Self-Assembly of Chiral Cyclohexanohemicucurbit[n]urils with Bis(Zn Porphyrin): Size, Shape, and Time-Dependent Binding
Abstract
:1. Introduction
2. Results and Discussion
2.1. Binding of Bis–ZnOEP with CycHC[6] and CycHC[8]
2.2. Time-Dependent Behavior of Complexes
2.3. Variable Temperature 1H-NMR and Fluorescence Experiments
2.4. Proposed Self-Assembly Mechanism
3. Materials and Methods
3.1. General
3.2. Spectroscopic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Barona-Castaño, J.C.; Carmona-Vargas, C.C.; Brocksom, T.J.; de Oliveira, K.T. Porphyrins as Catalysts in Scalable Organic Reactions. Molecules 2016, 21, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borah, K.D.; Bhuyan, J. Magnesium Porphyrins with Relevance to Chlorophylls. Dalton Trans. 2017, 46, 6497–6509. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.J.; Sowa, S.T.; Schuchardt, C.; Deery, E.; Lawrence, A.D.; Ramos, J.V.; Billig, S.; Birkemeyer, C.; Chivers, P.T.; Howard, M.J.; et al. Elucidation of the Biosynthesis of the Methane Catalyst Coenzyme F 430. Nature 2017, 543, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlberg, T.; Hansson, M.D.; Yengo, R.K.; Johansson, R.; Thorvaldsen, H.O.; Ferreira, G.C.; Hansson, M.; Al-Karadaghi, S. Porphyrin Binding and Distortion and Substrate Specificity in the Ferrochelatase Reaction: The Role of Active Site Residues. J. Mol. Biol. 2008, 378, 1074–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strianese, M.; Pappalardo, D.; Mazzeo, M.; Lamberti, M.; Pellecchia, C. The Contribution of Metalloporphyrin Complexes in Molecular Sensing and in Sustainable Polymerization Processes: A New and Unique Perspective. Dalton Trans. 2021, 50, 7898–7916. [Google Scholar] [CrossRef]
- Aykanat, A.; Meng, Z.; Benedetto, G.; Mirica, K.A. Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials. Chem. Mater. 2020, 32, 5372–5409. [Google Scholar] [CrossRef]
- Norvaiša, K.; Kielmann, M.; Senge, M.O. Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. ChemBioChem 2020, 21, 1793–1807. [Google Scholar] [CrossRef]
- Melissari, Z.; Williams, R.; Senge, M. Porphyrinoids for Photodynamic Therapy. In Applications of Porphyrinoids as Functional Materials; Lang, H., Rueffer, T., Eds.; R. Soc. Chem.: Croydon, UK, 2021; pp. 252–291. [Google Scholar]
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef] [Green Version]
- Matile, S.; Berova, N.; Nakanishi, K.; Novkova, S.; Philipova, I.; Blagoev, B. Porphyrins: Powerful Chromophores for Structural Studies by Exciton-Coupled Circular Dichroism. J. Am. Chem. Soc. 1995, 117, 7021–7022. [Google Scholar] [CrossRef]
- Lu, H.; Kobayashi, N. Optically Active Porphyrin and Phthalocyanine Systems. Chem. Rev. 2016, 116, 6184–6261. [Google Scholar] [CrossRef]
- Lu, W.; Yang, H.; Li, X.; Wang, C.; Zhan, X.; Qi, D.; Bian, Y.; Jiang, J. Chiral Discrimination of Diamines by a Binaphthalene-Bridged Porphyrin Dimer. Inorg. Chem. 2017, 56, 8223–8231. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Ikbal, S.A.; Petrovic, A.G.; Berova, N.; Rath, S.P. Complexation of Chiral Zinc-Porphyrin Tweezer with Achiral Diamines: Induction and Two-Step Inversion of Interporphyrin Helicity Monitored by ECD. Inorg. Chem. 2017, 56, 3849–3860. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; López-Moreno, A.; Yang, J.; Xu, H.-J.; Desbois, N.; Gros, C.P.; Komatsu, N. Synthesis of Flexible Nanotweezers with Various Metals and Their Application in Carbon Nanotube Extraction. New J. Chem. 2018, 42, 7592–7594. [Google Scholar] [CrossRef]
