Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO2 Capture
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Synthesized PILs
2.2. TGA and DSC Analysis
2.3. Density (ρ), Thermal Expansion Coefficient (αp), Standard Entropy (S°) and Lattice Potential Energy (Upot) Measurement
2.4. Viscosity (η) Measurement
2.5. Refractive Index (nD) Measurement
2.6. Thermophysical Properties Correlations
2.7. CO2 Absorption Measurement
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of PILs
3.3. Characterization
3.3.1. Structural Confirmation and Water Content
3.3.2. TGA Analysis
3.3.3. DSC Analysis
3.3.4. Density (p) and Viscosity (ŋ) Measurement
3.3.5. Refractive Index (nD) Measurement
3.3.6. CO2 Absorption Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muda, N.; Jin, T. On prediction of depreciation time of fossil fuel in Malaysia. J. Math Stat. 2012, 8, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Mokhatab, S.; Poe, W.A.; Mak, J.Y. (Eds.) Chapter 1—Natural Gas Fundamentals. In Handbook of Natural Gas Transmission and Processing, 3rd ed.; Gulf Professional Publishing: Boston, MA, USA, 2015; pp. 1–36. ISBN 978-0-12-801499-8. [Google Scholar]
- Guo, B.; Ghalambor, A. (Eds.) Chapter 1—Introduction. In Natural Gas Engineering Handbook, 2nd ed.; Gulf Publishing Company: Houston, TX, USA, 2005; pp. 1–11. ISBN 978-1-933762-41-8. [Google Scholar]
- Speight, J.G. (Ed.) 5—Recovery, Storage, and Transportation. In Natural Gas, 2nd ed.; Gulf Professional Publishing: Boston, MA, USA, 2019; pp. 149–186. ISBN 978-0-12-809570-6. [Google Scholar]
- Liang, Z.; Rongwong, W.; Liu, H.; Fu, K.; Gao, H.; Cao, F.; Zhang, R.; Sema, T.; Henni, A.; Sumon, K.; et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. Int. J. Greenh. Gas Control. 2015, 40, 26–54. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Díaz, D.; Muñiz-Mouro, A.; Navaza, J.M.; Rumbo, A. Diamine versus amines blend for CO2 chemical absorption. AIChE J. 2021, 67, e17071. [Google Scholar] [CrossRef]
- Huertas, J.I.; Gomez, M.D.; Giraldo, N.; Garzón, J. CO2 absorbing capacity of MEA. J. Chem. 2015, e965015. [Google Scholar] [CrossRef] [Green Version]
- Dubois, L.; Thomas, D. Postcombustion CO2 capture by chemical absorption: Screening of aqueous amine(s)-based solvents. Energy Procedia 2013, 37, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Spigarelli, B.P.; Kawatra, S.K. Opportunities and challenges in carbon dioxide capture. J. CO2 Util. 2013, 1, 69–87. [Google Scholar] [CrossRef]
- Singh, P.; Niederer, J.P.M.; Versteeg, G.F. Structure and activity relationships for amine-based CO2 absorbents-II. Chem. Eng. Res. Des. 2009, 87, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Ünveren, E.E.; Monkul, B.Ö.; Sarıoğlan, Ş.; Karademir, N.; Alper, E. Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum 2017, 3, 37–50. [Google Scholar] [CrossRef]
- Lu, Y.-K.; Wang, H.-H.; Hu, Q.-X.; Ma, Y.-Y.; Hou, L.; Wang, Y.-Y. A stable Cd(II)-based MOF with efficient CO2 capture and conversion, and fluorescence sensing for ronidazole and dimetridazole. J. Solid State Chem. 2020, 295, 121890. [Google Scholar] [CrossRef]
- Choi, S.; Drese, J.; Jones, C. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2009, 2, 796–854. [Google Scholar] [CrossRef]
- Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Flue gas treatment via CO2 adsorption. Chem. Eng. J. 2011, 171, 760–774. [Google Scholar] [CrossRef]
- Chen, G.; Chen, G.; Cao, F.; Zhang, R.; Gao, H.; Liang, Z. Mass transfer performance and correlation for CO2 absorption into aqueous 3-diethylaminopropylamine solution in a hollow fiber membrane contactor. Chem. Eng. Process 2020, 152, 107932. [Google Scholar] [CrossRef]
- Saidi, M. CO2 absorption intensification using novel DEAB amine-based nanofluids of CNT and SiO2 in membrane contactor. Chem. Eng. Process 2020, 149, 107848. [Google Scholar] [CrossRef]
- Sohaib, Q.; Vadillo, J.M.; Gómez-Coma, L.; Albo, J.; Druon-Bocquet, S.; Irabien, A.; Sanchez-Marcano, J. CO2 capture with room temperature ionic liquids; coupled absorption/desorption and single module absorption in membrane contactor. Chem. Eng. Sci. 2020, 223, 115719. [Google Scholar] [CrossRef]
- Cao, F.; Gao, H.; Xiong, Q.; Liang, Z. Experimental studies on mass transfer performance for CO2 absorption into aqueous N,N-dimethylethanolamine (DMEA) based solutions in a PTFE hollow fiber membrane contactor. Int. J. Greenh. Gas Control 2019, 82, 210–217. [Google Scholar] [CrossRef]
- Sarkar, A.; Sharma, G.; Singh, D.; Gardas, R.L. Effect of anion on thermophysical properties of N,N-diethanolammonium based protic ionic liquids. J. Mol. Liq. 2017, 242, 249–254. [Google Scholar] [CrossRef]
- Bounaceur, R.; Lape, N.; Roizard, D.; Vallieres, C.; Favre, E. Membrane processes for post-combustion carbon dioxide capture: A parametric study. Energy 2006, 31, 2556–2570. [Google Scholar] [CrossRef]
- Endo, T.; Murata, H.; Imanari, M.; Mizushima, N.; Seki, H.; Nishikawa, K. NMR study of cation dynamics in three crystalline states of 1-butyl-3-methylimidazolium hexafluorophosphate exhibiting crystal polymorphism. J. Phys. Chem. B 2012, 116, 3780–3788. [Google Scholar] [CrossRef]
- Smith, J.A.; Webber, G.B.; Warr, G.G.; Atkin, R. Rheology of protic ionic liquids and their mixtures. J. Phys. Chem. B 2013, 117, 13930–13935. [Google Scholar] [CrossRef]
- Patra, R.N.; Gardas, R.L. Effect of nitro groups on desulfurization efficiency of benzyl-substituted imidiazolium-based ionic liquids: Experimental and computational approach. Energy Fuels 2019, 33, 7659–7666. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, G.; Gardas, R.L. Thermodynamic and ultrasonic properties of ascorbic acid in aqueous protic ionic liquid solutions. PLoS ONE 2015, 10, e0126091. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Rochelle, G. Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia 2009, 1, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Chung, Y.G.; Kang, J.H.; Song, H. CO2 absorption characteristics of amino group functionalized imidazolium-based amino acid ionic liquids. J. Mol. Liq. 2020, 297, 111825. [Google Scholar] [CrossRef]
