A Comparison of the Gene Expression Profiles of Non-Alcoholic Fatty Liver Disease between Animal Models of a High-Fat Diet and Methionine-Choline-Deficient Diet
Abstract
:1. Introduction
2. Challenges Encountered in NAFLD Animal Models
3. Molecular Signaling Pathways of NAFLD/NASH
3.1. Lipid Metabolism Pathway
3.2. Inflammatory Pathway
3.3. Oxidative Stress Pathway
3.4. Fibrogenesis Pathway
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinella, M.E. Nonalcoholic fatty liver disease a systematic review. JAMA-J. Am. Med. Assoc. 2015, 313, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.; Banini, B.A.; Cazanave, S.C.; Sanyal, A.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016, 65, 1049–1061. [Google Scholar] [CrossRef] [Green Version]
- Wree, A.; Marra, F. The inflammasome in liver disease. J. Hepatol. 2016, 65, 1055–1056. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Stewart, A.G.; Woodman, O.L.; Ritchie, R.H.; Qin, C.X. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front. Pharmacol. 2020, 11, 603926. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targher, G.; Corey, K.E.; Byrne, C.D. NAFLD, and cardiovascular and cardiac diseases: Factors influencing risk, prediction and treatment. Diabetes Metab. 2021, 47, 101215. [Google Scholar] [CrossRef] [PubMed]
- Hadjihambi, A. Cerebrovascular alterations in NAFLD: Is it increasing our risk of Alzheimer’s disease? Anal. Biochem. 2022, 636, 114387. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Hasegawa, G.; Okada, H.; Senmaru, T.; Fukui, M.; Nakamura, N.; Sawada, M.; Kitawaki, J.; Okanoue, T.; Kishimoto, Y.; et al. Leprdb/db Mice with Senescence Marker Protein-30 Knockout (Leprdb/dbSmp30Y/-) Exhibit Increases in Small Dense-LDL and Severe Fatty Liver Despite Being Fed a Standard Diet. PLoS ONE 2013, 8, e65698. [Google Scholar] [CrossRef] [Green Version]
- Okumura, K.; Ikejima, K.; Kon, K.; Abe, W.; Yamashina, S.; Enomoto, N.; Takei, Y.; Sato, N. Exacerbation of dietary steatohepatitis and fibrosis in obese, diabetic KK-Ay mice. Hepatol. Res. 2006, 36, 217–228. [Google Scholar] [CrossRef]
- Sato, W.; Horie, Y.; Kataoka, E.; Ohshima, S.; Dohmen, T.; Iizuka, M.; Sasaki, J.; Sasaki, T.; Hamada, K.; Kishimoto, H.; et al. Hepatic gene expression in hepatocyte-specific Pten deficient mice showing steatohepatitis without ethanol challenge. Hepatol. Res. 2006, 34, 256–265. [Google Scholar] [CrossRef]
- Rada, P.; González-Rodríguez, Á.; García-Monzón, C.; Valverde, Á.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef] [Green Version]
- Cook, W.S.; Jain, S.; Jia, Y.; Cao, W.Q.; Yeldandi, A.V.; Reddy, J.K.; Rao, M.S. Peroxisome proliferator-activated receptor α-responsive genes induced in the newborn but not prenatal liver of peroxisomal fatty acyl-CoA oxidase null mice. Exp. Cell Res. 2001, 268, 70–76. [Google Scholar] [CrossRef]
- Lu, S.C.; Alvarez, L.; Huang, Z.Z.; Chen, L.; An, W.; Corrales, F.J.; Avila, M.A.; Kanel, G.; Mato, J.M. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc. Natl. Acad. Sci. USA 2001, 98, 5560–5565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhry, S.; Nazmy, M.H.; Meakin, P.J.; Dinkova-Kostova, A.T.; Walsh, S.V.; Tsujita, T.; Dillon, J.F.; Ashford, M.L.J.; Hayes, J.D. Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic. Biol. Med. 2010, 48, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Fujita, S.; Yamagishi, A.; Shirai, T.; Maeda, Y.; Suzuki, T.; Kobayashi, K.I.; Inoue, J.; Yamamoto, Y. Brown Rice Inhibits Development of Nonalcoholic Fatty Liver Disease in Obese Zucker (fa/fa) Rats by Increasing Lipid Oxidation Via Activation of Retinoic Acid Synthesis. J. Nutr. 2021, 151, 2705–2713. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Fang, C.H.; So, B.I.; Park, J.Y.; Lee, Y.; Shin, J.H.; Jun, D.W.; Kim, H.; Kim, K.S. Time course of the development of nonalcoholic fatty liver disease in the otsuka long-evans tokushima fatty rat. Gastroenterol. Res. Pract. 2013, 2013, 342648. [Google Scholar] [CrossRef] [Green Version]
- Rhinehart, E.K.; Kalra, S.P.; Kalra, P.S. Neuropeptidergic characterization of the leptin receptor mutated obese Koletsky rat. Regul. Pept. 2004, 119, 3–10. [Google Scholar] [CrossRef]
- Al Zarzour, R.; Alshawsh, M.; Asif, M.; Al-Mansoub, M.; Mohamed, Z.; Ahmad, M.; Abdul Majid, A.; Asmawi, M.; Kaur, G.; Al-dualimi, D.; et al. Adipocytokine Regulation and Antiangiogenic Activity Underlie the Molecular Mechanisms of Therapeutic Effects of Phyllanthus niruri against Non-Alcoholic Fatty Liver Disease. Nutrients 2018, 10, 1057. [Google Scholar] [CrossRef] [Green Version]
- Prisingkorn, W.; Prathomya, P.; Jakovlić, I.; Liu, H.; Zhao, Y.H.; Wang, W.M. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics 2017, 18, 856. [Google Scholar] [CrossRef] [Green Version]
- Lan, Q.; Ren, Z.; Chen, Y.; Cui, G.; Choi, I.C.; Ung, C.O.L.; Yu, H.H.; Lee, S.M.Y. Hepatoprotective effect of Qushihuayu formula on non-alcoholic steatohepatitis induced by MCD diet in rat. Chinese Med. 2021, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Charlton, M.; Krishnan, A.; Viker, K.; Sanderson, S.; Cazanave, S.; McConico, A.; Al., E.; Masuoko, H.; Gores, G. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol.-Gastrointest. Liver Physiol. 2011, 301, G825–G834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Kwon, D.Y.; Kwak, J.H.; Lee, S.; Lee, Y.H.; Yun, J.; Son, T.G.; Jung, Y.S. Tunicamycin-induced ER stress is accompanied with oxidative stress via abrogation of sulfur amino acids metabolism in the liver. Int. J. Mol. Sci. 2018, 19, 4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimi, L.; Rajpal, A.; Ismail-Beigi, F. Glucocorticoid-induced fatty liver disease. Diabetes, Metab. Syndr. Obes. Targets Ther. 2020, 13, 1133–1145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wang, X.; Chung, T.Y.; Ye, W.; Hodge, L.; Zhang, L.; Chng, K.; Xiao, Y.F.; Wang, Y.J. Carbon tetrachloride (CCl4) accelerated development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH) in MS-NASH mice fed western diet supplemented with fructose (WDF). BMC Gastroenterol. 2020, 20, 339. [Google Scholar] [CrossRef]
- Tsuchida, T.; Lee, Y.A.; Fujiwara, N.; Ybanez, M.; Allen, B.; Martins, S.; Fiel, M.I.; Goossens, N.; Chou, H.I.; Hoshida, Y.; et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 2018, 69, 385–395. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Goldin, R.D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 2006, 87, 1–16. [Google Scholar] [CrossRef]
- Larter, C.Z.; Yeh, M.M. Animal models of NASH: Getting both pathology and metabolic context right. J. Gastroenterol. Hepatol. 2008, 23, 1635–1648. [Google Scholar] [CrossRef] [Green Version]
- Hebbard, L.; George, J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 34–44. [Google Scholar] [CrossRef]
