Preservative Effect on Canned Mackerel (Scomber colias) Lipids by Addition of Octopus (Octopus vulgaris) Cooking Liquor in the Packaging Medium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture and Lipid Content
2.2. Determination of Lipid Hydrolysis
2.3. Determination of Lipid Oxidation
2.4. FA Analysis
3. Materials and Methods
3.1. Sample Preparation
3.2. Determination of Moisture and Lipid Content
3.3. Assessment of Lipid Damage
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Blanco, M.; Sotelo, C.G.; Chapela, M.J.; Pérez-Martín, R.I. Towards sustainable and efficient use of fishery resources: Present and future trends. Trends Food Sci. Technol. 2007, 18, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, V. Marine product for health care. In Marine Product for Health Care; Venugopal, V., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 185–214. [Google Scholar]
- Gharsallah, N.; Khannous, L.; Souissi, N.; Nasri, M. Biological treatment of saline wastewaters from marine-products processing factories by a fixed-bed reactor. J. Chem. Technol. Biotechnol. 2002, 77, 865–870. [Google Scholar] [CrossRef]
- Uttamangkabovorn, M.; Prasertsan, P.; Kittikun, A.H. Water conservation in canned tuna plant in Thailand. J. Clean. Prod. 2005, 13, 547–555. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- Rustad, T.; Storro, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Achour, M.; Khelifi, O.; Bouazizi, I.; Hamdi, M. Design of an integrated bioprocess for the treatment of tuna processing liquid effluents. Process Biochem. 2000, 35, 1013–1017. [Google Scholar] [CrossRef]
- Ahn, C.B.; Kim, H.R. Processing of the extract powder using skipjack cooking juice and its taste compounds. Korean J. Food Sci. Technol. 1996, 28, 696–701. [Google Scholar]
- Jao, C.L.; Ko, W.C. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish. Sci. 2002, 68, 430–435. [Google Scholar] [CrossRef]
- Kanpairo, K.; Usawakesmanee, W.; Sirivongpaisal, P.; Siripongvutikorn, S. The compositions and properties of spray dried tuna flavor powder produced from tuna precooking juice. Int. Food Res. J. 2012, 19, 893–899. [Google Scholar]
- Li, K.X.; Ding, H.P.; Zhou, X.J.; Zhang, J.; Zhang, H.Q.; Liu, L.P. Antioxidant and deoridizing treatment of tuna steamed juice and development of its flavor salad. Sci. Technol. Food Ind. 2020, 41, 153–160. [Google Scholar]
- Sieiro, M.P.; Aubourg, S.P.; Rocha, F. Seasonal study of the lipid composition in different tissues of the common octopus (Octopus vulgaris). Eur. J. Lipid Sci. Technol. 2006, 108, 479–487. [Google Scholar] [CrossRef]
- Barbosa, A.; Vaz-Pires, P. Quality index method (QIM): Development of a sensorial scheme for common octopus (Octopus vulgaris). Food Cont. 2004, 15, 161–168. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hur, S.J. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem. 2017, 228, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Tang, X.; Xua, L.; Wanga, S. Antibacterial properties and possible action mechanism of chelating peptides-zinc nanocomposite against Escherichia coli. Food Cont. 2019, 106, 106675. [Google Scholar] [CrossRef]
- Oh, H.S.; Kang, K.T.; Kim, H.S.; Lee, J.H.; Jee, S.J.; Ha, J.H.; Kim, J.J.; Heu, M.S. Food Component characteristics of seafood cooking drips. J. Korean Soc. Food Sci. Nutr. 2007, 36, 595–602. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.J.; Choi, J.I.; Kim, J.H.; Chun, B.S.; Ahn, D.H.; Kwon, J.H.; Kim, Y.J.; Byun, M.W.; Lee, J.W. Effect of electron beam irradiation on the physiological activities of cooking drips from Enteroctopus dofleini. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1190–1195. [Google Scholar] [CrossRef]
- Choi, J.I.; Kim, Y.J.; Sung, N.Y.; Kim, J.H.; Ahn, D.H.; Chun, B.S.; Cho, K.Y.; Byun, M.W.; Lee, J.W. Investigation on the increase of antioxidant activity of cooking drip from Enteroctopus dofleini by irradiation. J. Korean Soc. Food Sci. Nutr. 2009, 38, 121–124. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Murado, M.A. Enzymatic hydrolysates from food wastewater as a source of peptones for lactic acid bacteria productions. Enz. Microb. Technol. 2008, 43, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Piclet, G. Le poisson aliment. Composition-Intérêt nutritionnel. Cah. Nutr. Diét. 1987, 22, 317–335. [Google Scholar]