- Tu, Z.; Liu, P.; Zhang, X.; Shi, M.; Zhang, Z.; Luo, S.; Zhang, L.; Wu, Y.; Hu, X. Highly-selective separation of CO2 from N2 or CH4 in task-specific ionic liquid membranes: Facilitated transport and salting-out effect. Sep. Purif. Technol. 2021, 254, 117621. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Z.; Ji, P.; Cheng, J.-P. CO2 absorption by DBU-based protic ionic liquids: Basicity of anion dictates the absorption capacity and mechanism. Front. Chem. 2019, 6, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, R.; Oncsik, T.; Mitschke, B.; MacFarlane, D.R. Base-rich diamino protic ionic liquid mixtures for enhanced CO2 capture. Sep. Purif. Technol. 2018, 196, 27–31. [Google Scholar] [CrossRef]
- Vijayraghavan, R.; Pas, S.; Izgorodina, E.; Macfarlane, D. Diamino protic ionic liquids for CO2 capture. Phys. Chem. Chem. Phys. 2013, 15, 19994. [Google Scholar] [CrossRef]
- Zheng, W.-T.; Zhang, F.; Wu, Y.-T.; Hu, X.-B. Concentrated aqueous solutions of protic ionic liquids as effective CO2 absorbents with high absorption capacities. J. Mol. Liq. 2017, 243, 169–177. [Google Scholar] [CrossRef]
- Xu, Y. CO2 absorption behavior of azole-based protic ionic liquids: Influence of the alkalinity and physicochemical properties. J. CO2 Util. 2017, 19, 1–8. [Google Scholar] [CrossRef]
- Wei, L.; Guo, R.; Tang, Y.; Zhu, J.; Liu, M.; Chen, J.; Xu, Y. Properties of aqueous amine based protic ionic liquids and its application for CO2 quick capture. Sep. Purif. Technol. 2020, 239, 116531. [Google Scholar] [CrossRef]
- Zhu, X.; Song, M.; Xu, Y. DBU-based protic ionic liquids for CO2 capture. ACS Sustain. Chem. Eng. 2017, 5, 8192–8198. [Google Scholar] [CrossRef]
- Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Aki, S.N.V.K.; Brennecke, J.F. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 2004, 49, 954–964. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Lopes-da-Silva, J.A.; Freire, M.G.; Coutinho, J.A.P.; Carvalho, P.J. Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilib. 2015, 400, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunus, N.M.; Halim, N.H.; Wilfred, C.D.; Murugesan, T.; Lim, J.W.; Show, P.L. Thermophysical properties and CO2 absorption of ammonium-based protic ionic liquids containing acetate and butyrate anions. Processes 2019, 7, 820. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cao, Y.; Lu, X.; Zhao, C.; Yan, C.; Mu, T. Water sorption in protic ionic liquids: Correlation between hygroscopicity and polarity. New J. Chem. 2013, 37, 1959–1967. [Google Scholar] [CrossRef]
- Seddon, K.; Stark, A.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275–2287. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Shah, F.U. Thermal stability of choline based amino acid ionic liquids. J. Mol. Liq. 2018, 266, 597–602. [Google Scholar] [CrossRef]
- Keshapolla, D.; Srinivasarao, K.; Gardas, R.L. Influence of temperature and alkyl chain length on physicochemical properties of trihexyl- and trioctylammonium based protic ionic liquids. J. Chem. Thermodyn. 2019, 133, 170–180. [Google Scholar] [CrossRef]
- Bandrés, I.; Royo, F.M.; Gascón, I.; Castro, M.; Lafuente, C. Anion influence on thermophysical properties of ionic liquids: 1-butylpyridinium tetrafluoroborate and 1-butylpyridinium Ttriflate. J. Phys. Chem. B 2010, 114, 3601–3607. [Google Scholar] [CrossRef]
