Microsecond Electrical Breakdown in Water: Advances Using Emission Analysis and Cavitation Bubble Theory
Abstract
:1. Introduction
2. Results and Discussion
2.1. Emission during Discharge Propagation of the Cathode Regime
2.1.1. Fast Imaging
2.1.2. Emission Spectroscopy
2.2. Bubble Dynamics
2.2.1. Modified Rayleigh–Plesset Model
2.2.2. Initial Pressure
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chen, Q.; Li, J.; Li, Y. A review of plasma–liquid interactions for nanomaterial synthesis. J. Phys. D Appl. Phys. 2015, 48, 424005. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, D.; Patel, J.; Svrcek, V.; Maguire, P. Plasma–Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Process. Polym. 2012, 9, 1074–1085. [Google Scholar] [CrossRef]
- Fridman, A.; Friedman, G.; Weltmann, K.D.; Kramer, A. Plasma Medicine; Begell House, Inc.: Danvers, MA, USA, 2011. [Google Scholar]
- Joshi, R.P.; Thagard, S.M. Streamer-Like Electrical Discharges in Water: Part II. Environmental Applications. Plasma Chem. Plasma Process. 2013, 33, 17–49. [Google Scholar] [CrossRef]
- Locke, B.R. Environmental Applications of Electrical Discharge Plasma with Liquid Water: A Mini Review. Int. J. Plasma Environ. Sci. Technol. 2012, 6, 194–203. [Google Scholar]
- Joshi, R.P.; Thagard, S.M. Streamer-Like Electrical Discharges in Water: Part I. Fundamental Mechanisms. Plasma Chem. Plasma Process. 2013, 33, 1–15. [Google Scholar] [CrossRef]
- Locke, B.R.; Thagard, S.M. Analysis and Review of Chemical Reactions and Transport Processes in Pulsed Electrical Discharge Plasma Formed Directly in Liquid Water. Plasma Chem. Plasma Process. 2012, 32, 875–917. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Vanraes, P.; Bogaerts, A. Plasma physics of liquids—A focused review. Appl. Physics Rev. 2018, 5, 031103. [Google Scholar] [CrossRef]
- Hebner, R.E. Measurement of Electrical Breakdown in Liquids. In The Liquid State and Its Electrical Properties; Kunhardt, E.E., Christophorou, L.G., Luessen, L.H., Eds.; Springer: Boston, MA, USA, 1988. [Google Scholar] [CrossRef]
- Lewis, T.J. An overview of Electrical Processes leading to dielectric breakdown of liquids. In The Liquid State and Its Electrical Properties; Kunhardt, E.E., Christophorou, L.G., Luessen, L.H., Eds.; Springer: Boston, MA, USA, 1988. [Google Scholar] [CrossRef]
- Bruggeman, P.; Schram, D.; Gonzalez, M.A.; Rego, R.; Kong, M.G.; Leys, C. Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sources Sci. Technol. 2009, 18, 025017. [Google Scholar] [CrossRef]
- Lesaint, O. Prebreakdown phenomena in liquids: Propagation ‘modes’ and basic physical properties. J. Phys. D Appl. Phys. 2016, 49, 144001. [Google Scholar] [CrossRef]
- Farazmand, B. Study of electric breakdown of liquid dielectrics using Schlieren optical techniques. British J. Appl. Phys. 1961, 12, 251. [Google Scholar] [CrossRef]
- Deroy, J.; Claverie, A.; Avrillaud, G.; Boustie, M.; Mazanchenko, E.; Assous, D.; Chuvatin, A. Optical diagnostics for high power pulsed underwater electrical discharge characterization. J. Phys. 2014, 500, 142010. [Google Scholar] [CrossRef] [Green Version]
- Kocik, M.; Dors, M.; Podlinski, J.; Mizeraczyk, J.; Kanazawa, S.; Ichiki, R.; Sato, T. Characterisation of pulsed discharge in water. Eur. Phys. J. Appl. Phys. 2013, 64, 10801. [Google Scholar] [CrossRef]
- Nieto-Salazar, J.; Bonifaci, N.; Denat, A.; Lesaint, O. Characterization and spectroscopic study of positive streamers in water. In Proceedings of the 2005 IEEE International Conference on Dielectric Liquids, Coimbra, Portugal, 26 June–1 July 2005. [Google Scholar]
- Clements, J.S.; Sato, M.; Davis, R.H. Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-Voltage Discharge in Water. IEEE Trans. Ind. Appl. 1987, IA-23, 224–235. [Google Scholar] [CrossRef]
- Grosse, K.; Held, J.; Kai, M.; von Keudell, A. Nanosecond plasmas in water: Ignition, cavitation and plasma parameters. Plasma Sources Sci. Technol. 2019, 28, 085003. [Google Scholar] [CrossRef]