- Tipoe, G.L.; Ho, C.T.; Liong, E.C.; Leung, T.M.; Lau, T.Y.H.; Fung, M.L.; Nanji, A.A. Voluntary oral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of non-alcoholic fatty liver disease (NAFLD). Histol. Histopathol. 2009, 24, 1161–1169. [Google Scholar] [CrossRef]
- Wouters, K.; van Gorp, P.J.; Bieghs, V.; Gijbels, M.J.; Duimel, H.; Lütjohann, D.; Kerksiek, A.; van Kruchten, R.; Maeda, N.; Staels, B.; et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 2008, 48, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Hsieh, Y.C.; Yang, Y.Y.; Chan, C.C.; Huang, Y.H.; Lin, H.C. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci. Rep. 2016, 6, 18899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinella, M.E.; Green, R.M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol. 2004, 40, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Im, Y.R.; Hunter, H.; de Gracia Hahn, D.; Duret, A.; Cheah, Q.; Dong, J.; Fairey, M.; Hjalmarsson, C.; Li, A.; Lim, H.K.; et al. A Systematic Review of Animal Models of NAFLD Finds High-Fat, High-Fructose Diets Most Closely Resemble Human NAFLD. Hepatology 2021, 74, 1884–1901. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, H.; Shimizu, K.; Morikawa, S.; Ogawa, K.; Ezaki, T. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int. J. Clin. Exp. Pathol. 2013, 6, 2683–2696. [Google Scholar]
- Kim, S.H.; Lim, Y.; Bin Park, J.; Kwak, J.-H.; Kim, K.-J.; Kim, J.-H.; Song, H.; Cho, J.Y.; Hwang, D.Y.; Kim, K.S.; et al. Comparative study of fatty liver induced by methionine and choline-deficiency in C57BL/6N mice originating from three different sources. Lab. Anim. Res. 2017, 33, 157. [Google Scholar] [CrossRef] [Green Version]
- Rinella, M.E.; Elias, M.S.; Smolak, R.R.; Fu, T.; Borensztajn, J.; Green, R.M. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J. Lipid Res. 2008, 49, 1068–1076. [Google Scholar] [CrossRef] [Green Version]
- Arao, Y.; Kawai, H.; Kamimura, K.; Kobayashi, T.; Nakano, O.; Hayatsu, M.; Ushiki, T.; Terai, S. Effect of methionine/choline-deficient diet and high-fat diet-induced steatohepatitis on mitochondrial homeostasis in mice. Biochem. Biophys. Res. Commun. 2020, 527, 365–371. [Google Scholar] [CrossRef]
- Kamfar, S.; Alavian, S.M.; Houshmand, M.; Yadegarazari, R.; Zarei, B.S.; Khalaj, A.; Shabab, N.; Saidijam, M. Liver mitochondrial DNA copy number and deletion levels may contribute to nonalcoholic fatty liver disease susceptibility. Hepat. Mon. 2016, 16, e40774. [Google Scholar] [CrossRef] [Green Version]
- Pirola, C.J.; Scian, R.; Gianotti, T.F.; Dopazo, H.; Rohr, C.; Martino, J.S.; Castaño, G.O.; Sookoian, S. Epigenetic modifications in the biology of nonalcoholic fatty liver disease: The role of DNA hydroxymethylation and TET proteins. Medicine 2015, 94, e1480. [Google Scholar] [CrossRef]
- Chiba, T.; Suzuki, S.; Sato, Y.; Itoh, T.; Umegaki, K. Evaluation of methionine content in a high-fat and choline-deficient diet on body weight gain and the development of non-alcoholic steatohepatitis in mice. PLoS ONE 2016, 11, e0164191. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Chang, Y.Y.; Hsu, C.L.; Liu, C.W.; Lin, Y.I.L.; Lin, Y.U.H.; Liu, K.C.; Chen, Y.I.C. Antiobesity and hypolipidemic effects of polyphenol-rich longan (dimocarpus longans lour.) flower water extract in hypercaloric-dietary rats. J. Agric. Food Chem. 2010, 58, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Xie, Z.; Li, H.; Wang, K.; Lin, J.; Wang, Q.; Zhao, G.; Jia, W.; Zhang, Q. Analysis of transcriptome and metabolome profiles alterations in fatty liver induced by high-fat diet in rat. Metabolism. 2010, 59, 554–560. [Google Scholar] [CrossRef]