- Saha, B.; Petrovic, A.G.; Dhamija, A.; Berova, N.; Rath, S.P. Complexation of Chiral Zinc(II) Porphyrin Tweezer with Achiral Aliphatic Diamines Revisited: Molecular Dynamics, Electronic CD, and 1H-NMR Analysis. Inorg. Chem. 2019, 58, 11420–11438. [Google Scholar] [CrossRef]
- Mondal, P.; Rath, S.P. Cyclic Metalloporphyrin Dimers: Conformational Flexibility, Applications and Future Prospects. Coord. Chem. Rev. 2020, 405, 213117. [Google Scholar] [CrossRef]
- Huang, X.; Rickman, B.H.; Borhan, B.; Berova, N.; Nakanishi, K. Zinc Porphyrin Tweezer in Host−Guest Complexation: Determination of Absolute Configurations of Diamines, Amino Acids, and Amino Alcohols by Circular Dichroism. J. Am. Chem. Soc. 1998, 120, 6185–6186. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Hembury, G.A.; Inoue, Y. Origin, Control, and Application of Supramolecular Chirogenesis in Bisporphyrin-Based Systems. Acc. Chem. Res. 2004, 37, 449–459. [Google Scholar] [CrossRef]
- Tanasova, M.; Anyika, M.; Borhan, B. Sensing Remote Chirality: Stereochemical Determination of β-, γ-, and δ-Chiral Carboxylic Acids. Angew. Chem. Int. Ed. 2015, 54, 4274–4278. [Google Scholar] [CrossRef]
- Hayashi, S.; Yotsukura, M.; Noji, M.; Takanami, T. Bis(Zinc Porphyrin) as a CD-Sensitive Bidentate Host Molecule: Direct Determination of Absolute Configuration of Mono-Alcohols. Chem. Commun. 2015, 51, 11068–11071. [Google Scholar] [CrossRef]
- Dhamija, A.; Saha, B.; Rath, S.P. Metal-Center-Driven Supramolecular Chirogenesis in Tweezer Amino Alcohol Complexes: Structural, Spectroscopic, and Theoretical Investigations. Inorg. Chem. 2017, 56, 15203–15215. [Google Scholar] [CrossRef]
- Gholami, H.; Chakraborty, D.; Zhang, J.; Borhan, B. Absolute Stereochemical Determination of Organic Molecules through Induction of Helicity in Host–Guest Complexes. Acc. Chem. Res. 2021, 54, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Balaz, M.; Napoli, M.D.; Holmes, A.E.; Mammana, A.; Nakanishi, K.; Berova, N.; Purrello, R. A Cationic Zinc Porphyrin as a Chiroptical Probe for Z-DNA. Angew. Chem. Int. Ed. 2005, 44, 4006–4009. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.; Bentley, K.W. Chirality Sensing Using Stereodynamic Probes with Distinct Electronic Circular Dichroism Output. Chem. Soc. Rev. 2013, 42, 5408–5424. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Q.; Wu, X.; Li, Z.; Jiang, Y.-B. Optical Chirality Sensing Using Macrocycles, Synthetic and Supramolecular Oligomers/Polymers, and Nanoparticle Based Sensors. Chem. Soc. Rev. 2015, 44, 4249–4263. [Google Scholar] [CrossRef] [PubMed]
- Labuta, J.; Hill, J.P.; Ishihara, S.; Hanyková, L.; Ariga, K. Chiral Sensing by Nonchiral Tetrapyrroles. Acc. Chem. Res. 2015, 48, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Pescitelli, G.; Bari, L.D.; Berova, N. Application of Electronic Circular Dichroism in the Study of Supramolecular Systems. Chem. Soc. Rev. 2014, 43, 5211–5233. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Harada, T.; Inoue, Y.; Kuroda, R. Phase-Sensitive Supramolecular Chirogenesis in Bisporphyrin Systems. Angew. Chem. Int. Ed. 2002, 114, 1436–1439. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Lintuluoto, J.M.; Sugiura, M.; Inoue, Y.; Kuroda, R. Remarkable Stability and Enhanced Optical Activity of a Chiral Supramolecular Bis-Porphyrin Tweezer in Both Solution and Solid State. J. Am. Chem. Soc. 2002, 124, 11282–11283. [Google Scholar] [CrossRef]
- Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy: Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, USA, 1983; ISBN 978-0-935702-09-5. [Google Scholar]
- Borovkov, V.V.; Lintuluoto, J.M.; Inoue, Y. Supramolecular Chirogenesis in Zinc Porphyrins: Mechanism, Role of Guest Structure, and Application for the Absolute Configuration Determination. J. Am. Chem. Soc. 2001, 123, 2979–2989. [Google Scholar] [CrossRef]
- Harada, N.; Nakanishi, K. Exciton Chirality Method and Its Application to Configurational and Conformational Studies of Natural Products. Acc. Chem. Res. 1972, 5, 257–263. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Lintuluoto, J.M.; Inoue, Y. Temperature Controlled Syn-Anti Conformational Switching in Zinc Containing Porphyrin Dimers via Ligand Assistance. Tetrahedron Lett. 1999, 40, 5051–5054. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Lintuluoto, J.M.; Inoue, Y. Syn-Anti Conformational Changes in Zinc Porphyrin Dimers Induced by Temperature-Controlled Alcohol Ligation. J. Phys. Chem. B 1999, 103, 5151–5156. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Lintuluoto, J.M.; Hembury, G.A.; Sugiura, M.; Arakawa, R.; Inoue, Y. Supramolecular Chirogenesis in Zinc Porphyrins: Interaction with Bidentate Ligands, Formation of Tweezer Structures, and the Origin of Enhanced Optical Activity. J. Org. Chem. 2003, 68, 7176–7192. [Google Scholar] [CrossRef] [PubMed]
- Ustrnul, L.; Kaabel, S.; Burankova, T.; Martõnova, J.; Adamson, J.; Konrad, N.; Burk, P.; Borovkov, V.; Aav, R. Supramolecular Chirogenesis in Zinc Porphyrins by Enantiopure Hemicucurbit[n]urils (n = 6, 8). Chem. Commun. 2019, 55, 14434–14437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aav, R.; Shmatova, E.; Reile, I.; Borissova, M.; Topić, F.; Rissanen, K. New Chiral Cyclohexylhemicucurbit[6]uril. Org. Lett. 2013, 15, 3786–3789. [Google Scholar] [CrossRef] [PubMed]
- Prigorchenko, E.; Öeren, M.; Kaabel, S.; Fomitšenko, M.; Reile, I.; Järving, I.; Tamm, T.; Topić, F.; Rissanen, K.; Aav, R. Template-Controlled Synthesis of Chiral Cyclohexylhemicucurbit[8]uril. Chem. Commun. 2015, 51, 10921–10924. [Google Scholar] [CrossRef] [PubMed]
- Prigorchenko, E.; Kaabel, S.; Narva, T.; Baškir, A.; Fomitšenko, M.; Adamson, J.; Järving, I.; Rissanen, K.; Tamm, T.; Aav, R. Formation and Trapping of the Thermodynamically Unfavoured Inverted-Hemicucurbit[6]uril. Chem. Commun. 2019, 55, 9307–9310. [Google Scholar] [CrossRef]
- Mishra, K.A.; Adamson, J.; Öeren, M.; Kaabel, S.; Fomitšenko, M.; Aav, R. Dynamic Chiral Cyclohexanohemicucurbit[12]uril. Chem. Commun. 2020, 56, 14645–14648. [Google Scholar] [CrossRef]
- Andersen, N.N.; Lisbjerg, M.; Eriksen, K.; Pittelkow, M. Hemicucurbit[n]urils and Their Derivatives—Synthesis and Applications. Isr. J. Chem. 2018, 58, 435–448. [Google Scholar] [CrossRef]
- Lizal, T.; Sindelar, V. Bambusuril Anion Receptors. Isr. J. Chem. 2018, 58, 326–333. [Google Scholar] [CrossRef]
- Ustrnul, L.; Burankova, T.; Öeren, M.; Juhhimenko, K.; Ilmarinen, J.; Siilak, K.; Mishra, K.A.; Aav, R. Binding Between Cyclohexanohemicucurbit[n]urils and Polar Organic Guests. Front. Chem. 2021, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Shalima, T.; Mishra, K.A.; Kaabel, S.; Ustrnul, L.; Bartkova, S.; Tõnsuaadu, K.; Heinmaa, I.; Aav, R. Binding of Heterocycles by Cyclohexanohemicucurbit[8]uril Inclusion Complexes With Heterocycles and Selective Extraction of Sulfur Compounds From Water. Front. Chem. 2021, 9, 786746. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, K.; Ponomarev, G.; Okubo, S.; Tajiri, A.; Sakata, Y. Interactions of Two Porphyrin Rings: Metal-Induced Structural Change of 5,5′-Ethylenebis(Porphyrin). Bull. Chem. Soc. Jpn. 1997, 70, 1115–1123. [Google Scholar] [CrossRef]
