvents were used for the extraction and analysis. They in-
clude methanol, dichloromethane, hexane, acetone, and acetonitrile. They were purchased
from Fisher Scientific (Fair Lawn, NJ, USA) with purity about 99.9%.

2.2. Soil Samples

Ten different samples of dates and vegetables were collected from different date palm
and vegetable farms located in the Al-Kharj governorate, situated southeast of Riyadh
in Saudi Arabia. Al-Kharj is a coastal area characterized by arid weather with an annual
rainfall of 132 mm. Samples were collected from a soil depth up to 30 cm. The types of soil
in this area are aridisol, entisol, saline, and calcareous.

2.3. Pesticide Standards

Twenty-one pesticide standards were investigated and utilized. They were provided
by AccuStandard, 153 Inc., New Haven, CT, USA, with purity of 98–99.8%, either as
individual (50 mg) or as combination values at a concentration of 100 µg·mL−1. The
pesticides that were investigated are listed as active ingredient (group abbreviation). They
include chlorpyrifos methyl (OPPs), dimethoate (OPPs), atrazine (HERB), and methomyl
(CARB).

2.4. Soil Samples Collection and Preparation

The survey procedure of pesticide residues collection was accomplished in ten selected
sites in the Al-Kharj region. The collected samples were subjected to remediation using
UV/TiO2 and ZnO in soil. Five soil samples were collected from different locations in
separate sections. For each site, three different areas were carefully screened to collect the
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soil samples (1 kg for each replicate) from the outside layer (0–30 cm depth) and subsurface
layer (30–60 cm depth). The collected soil samples were carefully placed on a clean plastic
sheet and and judiciously handled on the place using a small spade.. Then, the collected
samples were air-dried and sieved through a 2 mm sieve to remove any impurities. The
spiked soil samples were prepared by the addition of the suitable amounts of the spiking
solution (5 mg/L−1 of pesticides in acetone) to a 10 g soil sample. Before analysis, the
spiked soil samples were allowed to settle and waited about 30 min until the solvent has
completely evaporated. Finally, the soil samples were extracted by means of QuEChERS
and then analyzed by GC-MS/MSTQD.

2.5. Extraction and Cleanup of Multi-Pesticide Residue by QuEChERS

To extract the target pesticides, a 10 g soil sample was introduced into a 50 mL
centrifuge tube and mixed with 8 mL deionized water. The obtained mixture was vortexed
and allowed to hydrate for 25–30 min, and then 12 mL of acetonitrile was added to
respective samples. The samples were continuously shaken for 5 min to extract pesticide
residues. The contents of QuEChERS original extraction solution (2 g MgSO4 and 1 g
of NaCl) was added to a portion of soil sample in the centrifuge tube. Samples were
immediately vortexed for at least 1 min and then centrifuged (≥3500 rcf) for 5 min. Then,
an aliquot sample of supernatant (1.8 mL) was transferred to a 2 mL QuEChERS C-18 SPE
tube. Samples were vortexed again for 2 min and centrifuged for another 2 min at high rcf
(e.g., ≥5000). Finally, pesticides present in the extracted soil samples were analyzed by gas
chromatography–mass spectrometry (GC–MS-TIC) [32]. QuEChERS kits and SPE tubes
were purchased from Phenomenex, Madrid Avenue, Torrance, CA, USA.

2.6. Pesticide Analysis by Gas Chromatography–Mass Spectrometry (GC–MS-TIC)

A gas chromatography–mass spectrometry (GC–MS) was utilized for steps of analyte
separation, detection, and identification. The measurement was performed on an Agilent
(Palo Alto, CA, USA) 6890 N gas chromatograph equipped with an Agilent DB-5MS column
(30 m × 0.25 mm × 0.25 µm film thickness) and 5973 N mass selective detector (Table 2)
according to EL-Saeid et al. 2021 [32].

Table 2. Gas chromatography mass spectrometry total ion chromatogram (GCMS-TIC) parameters
for pesticide analysis method.

Parameter Conditions Parameter Conditions

Carrier gas Helium, 2 mL/min Holdup Time 1.3466 min
Inlet temp. 250 ◦C Run Time 49.667 min

Mode Splitless Solvent Delay 3.00 min
Pressure 9.954 psi EMV Mode Relative

Injection Source GC ALS EM Voltage 1482
Total Flow 65 mL/min MS Source 230 ◦C

Thermal Aux Temp. 281 ◦C MS Quad 155 ◦C
Injection Volume 1 µL Actual EMV 1482.35

Column Agilent DB-5 ms 350 ◦C: 30 m × 250 µm
× 0.25 µm Gain Factor 0.46

Oven Program

Initial temp. 90 ◦C for 2 min then
6 ◦C/min to 150 ◦C for 5 min then
5 ◦C/min to 220 ◦C for 5 min then