- Horner, W. Canning fish and fish products. In Fish Processing Technology, 2nd ed.; Hall, G., Ed.; Blackie Academic and Professional, Chapman and Hall: London, UK, 1997; pp. 119–159. [Google Scholar]
- Lukoshkina, M.; Odoeva, G. Kinetics of chemical reactions for prediction of quality of canned fish during storage. App. Biochem. Microb. 2003, 39, 321–327. [Google Scholar] [CrossRef]
- Barbosa, R.G.; Trigo, M.; Campos, C.A.; Aubourg, S.P. Preservative effect of algae extracts on lipid composition and rancidity development in brine-canned Atlantic chub mackerel (Scomber colias). Eur. J. Lipid Sci. Technol. 2019, 121, 1900129. [Google Scholar] [CrossRef]
- Aubourg, S.P. Review: Loss of quality during the manufacture of canned fish products. Food Sci. Technol. Int. 2001, 7, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, R.G.; Trigo, M.; Prego, R.; Fett, R.; Aubourg, S.P. The chemical composition of different edible locations (central and edge muscles) of flat fish (Lepidorhombus whiffiagonis). Int. J. Food Sci. Technol. 2018, 53, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Aubourg, S.P.; Gallardo, J.M.; Medina, I. Changes in lipids during different sterilising conditions in canning albacore (Thunnus alalunga) in oil. Int. J. Food Sci. Technol. 1997, 32, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Carriles, N.; Aubourg, S.P. Effect of chill storage under different icing conditions on sensory and physical properties of canned farmed salmon (Oncorhynchus kisutch). Int. J. Food Sci. Technol. 2010, 45, 295–304. [Google Scholar] [CrossRef]
- Refsgaard, H.; Brockhoff, P.; Jensen, B. Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage. J. Agric. Food Chem. 2000, 48, 3280–3285. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, S.P. Fluorescence study of the prooxidant activity of free fatty acids on marine lipids. J. Sci. Food Agric. 2001, 81, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Labuza, T. Kinetics of lipid oxidation in foods. CRC Crit. Rev. Food Technol. 1971, 2, 355–405. [Google Scholar] [CrossRef]
- Medina, I.; Sacchi, R.; Aubourg, S.P. A 13C-NMR study of lipid alterations during fish canning: Effect of filling medium. J. Sci. Food Agric. 1995, 69, 445–450. [Google Scholar] [CrossRef]
- Naseri, M.; Rezaei, M.; Moieni, S.; Hosseini, H.; Eskandari, S. Effects of different filling media on the oxidation and lipid quality of canned silver carp (Hypophthalmichthys molitrix). Int. J. Food Sci. Technol. 2011, 46, 1149–1156. [Google Scholar] [CrossRef]
- Mohan, C.O.; Remya, S.; Murthy, L.N.; Ravishankar, C.N.; Kumar, K.A. Effect of filling medium on cooking time and quality of canned yellowfin tuna (Thunnus albacares). Food Cont. 2015, 50, 320–327. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Trigo, M.; Martínez, B.; Rodríguez, A. Effect of prior chilling period and alga-extract packaging on the quality of a canned underutilised fish species. Foods 2020, 9, 1333. [Google Scholar] [CrossRef] [PubMed]
- Selmi, S.; Monser, L.; Sadok, S. The influence of local canning process and storage on pelagic fish from Tunisia: Fatty acids profile and quality indicators. J. Food Proc. Preserv. 2008, 32, 443–457. [Google Scholar] [CrossRef]
- Uriarte-Montoya, M.H.; Villalba-Villalba, A.G.; Pacheco-Aguilar, R.; Ramírez-Suárez, J.C.; Lugo-Sánchez, M.E.; García-Sánchez, G.; Carvallo-Ruiz, M.G. Changes in quality parameters of Monterey sardine (Sardinops sagax caerulea) muscle during the canning process. Food Chem. 2010, 122, 482–487. [Google Scholar] [CrossRef]
- Ortiz, J.A.; Vivanco, J.P.; Aubourg, S.P. Lipid and sensory quality of canned Atlantic salmon (Salmo salar): Effect of the use of different seaweed extracts as covering liquids. Eur. J. Lipid Sci. Technol. 2014, 116, 596–605. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Medina, I. Quality differences assessment in canned sardine (Sardina pilchardus) by fluorescence detection. J. Agric. Food Chem. 1997, 45, 3617–3621. [Google Scholar] [CrossRef] [Green Version]