- Brynn Hibbert, D.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [Green Version]
- Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Neuhaus, P.; Kondratuk, D.V.; Balaban, T.S.; Anderson, H.L. Cyclodextrin-Templated Porphyrin Nanorings. Angew. Chem. Int. Ed. 2014, 53, 7770–7773. [Google Scholar] [CrossRef] [Green Version]
- Magna, G.; Monti, D.; Di Natale, C.; Paolesse, R.; Stefanelli, M. The Assembly of Porphyrin Systems in Well-Defined Nanostructures: An Update. Molecules 2019, 24, 4307. [Google Scholar] [CrossRef] [Green Version]
- Borovkov, V.V.; Lintuluoto, J.M.; Inoue, Y. Synthesis of Zn-, Mn-, and Fe-Containing Mono- and Heterometallated Ethanediyl-Bridged Porphyrin Dimers. Helv. Chim. Acta 1999, 82, 919. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Fujii, I.; Muranaka, A.; Hembury, G.A.; Tanaka, T.; Ceulemans, A.; Kobayashi, N.; Inoue, Y. Rationalization of Supramolecular Chirality in a Bisporphyrin System. Angew. Chem. Int. Ed. 2004, 43, 5481–5485. [Google Scholar] [CrossRef]
- Fujii, I.; Borovkov, V.V.; Inoue, Y. Crystal Structure of Bis-Zn-Porphyrin. X-ray Struct. Anal. Online 2006, 22, x77–x78. [Google Scholar] [CrossRef] [Green Version]
- Osadchuk, I.; Konrad, N.; Truong, K.-N.; Rissanen, K.; Clot, E.; Aav, R.; Kananovich, D.; Borovkov, V. Supramolecular Chirogenesis in Bis-Porphyrin: Crystallographic Structure and CD Spectra for a Complex with a Chiral Guanidine Derivative. Symmetry 2021, 13, 275. [Google Scholar] [CrossRef]
- Fomitšenko, M.; Peterson, A.; Reile, I.; Cong, H.; Kaabel, S.; Prigorchenko, E.; Järving, I.; Aav, R. A Quantitative Method for Analysis of Mixtures of Homologues and Stereoisomers of Hemicucurbiturils That Allows Us to Follow Their Formation and Stability. New J. Chem. 2017, 41, 2490–2497. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šakarašvili, M.; Ustrnul, L.; Suut, E.; Nallaparaju, J.V.; Mishra, K.A.; Konrad, N.; Adamson, J.; Borovkov, V.; Aav, R. Self-Assembly of Chiral Cyclohexanohemicucurbit[n]urils with Bis(Zn Porphyrin): Size, Shape, and Time-Dependent Binding. Molecules 2022, 27, 937. https://doi.org/10.3390/molecules27030937
Šakarašvili M, Ustrnul L, Suut E, Nallaparaju JV, Mishra KA, Konrad N, Adamson J, Borovkov V, Aav R. Self-Assembly of Chiral Cyclohexanohemicucurbit[n]urils with Bis(Zn Porphyrin): Size, Shape, and Time-Dependent Binding. Molecules. 2022; 27(3):937. https://doi.org/10.3390/molecules27030937
Chicago/Turabian StyleŠakarašvili, Marko, Lukas Ustrnul, Elina Suut, Jagadeesh Varma Nallaparaju, Kamini A. Mishra, Nele Konrad, Jasper Adamson, Victor Borovkov, and Riina Aav. 2022. "Self-Assembly of Chiral Cyclohexanohemicucurbit[n]urils with Bis(Zn Porphyrin): Size, Shape, and Time-Dependent Binding" Molecules 27, no. 3: 937. https://doi.org/10.3390/molecules27030937
APA StyleŠakarašvili, M., Ustrnul, L., Suut, E., Nallaparaju, J. V., Mishra, K. A., Konrad, N., Adamson, J., Borovkov, V., & Aav, R. (2022). Self-Assembly of Chiral Cyclohexanohemicucurbit[n]urils with Bis(Zn Porphyrin): Size, Shape, and Time-Dependent Binding. Molecules, 27(3), 937. https://doi.org/10.3390/molecules27030937