6 ◦C/min to 290 ◦C for 2 min

2.7. Remediation by Photolysis Degradation Experiment

For the pesticide remediation, the photolysis of the five pesticide residues was investi-
gated, including chlorpyrifos methyl, dimethoate, atrazine, heptachlor, and methomyl. The
photolysis was performed for different durations under UV irradiation at 306 nm using
Boekel UV Crosslinker (BUV) model: 234100-2: 230 VAC, 175 W, 0.8 A, (Boekel Scientific,
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855 Pennsylvania Blvd. Feasterville, PA, USA). The distance between UV lamps and soil
samples was kept constant at 15 cm, and the UV irradiation intensity was 1071 µWcm−2.

2.8. Soil Sample Treatments

The treated samples were chosen to be the highly contaminated, i.e., those with highest
concentration of the five pesticide residues described above. A total of 10 g of each soil
sample was incubated in petri dishes (9 cm diameter) for 32 h under UV light/306 nm.
Three petri dishes were removed every two hours and the remaining quantity of each
tested pesticide was measured. A similar procedure was applied in the presence of photo
catalysts (1% of TiO2 and 1% of ZnO) under UV remediation for 2 to 32 h.

2.9. QAQC Strategies

Quality control samples were prepared and analyzed in duplicate samples; blank
and spiked, and/or certified reference material (CRM) purchased for this purpose and
processed with each batch (5–10 samples) of sample. For each compound in the group of
pesticides, the QuEChERS and GC-MS or GC-MSMS/TSQ 8000 method limit of detection
(LOD), limit of quantification (LQD), repeatability, reproducibility, accuracy, and precession
were determined.

3. Results and Discussion

The investigation of the pesticide residues in the soils of palms and vegetables revealed
the presence of 18 pesticide residues. These pesticides are summarized and categorized
based on their chemical structures in Supplementary Materials in Table S1.

Pesticide residues were detected belonging to the four classes described earlier. Seven
types of organophosphates were found: chlorpyrifos methyl, dimethoate, primiphos-
methyl, chlorpyrifos, methidathion, ethion and diazinon. Four types of organochlorines
were detected: dicofol, heptachlor, endosulfan, and the herbicide atrazine. It is important to
mention that the banned p,p-DDT organochlorine insecticide and its derivatives p,p-DDE,
p,p-DDD were not detected in the soil samples. Two pesticides, which are carbamates,
were found, i.e., methomyl and carbaryl, in addition to the pyrethoids deltamethrin,
cypermethrin, permethrin, and β- cyfluthrin. The fungicide carbendazim was also detected.

The pesticides with highest concentrations in the soil were atrazine (Herb), chlor-
pyrifos methyl (OPP), dimethoate (OPP), heptachlor (OCP), and methomyl (Carb). The
chemical structures of the pesticides are shown in Figure 1. The photoremediation of
these five pesticide residues in soil were studied in absence (photolysis) and presence of
two photocatalysts zinc oxide (ZnO) and titanium oxide (TiO2) under UV radiation at
wavelength λ = 306 nm.

Figure 2 shows the photodegradation results of the five pesticides in absence of
photocatalyst at λ = 306 nm. The largest decrease in concentration was observed for the
dimethoate and atrazine, which degraded completely within 64 h, followed by methomyl
(80 h), then chlorpyrifos methyl (82 h), and finally the organochlorine heptachlor that
needed almost 100 h to completely degrade. These results are in confirmation with previous
works for these pesticides in water. Atrazine and dimethoate have been reported to undergo
photolysis at 306 nm [32].

Figure 3 shows the effect of the used photocatalyst on the degradation of the pesticides
in the soil. The photodegradation of each pesticide was studied in the presence of 1% of
two photocatalysts (ZnO) and (TiO2) under UV radiation at a wavelength 306 nm. It can be
observed that both photocatalysts greatly enhanced the degradation for all five pesticide
residues in comparison with no photocatalyst. These results confirm the beneficial role of
using TiO2 and ZnO for pesticide degradation in soil. The total initial concentrations for all
pesticides were degraded within 20–25 h for all the molecules except the organochlorine
heptachlor, which completely degraded after 30 h. Statistical information for the measure-
ments are included in the Supplementary Materials in Table S2 without photocatalyst, Table
S3 with 1% TiO2, and Table S4 with 1% ZnO. The standard deviation of the values was very
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low in the range between 0.001–0.004 which confirms the accuracy of the measurement.
It is important to mention that it has been previously reported that no degradation for all
of the five pesticide residues can occur in absence of sunlight [14]. Even in presence of
sunlight, the photolysis of the pesticide residues always occurs at slower rate than in the
presence of photocatalyst [32].
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heptachlor, (c) dimethoate, (d) methomyl, (e) chlorpyrifos methyl.