- Cai, G.; Yang, S.; Zhou, Q.; Liu, L.; Lu, X.; Xu, J.; Zhang, S. Physicochemical properties of various 2-hydroxyethylammonium sulfonate -based Pprotic ionic liquids and their potential application in hydrodeoxygenation. Front. Chem. 2019, 7, 196. [Google Scholar] [CrossRef]
- Del Sesto, R.E.; Corley, C.; Robertson, A.; Wilkes, J.S. Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem. 2005, 690, 2536–2542. [Google Scholar] [CrossRef]
- Kulkarni, P.S.; Branco, L.C.; Crespo, J.G.; Nunes, M.C.; Raymundo, A.; Afonso, C.A.M. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem. Eur. J. 2007, 13, 8478–8488. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Cheng, Z. Thermal stability of ionic liquids: Current status and prospects for future development. Processes 2021, 9, 337. [Google Scholar] [CrossRef]
- Greaves, T.L.; Weerawardena, A.; Fong, C.; Krodkiewska, I.; Drummond, C.J. Protic ionic liquids: Solvents with tunable phase behavior and physicochemical properties. J. Phys. Chem. B 2006, 110, 22479–22487. [Google Scholar] [CrossRef] [PubMed]
- Nancarrow, P.; Mohammed, H. Ionic liquids in space technology-current and future trends. ChemBioEng Rev. 2017, 4, 106–119. [Google Scholar] [CrossRef]
- Shen, Y.; Kennedy, D.F.; Greaves, T.L.; Weerawardena, A.; Mulder, R.J.; Kirby, N.; Song, G.; Drummond, C.J. Protic ionic liquids with fluorous anions: Physicochemical properties and self-assembly nanostructure. Phys. Chem. Chem. Phys. 2012, 14, 7981–7992. [Google Scholar] [CrossRef]
- Othman Zailani, N.H.Z.; Yunus, N.M.; Ab Rahim, A.H.; Bustam, M.A. Thermophysical properties of newly synthesized ammonium-based protic ionic liquids: Effect of temperature, anion and alkyl chain length. Processes 2020, 8, 742. [Google Scholar] [CrossRef]
- Perumal, M.; Balraj, A.; Jayaraman, D.; Krishnan, J. Experimental investigation of density, viscosity, and surface tension of aqueous tetrabutylammonium-based ionic liquids. Environ. Sci. Pollut. Res. 2021, 28, 63599–63613. [Google Scholar] [CrossRef]
- Gusain, R.; Panda, S.; Bakshi, P.S.; Gardas, R.L.; Khatri, O.P. Thermophysical properties of trioctylalkylammonium bis(salicylato)borate ionic liquids: Effect of alkyl chain length. J. Mol. Liq. 2018, 269, 540–546. [Google Scholar] [CrossRef]
- Yunus, N.M.; Abdul Mutalib, M.I.; Man, Z.; Bustam, M.A.; Murugesan, T. Thermophysical properties of 1-alkylpyridinum bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Thermodyn. 2010, 42, 491–495. [Google Scholar] [CrossRef]
- Wu, B.; Yamashita, Y.; Endo, T.; Takahashi, K.; Castner, E.W. Structure and dynamics of ionic liquids: Trimethylsilylpropyl-substituted cations and bis(sulfonyl)amide anions. J. Chem. Phys. 2016, 145, 244506. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.R.; Mattedi, S.; Aznar, M. Synthesis and physical properties of three protic ionic liquids with the ethylammonium cation. Chem. Eng. Trans. 2015, 43, 1165–1170. [Google Scholar] [CrossRef]
- Singh, D.; Gardas, R.L. Influence of cation size on the ionicity, fluidity, and physiochemical properties of 1,2,4-triazolium based ionic liquids. J. Phys. Chem. B 2016, 120, 4834–4842. [Google Scholar] [CrossRef] [PubMed]