- Matsuzawa, N.; Takamura, T.; Kurita, S.; Misu, H.; Ota, T.; Ando, H.; Yokoyama, M.; Honda, M.; Zen, Y.; Nakanuma, Y.; et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 2007, 46, 1392–1403. [Google Scholar] [CrossRef]
- Milagro, F.I.; Campión, J.; Martíez, J.A. Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity 2006, 14, 1118–1123. [Google Scholar] [CrossRef]
- Xing, L.J.; Zhang, L.; Liu, T.; Hua, Y.Q.; Zheng, P.Y.; Ji, G. Berberine reducing insulin resistance by up-regulating IRS-2 mRNA expression in nonalcoholic fatty liver disease (NAFLD) rat liver. Eur. J. Pharmacol. 2011, 668, 467–471. [Google Scholar] [CrossRef]
- Larter, C.Z.; Yeh, M.M.; Williams, J.; Bell-Anderson, K.S.; Farrell, G.C. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J. Hepatol. 2008, 49, 407–416. [Google Scholar] [CrossRef]
- Nagasawa, T.; Inada, Y.; Nakano, S.; Tamura, T.; Takahashi, T.; Maruyama, K.; Yamazaki, Y.; Kuroda, J.; Shibata, N. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol. 2006, 536, 182–191. [Google Scholar] [CrossRef]
- Wang, Y.; Ausman, L.M.; Russell, R.M.; Greenberg, A.S.; Wang, X.D. Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic bax. J. Nutr. 2008, 138, 1866–1871. [Google Scholar] [CrossRef] [Green Version]
- Oz, H.S.; Chen, T.S.; Neuman, M. Methionine deficiency and hepatic injury in a dietary steatohepatitis model. Dig. Dis. Sci. 2008, 53, 767–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.; Pera, N.; Phung, N.; Leclercq, I.; Hou, J.Y.; Farrell, G. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J. Hepatol. 2003, 39, 756–764. [Google Scholar] [CrossRef]
- Tetri, L.H.; Basaranoglu, M.; Brunt, E.M.; Yerian, L.M.; Neuschwander-Tetri, B.A. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am. J. Physiol.-Gastrointest. Liver Physiol. 2008, 295, G987–G995. [Google Scholar] [CrossRef] [PubMed]
- Koppe, S.W.P.; Sahai, A.; Malladi, P.; Whitington, P.F.; Green, R.M. Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet. J. Hepatol. 2004, 41, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W.Z.; Strowig, T.; Thaiss, C.A.; Kau, A.L.; Eisenbarth, S.C.; Jurczak, M.J.; et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.Q.; Chen, L.L.; Li, N.X. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 2007, 27, 708–715. [Google Scholar] [CrossRef]
- Zhang, S.L.; Ma, L.; Zhao, J.; You, S.P.; Ma, X.T.; Ye, X.Y.; Liu, T. The phenylethanol glycoside liposome inhibits PDGF-induced HSC activation via regulation of the FAK/PI3K/AkT signaling pathway. Molecules 2019, 24, 3282. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, L.; Xia, Y.; Chen, J.; Hua, M.; Sun, Y. Schisandrin b attenuates hepatic stellate cell activation and promotes apoptosis to protect against liver fibrosis. Molecules 2021, 26, 6882. [Google Scholar] [CrossRef]
- Kim, R.S.; Hasegawa, D.; Goossens, N.; Tsuchida, T.; Athwal, V.; Sun, X.; Robinson, C.L.; Bhattacharya, D.; Chou, H.I.; Zhang, D.Y.; et al. The XBP1 Arm of the Unfolded Protein Response Induces Fibrogenic Activity in Hepatic Stellate Cells Through Autophagy. Sci. Rep. 2016, 6, 39342. [Google Scholar] [CrossRef]