For comparing the effect of the two photocatalysts, the percentage of degradation rate
after 20 h irradiation was plotted as shown in Figure 4. It can be clearly observed that
the TiO2 showed slightly enhanced efficiency over the ZnO especially for the dimethoate,
atrazine, and methomyl. The dimethomate is of particular importance since it is a very
toxic systemic insecticide [14,33]. Nonetheless, both photocatalysts proved to be suitable
for the application of the pesticide removal from soil.

Figure 5 shows a comparison of the concentration of the five pesticides at each time
interval. From the figure, it can be shown that starting from the same concentration at
around 4000 ppm, the concentrations of organophospates (dimethoanoate and chlorpyrifos
methyl) decreased greatly followed by carbamate methomyl, then the organochlorines, the
herbicide atrazine, and finally the slowest degradation was with heptachlor.
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The trend is similar to photodegradation in absence of photocatalysts, however the
degradation time is less. This result is related to chemical structures that affect the pho-
tocatalytic degradation process of the pesticide residues in presence of photocatalyst.
The pesticides belong to three different chemical classes, i.e., carbamates (methomyl),
organophosphates (dimethoate and chlorpyrifos methyl) and organochlorines, which are
atrazine and heptachlor. The organophosphates and carbamates are biodegradable and can
be degraded under sunlight; however, the organochlorines are persistent. The herbicide
atrazine is moderately persistent with a half-life of 66–110 days [34], and heptachlor is
almost 2 years [35]. Both pesticides are non-biodegradable and cannot be degraded using
light, heat, or microorganisms [36,37]. It is important to mention that understanding the
bond energies of the bonds that are cleaved within the degradation process may also explain
the differences in the degradation of the pesticides. However, study of the intermediates is
outside the scope of our study.

To gain more insight into the obtained results, the mechanism of photocatalytic degra-
dation of these pesticides in the soil must be understood. Therefore, it is important to
focus on our understanding of the mechanism on the photocatalytic process using the TiO2
and ZnO photocatalysts. The photolysis of the pesticides is described elsewhere [32]. The
scheme of pesticide degradation on the surface of TiO2 is outlined in Figure 6.
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Upon irradiation, the semiconductor photocatalyst absorbs electromagnetic UV ra-
diation. The photons with energy equal or greater to its band gap are absorbed by the
photocatalyst. For the TiO2, UV absorber and the band gaps are typically 3.2 eV for anatase
or 3.0 eV for rutile [29]. After light absorption, the photocatalyst becomes excited, i.e.,
excitons are generated then the electrons are excited from the valence band into the conduc-
tion band. (Equation (1)). This process creates photo excited positive holes in the valence
band. These excited charge carriers must diffuse though the bulk to the surface of the
photocatalyst. If they successfully reach the surface, the holes will oxidize the pre-adsorbed
donor molecule (D) into D+ and the electrons will reduce the adsorbed acceptors (A) into
A- [29,38]. The most common donors are mainly the water H2O or hydroxyl ions adsorbed
on surface. They get oxidized with the holes to generate the highly reactive hydroxyl
radicals (•OH) according to (Equations (2) and (3)) [39]. The excited electrons will reduce
adsorbed pesticides on the surface of the photocatalyst. The most common electron ac-
ceptor is the O2 which gets reduced into the superoxide radical O·−2 (Equation (4)) [40].
These generated hydroxyl radicals and superoxide radical anions are the major oxidizing
agents that drive the photocatalytic oxidation processes of the pesticide residues. These
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radicals attack the pesticide molecule and decompose it to mineral ions and other products
eventually, i.e., CO2 and H2O (Equation (5)).

However, it is important to mention that the generated electrons and holes may
recombine either at the bulk of the semiconductor due to impurities or low crystallinity
or presence of defects at the surface [31]. The recombination of the photo generated
electrons and hole with the surface states is in competition with the oxidation/reduction
processes due to hole/electron transfer to the adsorbed species on the surface of the
photocatalyst, respectively [31]. Therefore, it must be reduced by addition of an electron
acceptor such as an oxygen-rich environment, since the efficiency will depend on the
oxygen concentration [41,42].

The mechanism is outlined below:

TiO2 + hv→ TiO2 + hVb
+ + ecb

−, (1)

OH− + hvb
+ →•OH, (2)

H2O + hvb
+ →•OH + H+, (3)

O2 + ecb
− → O2

•−, (4)

TiO2 − •OH adsorbed + RH→CO2 + H2O, (5)

The pesticides are often degraded through a series of intermediates and proposed
pathways that have been investigated in the literature [33,37].