- Zec, N.; Vraneš, M.; Bešter-Rogač, M.; Trtić-Petrović, T.; Dimitrijević, A.; Čobanov, I.; Gadžurić, S. Influence of the alkyl chain length on densities and volumetric properties of 1,3-dialkylimidazolium bromide ionic liquids and their aqueous solutions. J. Chem. Thermodyn. 2018, 121, 72–78. [Google Scholar] [CrossRef]
- Tariq, M.; Forte, P.A.S.; Gomes, M.F.C.; Lopes, J.N.C.; Rebelo, L.P.N. Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 2009, 41, 790–798. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Yang, M.; Li, P.-P.; Sun, S.-S.; Welz-Biermann, U.; Tan, Z.-C.; Zhang, Q.-G. Physicochemical properties of ionic liquids [C3py][NTf2] and [C6py][NTf2]. J. Chem. Eng. Data 2011, 56, 4094–4101. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Li, P.-P.; Welz-Biermann, U.; Chen, J.; Liu, X.-X. Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids. J. Chem. Thermodyn. 2013, 66, 88–94. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Li, Z.; Welz-Biermann, U.; Li, C.-P.; Liu, X.-X. Thermodynamic properties of a new hydrophobic amide-based task-specific ionic liquid [EimCH2CONHBu][NTf2]. J. Chem. Eng. Data 2013, 58, 93–98. [Google Scholar] [CrossRef]
- Glasser, L. Lattice and phase transition thermodynamics of ionic liquids. Thermochim. Acta 2004, 421, 87–93. [Google Scholar] [CrossRef]
- Er, H.; Wang, H. Properties of protic ionic liquids composed of N-alkyl (=hexyl, octyl and 2-ethylhexyl) ethylenediaminum cations with trifluoromethanesulfonate and trifluoroacetate anion. J. Mol. Liq. 2016, 220, 649–656. [Google Scholar] [CrossRef]
- Chennuri, B.K.; Gardas, R.L. Measurement and correlation for the thermophysical properties of hydroxyethyl ammonium based protic ionic liquids: Effect of temperature and alkyl chain length on anion. Fluid Phase Equilib. 2016, 427, 282–290. [Google Scholar] [CrossRef]
- Zhang, X.U.; Faber, D.J.; Post, A.L.; van Leeuwen, T.G.; Sterenborg, H.J.C.M. Refractive index measurement using single fiber reflectance spectroscopy. J. Biophotonics 2019, 12, e201900019. [Google Scholar] [CrossRef] [PubMed]
- Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27, 1197–1203. [Google Scholar] [CrossRef]
- Shaikh, A.R.; Karkhanechi, H.; Kamio, E.; Yoshioka, T.; Matsuyama, H. Quantum mechanical and molecular dynamics simulations of dual-amino-acid ionic liquids for CO2 capture. J. Phys. Chem. C 2016, 120, 27734–27745. [Google Scholar] [CrossRef]
- Gupta, K. Tetracyanoborate based ionic liquids for CO2 capture: From ab initio calculations to molecular simulations. Fluid Phase Equilib. 2016, 415, 34–41. [Google Scholar] [CrossRef]
- Oncsik, T.; Vijayaraghavan, R.; MacFarlane, D.R. High CO2 absorption by diamino protic ionic liquids using azolide anions. Chem. Commun. 2018, 54, 2106–2109. [Google Scholar] [CrossRef]
- Li, F.; Bai, Y.; Zeng, S.; Liang, X.; Wang, H.; Huo, F.; Zhang, X. Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide. Int. J. Greenh. Gas Control 2019, 90, 102801. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Zeng, S.; Zhou, Q.; Dong, H.; Tian, X.; Zhang, S. Density, viscosity, and performances of carbon dioxide capture in 16 absorbents of amine + ionic liquid + H2O, ionic liquid + H2O, and amine + H2O systems. J. Chem. Eng. Data 2010, 55, 3513–3519. [Google Scholar] [CrossRef]