- Wree, A.; Eguchi, A.; Mcgeough, M.D.; Pena, C.A.; Johnson, C.D.; Canbay, A.; Hoffman, H.M.; Feldstein, A.E. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 2014, 59, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Pellicano, A.J.; Spahn, K.; Zhou, P.; Goldberg, I.D.; Narayan, P. Collagen characterization in a model of nonalcoholic steatohepatitis with fibrosis; a call for development of targeted therapeutics. Molecules 2021, 26, 3316. [Google Scholar] [CrossRef] [PubMed]
Comparison | HFD * | MCD ** | HFD & MCD *** | |
---|---|---|---|---|
Body weight | Higher | Lower | No change | |
Liver-to-body weight ratio | No change | Slightly lower | Higher | |
Serum biomarkers | TC | Higher | Lower | Lower |
TG | Slightly lower | Lower | Lower | |
AST | Lower | Higher | NA | |
Glucose | Higher | Lower | Slightly higher | |
Insulin | Higher | Lower | Lower | |
Steatosis | Higher | Higher (but not as high as HFD) | Higher | |
Fibrosis | No change | Higher | No change | |
Inflammation lobular | Slightly higher | Higher | Higher | |
Hepatocellular ballooning | Slightly higher | Slightly higher | No change |
Gene Symbol | Nomenclature | Role | Diet Type | Duration (Weeks) | Animal Model | Gene Expression | Reference |
---|---|---|---|---|---|---|---|
ADIPOQ | Adiponectin, C1Q, and collagen domain containing | Required for normal glucose and fat homeostasis | HFD | 8 | Female SD rats | Down | [30] |
ADIPOR1 | Adiponectin receptor 1 | Required for normal glucose and fat homeostasis | MCD | 3 | C57BL/6J mic | Up | [48] |
ADIPOR2 | Adiponectin receptor 2 | Required for normal glucose and fat homeostasis | 5 | Male C57BL/6N mice | Up | [49] | |
AMPKα2 | 5′AMP-activated protein kinase catalytic subunit alpha-2 | Inhibits protein, carbohydrate, and lipid biosynthesis | 5 | Male C57BL/6N mice | Up | ||
CPT-1A | Carnitine palmitoyltransferase-1 alpha | Mitochondrial oxidation of long-chain fatty acids | HFD | 24 | Male C57BL/6J mice | Down | [45] |
16 | Male Wistar rats | Down | [44] | ||||
CYP4A10 | Cytochrome P450, family 4, subfamily A, polypeptide 10 | Involved in the metabolism of fatty acids | MCD | 3 | C57BL/6J mice | Down | [48] |
CYPA14 | Cytochrome P450, family 14, subfamily A | Involved in the metabolism of fatty acids | 3 | C57BL/6J mic | Up | ||
L-FABP | Liver-type fatty acid-binding protein | Plays a role in lipoprotein-mediated cholesterol uptake | 4 | db/db mice | Down | [37] | |
4 | db/m mice | Down | |||||
FATP-1 | Long-chain fatty acid transport protein 1 | Mediates the ATP-dependent import of long-chain fatty acids into the cell | 4 | db/m mice | Up | ||
db/db mice | Up | ||||||
3 | C57BL/6J mice | Down | [48] | ||||
4 | db/m mice | Up | [37] | ||||
FATP-2 | Very long-chain acyl-CoA synthase | Activates long-chain and very-long-chain fatty acids | |||||
db/db mice | Down | ||||||
FATP-3 | Solute carrier family 27 member 3 | Acyl-CoA ligase activity for long-chain and very-long-chain fatty acids | db/m mice | Up | |||
db/db mice | Down | ||||||
FATP-4 | Long-chain fatty acid transport protein 4 | Involved in the translocation of long-chain fatty acids across the plasma membrane | db/m mice | Up | |||
db/db mice | Up | ||||||
3 | C57BL/6J mice | Up | [48] | ||||
FATP-5 | Bile acyl-CoA synthase | Catalyzes the activation of bile acids via the formation of bile acid CoA thioesters | 4 | db/m mice | No change | [37] | |
db/db mice | Down | ||||||
FASN | Fatty acid synthase | Catalyzes the de novo biosynthesis of long-chain saturated fatty acids | MCD | 4 | db/db mice | Down | |
db/m mice | Down | ||||||
HFD | 9 | Male SD rats | Up | [42] | |||