However, since the photocatalyst is in the soil, the surface may not be readily available
for the removal of the generated species from the surface. Mass transportation limitations
and high resistance hinder the transport of the molecules. Other soil contaminants may
also block the active sites through adsorption which may hinder the propagation of radicals
and therefore degradation of the pesticide. These are out of the scope of our study and the
competition between adsorption and degradation has been studied elsewhere [43].

Nonetheless, it is important to take into consideration factors that affect the photocat-
alytic degradation of pesticides in soil. These factors include soil thickness [44], irradiation
intensity, the moisture [45,46], temperature [47], presence of humic acids, and the physic-
ochemical properties of the soil [48,49]. The moisture is of particular importance and it
has been reported that the photocatalytic degradation of pesticides increases as the water
content increases by Hilarides et al. [46], Shelton and Parkin [45], Frank et al. [44], and
Graebing et al. [47]. This can be explained by the enhancement of formation of hydroxyl
radicals and superoxide radical anions (O2•−) which will enhance the photocatalytic degra-
dation of the pesticides as described above. Another effect of moisture is that water greatly
increases the amount of radiation absorbed in the soil [50].

It is important to mention that the properties of the soil are also crucial to determine
the environmental impacts of TiO2 and the ZnO on the soil. A dual effect is observed
for both TiO2 and ZnO i.e., they can play both beneficial and toxic roles depending on
the soil conditions. Based on the literature, soil properties play a crucial role in the major
processes of dispersing, aggregation, stability, bioavailability, and transport of ZnO NPs
and their release into the soil [51]. The transfer of ZnO NPs into the soil can affect the soil
components, and, consequently, the structure of plants. However, one of the serious side
effect of ZnO nanoparticles is that they disturb the bacterial communities in the soil [52].
On the other hand, it has been reported that the use of zinc oxide nanoparticles (ZnO NPs)
is beneficial for the soil, and it is expected to increase soil fertility, crop productivity, and
food quality [51].

A similar dual effect of TiO2 was observed in a recent review. For TiO2, a recent
review paper showed that adverse side effects were observed in food products where the
exposure concentration was very high (>1000 mg/L), which led to accumulation of the
TiO2 nanoparticles [53]. The TiO2 nanoparticles deteriorated the seed germination, growth,
and yield in different food crops. Additionally, they possess toxic effects on plant growth-
promoting bacteria (PGPB) and decrease the concentration of these bacteria which affects
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plant productivity, which can be detrimental to soil health [54]. On the other hand, suitable
exposure of TiO2 concentrations enhanced the germination and growth by increasing the
water and mineral uptake from the soil [53]. Other physical properties of the photocatalysts
such as the nanoparticle size and shape have been shown to influence the response of soils
to TiO2.

Future investigations can be complementary studies of these factors to enhance the
efficiency of the pesticide photocatalytic degradation while maintaining minimum environ-
mental impact.

4. Conclusions

In this work, the photodegradation of the five most abundant pesticides in our sam-
ples were studied in ten soil samples taken from two vegetable and date farms in the
Saudi Arabia. The samples were extracted by the QuEChERS method and analyzed using
gas chromatography–mass spectrometry (GC–MS). The five pesticides with the highest
concentrations were degraded under UV radiation at λ = 306 nm in absence and presence
of photocatalysts. The photocatalysts used were 1% of TiO2 or ZnO. The results showed
successful photolysis of atrazine (OCP), chlorpyrifos methyl (OPP), dimethoate (OPP),
heptachlor (OCP), and methomyl (Carb) in the presence or absence of the photocatalyst.
In the absence of photocatalysts, the pesticide concentrations deteriorated from around
3000–4000 ppb and completely degraded within 60–100 h. However, in the presence of a
photocatalyst (TiO2 or ZnO), the pesticides degraded at faster rates within 20–24 h, except
the heptachlor organochlorine pesticide which needed 30 h. The results show that TiO2 ex-
hibited enhanced photocatalytic activity over ZnO. The conditions of the photodegradation
process mimic the real environmental conditions and therefore can be applied to soils at a
large scale. The effect of the structure of the pesticides on the photodegradation process
was reported earlier in previous studies as discussed in aqueous media and not in soil.
Investigating the effect of soil on the mechanism of degradation of these pesticides is crucial.
Evaluating the effect of moisture, soil thickness, and irradiation intensity gives more insight
and allows enhancing the efficiency and recyclability of the photocatalyst. In addition,
understanding of the soil properties will aid to assess and minimize the environmental
impact of using such nanoparticles. Future work involves studying visible responsive
photocatalysts for pesticide degradation.
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