- Sato, Y.; Takikawa, T.; Takishima, S.; Masuoka, H. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 2001, 19, 187–198. [Google Scholar] [CrossRef]
- Yunus, N.M.; Abdul Mutalib, M.I.; Man, Z.; Bustam, M.A.; Murugesan, T. Solubility of CO2 in pyridinium based ionic liquids. Chem. Eng. J. 2012, 189–190, 94–100. [Google Scholar] [CrossRef]
Ionic Liquids | Td | Tg | Tm |
---|---|---|---|
K | °C | °C | |
[EHA][C5] | 416.46 | −97.00 | - |
[EHA][C6] | 421.85 | −98.37 | - |
[EHA][C7] | 424.28 | −96.91 | - |
[BEHA][C5] | 428.47 | −96.95 | −68.34 |
[BEHA][C6] | 431.55 | −91.43 | −66.82 |
[BEHA][C7] | 437.47 | −90.89 | −66.69 |
T/K | 10−4 α/K−1 | |||||
---|---|---|---|---|---|---|
[EHA][C5] | [EHA][C6] | [EHA][C7] | [BEHA][C5] | [BEHA][C6] | [BEHA][C7] | |
293.15 | 7.92 | 7.93 | 7.79 | 9.55 | 9.36 | 9.27 |
303.15 | 7.98 | 7.99 | 7.86 | 9.64 | 9.45 | 9.36 |
313.15 | 8.05 | 8.05 | 7.92 | 9.73 | 9.54 | 9.45 |
323.15 | 8.11 | 8.12 | 7.95 | 9.83 | 9.63 | 9.54 |
333.15 | 8.18 | 8.18 | 8.05 | 9.92 | 9.72 | 9.63 |
343.15 | 8.25 | 8.25 | 8.11 | 10.02 | 9.82 | 9.72 |
353.15 | 8.31 | 8.32 | 8.18 | 10.13 | 9.91 | 9.82 |
363.15 | 8.38 | 8.39 | 8.24 | 10.23 | 10.01 | 9.92 |
Ionic Liquids | Vm | S° | Upot |
---|---|---|---|
nm3 | J·K−1·mol−1 | kJ·mol−1 | |
[EHA][C5] | 0.4242 | 558.3 | 416.0 |
[EHA][C6] | 0.4509 | 591.5 | 409.8 |
[EHA][C7] | 0.4771 | 624.2 | 404.1 |
[BEHA][C5] | 0.6590 | 850.9 | 373.4 |
[BEHA][C6] | 0.6883 | 887.4 | 369.5 |
[BEHA][C7] | 0.7156 | 921.5 | 366.1 |
ILs | A1 | A2 | SD1 | A3 | A4 | SD2 | A5 | A6 | SD3 |
---|---|---|---|---|---|---|---|---|---|
[EHA][C5] | 1.1297 | −0.0007 | 0.0043 | 2842.7 | −8.1026 | 0.002 | 1.5535 | −0.0004 | 0.00005 |
[EHA][C6] | 1.1279 | −0.0007 | 0.0004 | 1772.7 | −5.0403 | 0.006 | 1.5555 | −0.0004 | 0.00118 |
[EHA][C7] | 1.1091 | −0.0007 | 0.0012 | 1217.3 | −3.4491 | 0.006 | 1.5553 | −0.0004 | 0.00146 |
[BEHA][C5] | 1.1161 | −0.0008 | 0.0004 | 152.1 | −0.4278 | 0.027 | 1.5809 | −0.0004 | 0.00146 |
[BEHA][C6] | 1.1076 | −0.0008 | 0.0004 | 139.8 | −0.3918 | 0.024 | 1.5810 | −0.0004 | 0.00103 |
[BEHA][C7] | 1.1056 | −0.0008 | 0.0003 | 155.6 | −0.4367 | 0.024 | 1.5802 | −0.0004 | 0.00115 |
Structure | Name and Abbreviation |
---|---|
2-ethylhexylamine, [EHA] | |
Bis-(2-ethylhexyl)amine, [BEHA] | |
Pentanoic acid, [C5] | |
Hexanoic acid, [C6] | |
Heptanoic acid, [C7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zailani, N.H.Z.O.; Yunus, N.M.; Ab Rahim, A.H.; Bustam, M.A. Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO2 Capture. Molecules 2022, 27, 851. https://doi.org/10.3390/molecules27030851
Zailani NHZO, Yunus NM, Ab Rahim AH, Bustam MA. Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO2 Capture. Molecules. 2022; 27(3):851. https://doi.org/10.3390/molecules27030851
Chicago/Turabian StyleZailani, Nur Hidayah Zulaikha Othman, Normawati M. Yunus, Asyraf Hanim Ab Rahim, and Mohamad Azmi Bustam. 2022. "Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO2 Capture" Molecules 27, no. 3: 851. https://doi.org/10.3390/molecules27030851
APA StyleZailani, N. H. Z. O., Yunus, N. M., Ab Rahim, A. H., & Bustam, M. A. (2022). Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO2 Capture. Molecules, 27(3), 851. https://doi.org/10.3390/molecules27030851