24 | Male C57BL/6J mice | Up | [45] | ||||
G3PDH | Glycerol-3-phosphate dehydrogenase | Glycolysis | HFD | 8 | Male Wistar rats | Up | [46] |
HMGCR | 3-Hydroxy-3-methylglutaryl-coenzyme A reductase | Cholesterol biosynthesis | HFD | 6 | Male Golden Syrian hamsters | Up | [43] |
HMGCS1 | 3-Hydroxy-3-methylglutaryl-coenzyme A synthase 1 | Cholesterol biosynthesis | HFD | 16 | Male Wistar rats | Down | [44] |
IRS-2 | Insulin receptor substrate-2 | Controls various cellular processes by insulin | HFD | 12 | Male Wister rats | Down | [47] |
LDLR | Low-density lipoprotein receptor | Clearance of cholesterol | HFD | 9 | Male SD rats | Down | [42] |
6 | Male Golden Syrian Hamsters | Down | [43] | ||||
LEP | Leptin | Regulation of energy balance and body weight control | HFD | 8 | Male Wistar rats | Up | [46] |
MTMR4 | Myotubularin-related protein 4 | Phosphatase activity and protein serine/threonine phosphatase activity | HFD | 16 | Male Wistar rats | Up | [44] |
PPAR-A | Peroxisome proliferator-activated receptor alpha | β-Oxidation and energy expenditure | HFD | 9 | Male SD rats | Down | [42] |
16 | Male Wistar rats | Down | [44] | ||||
24 | Male C57BL/6J mice | Down | [45] | ||||
PPAR-γ | Peroxisome proliferator-activated receptor gamma | Controls the peroxisomal β-oxidation pathway of fatty acids | MCD | 3 | C57BL/6J mic | Up | [48] |
SREBF1 | Sterol regulatory element-binding protein 1 (isoform SREBP-1a) | Stimulates both lipogenic and cholesterogenic gene expression | HFD | 16 | Male Wistar rats | Up | [44] |
9 | Male SD rats | Up | [42] | ||||
24 | Male C57BL/6J mice | Up | [45] | ||||
MCD | 4 | db/db mice | Down | [37] | |||
db/m mice | Down | ||||||
Sterol regulatory element-binding protein 1 (Isoform SREBP-1c) | Primarily controls the expression of the lipogenic gene | db/db mice | Up | ||||
db/m mice | Down | ||||||
SCD-1 | Stearoyl-CoA desaturase-1 | Plays an important role in lipid biosynthesis | MCD | 4 | db/db mice | Down | |
db/m mice | Down | ||||||
HFD | 16 | Male Wistar rats | Up | [44] |
Gene Symbol | Nomenclature | Role | Diet Type | Duration (Weeks) | Animal Model | Gene Expression | Reference |
---|---|---|---|---|---|---|---|
CFH | Complement component factor H | Plays an essential role in maintaining a well-balanced immune response | HFD | 16 | Male Wistar rats | Up | [44] |
COX-2 | Prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2) | A particular role in the inflammatory response | HFD | 8 | Female SD rats | Up | [30] |
CXCL1 | Chemokine (C-X-C motif) ligand 1 | Plays a role in inflammation and as a chemoattractant for neutrophils | HFD | 16 | Male Wistar rats | Up | [44] |
CXCL14 | Chemokine (C-X-C motif) ligand 14 | Chemotactic for B-lymphocytes | HFD | 16 | Male Wistar rats | Down | |
IL-1β | Interleukin-1 beta | Induces prostaglandin synthesis, neutrophil influx and activation, and T cell activation | MCD | 2 | Male SD rats | Up | [51] |
5 | Male C57BL/6N mice | Up | [49] | ||||
IL-6 | Interleukin-6 | Regulation of the immune response | MCD | 2 | Male SD rats | Up | [51] |
5 | Male C57BL/6N mice | Up | [49] | ||||
MCP-1 | Monocyte chemoattractant protein-1 | Exhibits chemotactic activity for monocytes and basophils | MCD | 5 | Male C57BL/6N mice | Up | |
NF-κB1 | Nuclear factor-kappa B subunit 1 | Stimulates many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis, and apoptosis | MCD | 5 | Male C57BL/6N mice | Up | |