- Losada, V.; Rodríguez, A.; Ortiz, J.; Aubourg, S.P. Quality enhancement of canned sardine (Sardina pilchardus) by a preliminary chilling treatment. Eur. J. Lipid Sci. Technol. 2006, 108, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.C.; Shiau, C.Y.; Chen, H.M.; Chiou, T.K. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal. 2003, 11, 148–153. [Google Scholar] [CrossRef]
- Pokorný, J. Browning from lipid-protein interactions. Prog. Food Nutr. Sci. 1981, 5, 421–428. [Google Scholar]
- Cheong, H.S. Antioxidant effect of histidine containing low molecular weight peptide isolated from skipjack boiled extract. Korean J. Food Cook. Sci. 2007, 23, 221–226. [Google Scholar]
- Medina, I.; Sacchi, R.; Giudicianni, I.; Aubourg, S.P. Oxidation in fish lipids during thermal stress as studied by 13C-NMR spectroscopy. J. Amer. Oil Chem. Soc. 1998, 75, 147–154. [Google Scholar] [CrossRef]
- Naseri, M.; Rezaei, M. Lipid changes during long-term storage of canned sprat. J. Aquat. Food Prod. Technol. 2012, 21, 48–58. [Google Scholar] [CrossRef]
- Uauy, R.; Valenzuela, A. Marine oils: The health benefits of n-3 fatty acids. Nutrition 2000, 16, 680–684. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Reddy, C.R.; Jha, B. Algal lipids, fatty acids and sterols. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 87–134. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–937. [Google Scholar]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Herbes, S.E.; Allen, C.P. Lipid quantification of freshwater invertebrates: Method modification for microquantitation. Can. J. Fish. Aquat. Sci. 1983, 40, 1315–1317. [Google Scholar] [CrossRef]
- Lowry, R.; Tinsley, I. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; McKay, J. The estimation of peroxides in fats and oils by the ferric thiocyanate method. J. Am. Oil Chem. Soc. 1949, 26, 360–363. [Google Scholar] [CrossRef]
- Vyncke, W. Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
Constituent | Initial Fish | Canned Fish | |||
---|---|---|---|---|---|
C-CT | C-10 | C-25 | C-50 | ||
Moisture | 690.4 b (19.1) | 596.6 a (17.1) | 601.0 a (20.9) | 610.6 a (24.3) | 598.5 a (30.8) |
Lipids | 80.7 a (21.0) | 153.5 b (9.5) | 148.4 b (20.5) | 132.6 b (12.6) | 156.2 b (34.5) |
Quality Index | Initial Fish | Canned Fish | |||
---|---|---|---|---|---|
C-CT | C-10 | C-25 | C-50 | ||
Peroxide value (meq. active oxygen·kg−1 lipids) | 0.24 a (0.04) | 0.29 ab (0.08) | 0.48 b (0.17) | 0.35 b (0.03) | 0.31 b (0.09) |
Thiobarbituric acid index (mg malondialdehyde·kg−1 muscle) | 0.21 a (0.07) | 0.43 b (0.10) | 0.42 ab (0.13) | 0.26 a (0.03) | 0.29 ab (0.11) |
Fluorescence ratio | 3.53 a (0.47) | 4.80 b (0.34) | 4.18 ab (0.92) | 3.87 ab (0.80) | 3.72 a (0.66) |
FA Group or Ratio | Initial Fish | Canned Fish | |||
---|---|---|---|---|---|
C-CT | C-10 | C-25 | C-50 | ||
Total saturated FA | 33.79 b (0.34) | 34.41 ab (2.81) | 32.16 ab (1.49) | 33.18 a (0.18) | 32.51 a (1.24) |
Total monounsaturated FA | 35.35 b (2.82) | 30.51 ab (6.44) | 34.79 ab (0.95) | 31.29 a (0.95) | 32.36 ab (4.16) |
Total polyunsaturated FA | 30.36 a (3.04) | 35.07 ab (3.79) | 33.05 ab (2.35) | 35.52 b (1.13) | 35.12 ab (4.87) |
ω3/ω6 ratio | 9.04 a (1.10) | 10.83 b (0.46) | 9.09 ab (1.86) | 9.53 ab (0.67) | 9.86 ab (1.63) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malga, J.M.; Trigo, M.; Martínez, B.; Aubourg, S.P. Preservative Effect on Canned Mackerel (Scomber colias) Lipids by Addition of Octopus (Octopus vulgaris) Cooking Liquor in the Packaging Medium. Molecules 2022, 27, 739. https://doi.org/10.3390/molecules27030739
Malga JM, Trigo M, Martínez B, Aubourg SP. Preservative Effect on Canned Mackerel (Scomber colias) Lipids by Addition of Octopus (Octopus vulgaris) Cooking Liquor in the Packaging Medium. Molecules. 2022; 27(3):739. https://doi.org/10.3390/molecules27030739
Chicago/Turabian StyleMalga, José M., Marcos Trigo, Beatriz Martínez, and Santiago P. Aubourg. 2022. "Preservative Effect on Canned Mackerel (Scomber colias) Lipids by Addition of Octopus (Octopus vulgaris) Cooking Liquor in the Packaging Medium" Molecules 27, no. 3: 739. https://doi.org/10.3390/molecules27030739
APA StyleMalga, J. M., Trigo, M., Martínez, B., & Aubourg, S. P. (2022). Preservative Effect on Canned Mackerel (Scomber colias) Lipids by Addition of Octopus (Octopus vulgaris) Cooking Liquor in the Packaging Medium. Molecules, 27(3), 739. https://doi.org/10.3390/molecules27030739