- Rond, C.; Desse, J.M.; Fagnon, N.; Aubert, X.; Er, M.; Vega, A.; Duten, X. Time-resolved diagnostics of a pin-to-pin pulsed discharge in water: Pre-breakdown and breakdown analysis. J. Phys. D Appl. Phys. 2018, 51, 335201. [Google Scholar] [CrossRef] [Green Version]
- Rond, C.; Fagnon, N.; Vega, A.; Duten, X. Statistical analysis of a micro-pulsed electrical discharge in water. J. Phys. D Appl. Phys. 2020, 53, 335204. [Google Scholar] [CrossRef]
- Dufour, B.; Fagnon, N.; Vega, A.; Duten, X.; Rond, C. Analysis of discharge regimes obtained by microsecond underwater electrical breakdown in regard to energy balance. J. Phys. D Appl. Phys. 2021, 54, 365202. [Google Scholar] [CrossRef]
- Bruggeman, P.; Verreycken, T.; Gonzalez, M.A.; Walsh, J.L.; Kong, M.G.; Leys, C.; Schram, D.C. Optical emission spectroscopy as a diagnostic for plasmas in liquids: Opportunities and pitfalls. J. Phys. D Appl. Phys. 2010, 43, 124005. [Google Scholar] [CrossRef]
- Vanraes, P.; Nikiforov, A.; Leys, C. Electrical and spectroscopic characterization of underwater plasma discharge inside rising gas bubbles. J. Phys. D Appl. Phys. 2012, 45, 245206. [Google Scholar] [CrossRef]
- Dobrynin, D.; Seepersad, Y.; Pekker, M.; Schneider, M.; Friedman, G.; Fridman, A. Non-equilibrium nanosecond-pulsed plasma generation in the liquid phase (water, PDMS) without bubbles: Fast imaging, spectroscopy and leader-type model. J. Phys. D Appl. Phys. 2013, 46, 105201. [Google Scholar] [CrossRef]
- Sun, B.; Sato, M.; Sid Clements, J. Optical study of active species produced by a pulsed streamer corona discharge in water. J. Electrost. 1997, 39, 189–202. [Google Scholar] [CrossRef]
- Inoue, K.; Takahashi, S.; Sakakibara, N.; Toko, S.; Ito, T.; Terashima, K. Spatiotemporal optical emission spectroscopy to estimate electron density and temperature of plasmas in solution. J. Phys. D Appl. Phys. 2020, 53, 235202. [Google Scholar] [CrossRef]
- Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. J. Ser. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.S. The Dynamics of Cavitation Bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Shima, A.; Tomita, Y. The behavior of a spherical bubble near a solid wall in a compressible liquid. Ingenieur-Archiv 1981, 51, 243–255. [Google Scholar]
- Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T. Dynamics of bubbles created by plasma in heptane for micro-gap conditions. J. Acoust. Soc. Am. 2013, 134, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Busch, S.; Parlitz, U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 1996, 100, 148–165. [Google Scholar] [CrossRef]
- Lam, J.; Lombard, J.; Dujardin, C.; Ledoux, G.; Merabia, S.; Amans, D. Dynamical study of bubble expansion following laser ablation in liquids. Appl. Phys. Lett. 2016, 108, 074104. [Google Scholar] [CrossRef]
Regime | |||
---|---|---|---|
Cathode | 155 µm (190 µm) | 15 m/s | 170 bar (86 bar) |
Anode | 155 µm | 12.4 m/s | 1200 bar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rond, C.; Fagnon, N.; Dufour, B.; Nguyen, S.T.; Vega, A.; Duten, X. Microsecond Electrical Breakdown in Water: Advances Using Emission Analysis and Cavitation Bubble Theory. Molecules 2022, 27, 662. https://doi.org/10.3390/molecules27030662
Rond C, Fagnon N, Dufour B, Nguyen ST, Vega A, Duten X. Microsecond Electrical Breakdown in Water: Advances Using Emission Analysis and Cavitation Bubble Theory. Molecules. 2022; 27(3):662. https://doi.org/10.3390/molecules27030662
Chicago/Turabian StyleRond, Cathy, Nicolas Fagnon, Benjamin Dufour, Son Truong Nguyen, Arlette Vega, and Xavier Duten. 2022. "Microsecond Electrical Breakdown in Water: Advances Using Emission Analysis and Cavitation Bubble Theory" Molecules 27, no. 3: 662. https://doi.org/10.3390/molecules27030662
APA StyleRond, C., Fagnon, N., Dufour, B., Nguyen, S. T., Vega, A., & Duten, X. (2022). Microsecond Electrical Breakdown in Water: Advances Using Emission Analysis and Cavitation Bubble Theory. Molecules, 27(3), 662. https://doi.org/10.3390/molecules27030662