iNOS2 | Inducible nitric oxide synthase | Involved in inflammation, enhances the synthesis of proinflammatory mediators, such as IL-6 and IL-8 | HFD | 8 | Female SD rats | Up | [30] |
TGF-β1 | Transforming growth factor-beta 1 | Multifunctional protein that regulates the growth and differentiation of various cell types | MCD | 2 | Male SD rats | Up | [51] |
5 | Male C57BL/6N mice | Up | [49] | ||||
12 | Male SD rats | Up | [52] | ||||
TNF-α | Tumor necrosis factor-alpha | A key mediator of cell death, and induces insulin resistance | HFD | 6 | Male SD rats | Up | [50] |
24 | Male C57BL/6J mice | Up | [45] | ||||
8 | Female SD rats | Up | [30] | ||||
16 | Male C57BL/6 mice | Up | [53] | ||||
25 | Male C57BL/6 mice | Up | [22] | ||||
MCD | 2 | Male and female C57BL/6J mice | Up | [54] | |||
4 | C57BL/6 mice | Up | [55] | ||||
2 | Male SD rats | Up | [51] | ||||
5 | Male C57BL/6N mice | Up | [49] |
Gene Symbol | Nomenclature | Role | Diet Type | Duration (Weeks) | Animal Model | Gene Expression | Reference |
---|---|---|---|---|---|---|---|
AOX | Alternative oxidase mitochondrial precursor | Catalyzes the cyanide-resistant oxidation of ubiquinol | MCD | 4 | db/db mice | Down | [37] |
db/m Mice | Up | ||||||
CAT | Catalase | Protects cells from the toxic effects of hydrogen peroxide | HFD | 8 | Female SD rats | Down | [30] |
CHOP (DDIT3) | C/EBP homologous protein (DNA damage-inducible transcript 3) | Endoplasmic reticulum (ER) stress response | HFD | 25 | Male C57BL/6 mice | Up | [22] |
CPT-1 | Carnitine O-palmitoyltransferase 1 | Plays role in mitochondrial uptake of long-chain fatty acids | MCD | 4 | db/db mice | Up | [37] |
4 | db/m mice | Up | |||||
CPT-2 | Carnitine O-palmitoyl transferase 2, mitochondrial | Intra-mitochondrial synthesis of acylcarnitines | MCD | 4 | db/db mice | Up | |
4 | db/m mice | Up | |||||
GAB1 | GRB2-associated binding protein 1 | Plays a role in FGFR1 signaling | HFD | 16 | Male Wistar rats | Up | [44] |
GADD45G | Growth arrest and DNA-damage-inducible, gamma | Mediates activation of stress-responsive MTK1/MEKK4 MAPKKK | HFD | 16 | Male Wistar rats | Up | |
Gp91phox (CYBB) | Cytochrome B-245, beta polypeptide | A critical component of the membrane-bound oxidase of phagocytes that generates superoxide | HFD | 24 | Male C57BL/6J mice | Up | [45] |
GPX1 | Glutathione peroxidase | Protects from oxidative breakdown | HFD | 8 | Female SD rats | Down | [30] |
LCAD | Long-chain specific acyl-CoA dehydrogenase, mitochondrial | Catalyzes the first step of mitochondrial fatty acid beta-oxidation | MCD | 4 | db/db mice | No change | [37] |
4 | db/m mice | Up | |||||
L-FABP | Fatty acid-binding protein, liver | Plays a role in lipoprotein-mediated cholesterol uptake | MCD | 4 | db/db mice | Down | |
4 | db/m mice | Down | |||||
NFE2L2 | Nuclear factor, erythroid 2-Like 2 | Transcription factor | HFD | 16 | Male Wistar rats | Up | [44] |
P22phox (CYPA) | Cytochrome B-245, alpha polypeptide | Critical component of the membrane-bound oxidase | HFD | 24 | Male C57BL/6J mice | Up | [45] |
P47phox (NCF1) | Neutrophil cytosolic factor 1 | Activation of the latent NADPH oxidase (necessary for superoxide production) | HFD | 24 | Male C57BL/6J mice | Up | |
PERK | Protein kinase R (PKR)-like endoplasmic reticulum kinase | Plays a role in the early steps of protein synthesis | HFD | 25 | Male C57BL/6 mice | Down | [22] |
SIRT1 | Sirtuin 1 (silent mating type information regulation 2 homolog) | Deacetylase, ADP-ribosyl transferase, and other deacylase activities | HFD | 12 | Male Wistar rats | Down | [56] |
Gene Symbol | Nomenclature | Role | Diet Type | Duration (Weeks) | Animal Model | Gene Expression | Reference |
---|---|---|---|---|---|---|---|
ACTA2 (ASMA) | Anti-smooth muscle actin | Activation to myofibroblast-like cell | HFD | 25 | C57BL/6 mice | Up | [22] |
COL1A1 | Collagen type 1 alpha 1 | Fibrillar forming collagen | HFD | 25 | C57BL/6 mice | Up | [22] |
24 | Male C57BL/6J mice | Up | [45] | ||||
MCD | 2 | Male SD rats | Up | [51] | |||
17 | Male SD rats | Up | [52] | ||||
COL1A2 | Collagen type I alpha 2 | HFD | 24 | Male C57BL/6J mice | Up | [45] | |
COL4A1 | Collagen type IV alpha 1 | HFD | 24 | Male C57BL/6J mice | Up | [45] | |
HGF | Hepatocyte growth factor | Hepatotropic factor, which acts as a growth factor | HFD | 25 | C57BL/6 mice | Up | [22] |
LUM | Lumican | Extracellular matrix structural constituent | HFD | 25 | C57BL/6 mice | Up | [22] |
MMP-13 | Matrix metalloproteinase-13 | Degradation of extracellular matrix proteins | MCD | 2 | Male SD rats | Up | [51] |
MMP-9 | Matrix metalloproteinase-9 | MCD | 2 | Male SD rats | Up | [51] | |
PAI-1 | Plasminogen activator inhibitor 1 | Inhibitor of tissue-type plasminogen activator (PLAT) and urokinase-type plasminogen activator (PLAU) | HFD | 24 | Male C57BL/6J mice | Up | [45] |
SOCS1 | Suppressor of cytokine signaling 1 | Prevents uncontrolled cytokine signaling | MCD | 2 | Male SD rats | Up | [51] |
TIMP-1 | Tissue inhibitor matrix metalloproteinase 1 (TIMP Metallopeptidase Inhibitor 1) | Inhibitor of collagenases by forming one to one complexes | MCD | 17 | Male SD rats | Up | [52] |
HFD | 25 | C57BL/6 mice | Up | [22] | |||
TGF-β1 | Transforming growth factor-beta 1 | Acts as a regulator of extracellular matrix storage | HFD | 25 | C57BL/6 mice | Up | [22] |
24 | Male C57BL/6J mice | Up | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshawsh, M.A.; Alsalahi, A.; Alshehade, S.A.; Saghir, S.A.M.; Ahmeda, A.F.; Al Zarzour, R.H.; Mahmoud, A.M. A Comparison of the Gene Expression Profiles of Non-Alcoholic Fatty Liver Disease between Animal Models of a High-Fat Diet and Methionine-Choline-Deficient Diet. Molecules 2022, 27, 858. https://doi.org/10.3390/molecules27030858
Alshawsh MA, Alsalahi A, Alshehade SA, Saghir SAM, Ahmeda AF, Al Zarzour RH, Mahmoud AM. A Comparison of the Gene Expression Profiles of Non-Alcoholic Fatty Liver Disease between Animal Models of a High-Fat Diet and Methionine-Choline-Deficient Diet. Molecules. 2022; 27(3):858. https://doi.org/10.3390/molecules27030858
Chicago/Turabian StyleAlshawsh, Mohammed Abdullah, Abdulsamad Alsalahi, Salah Abdalrazak Alshehade, Sultan Ayesh Mohammed Saghir, Ahmad Faheem Ahmeda, Raghdaa Hamdan Al Zarzour, and Ayman Moawad Mahmoud. 2022. "A Comparison of the Gene Expression Profiles of Non-Alcoholic Fatty Liver Disease between Animal Models of a High-Fat Diet and Methionine-Choline-Deficient Diet" Molecules 27, no. 3: 858. https://doi.org/10.3390/molecules27030858
APA StyleAlshawsh, M. A., Alsalahi, A., Alshehade, S. A., Saghir, S. A. M., Ahmeda, A. F., Al Zarzour, R. H., & Mahmoud, A. M. (2022). A Comparison of the Gene Expression Profiles of Non-Alcoholic Fatty Liver Disease between Animal Models of a High-Fat Diet and Methionine-Choline-Deficient Diet. Molecules, 27(3), 858. https://doi.org/10.3390/molecules27030858