The Response Surface Optimization of Supercritical CO2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer
Abstract
:1. Introduction
2. Results
2.1. Step I—Design of the Experiments and the Chemical and Biological Evaluations
2.1.1. Factorial Design
2.1.2. Extract Purification and Chemical Analyses
2.1.3. The Antimicrobial Activity of A. mearnsii Supercritical Extracts
Bioautography
Minimum Inhibitory Concentration
2.2. Step II—The Optimization of SFE of p-Anisic Acid and the Mathematical Modeling of Mass Transfer
3. Discussion
4. Materials and Methods
4.1. Plants
4.2. Supercritical Fluid Extraction (SFE)
4.3. Experimental Designs
4.3.1. Factorial Design
4.3.2. Box–Behnken Design
4.4. Chemical Analysis
4.4.1. Silica Gel Column Chromatographic Separation
4.4.2. High-Performance Liquid Chromatography (HPLC)
4.5. Antimicrobial Activity
4.6. Mass Transfer Mathematical Modeling
4.6.1. Crank (1975) Model
4.6.2. Sovová (1994) Model
4.6.3. Reverchon (1996) Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Nomenclature
a0 | Superficial area | m−1 |
Ap | Total area of particles | m² |
c | Extract concentration on fluid phase | kg·m−3 |
D | Diffusivity of the solute inside the particle | m2·s −1 |
Di | Internal diffusion coefficient | m²·s−1 |
e | Extract mass in regard to N | - |
G | Particle size | mesh |
h | Bed height | m |
h | Axial coordinate | m |
J | Mass transfer rate | kg·s−1·m−3 |
K | Inaccessible solute mass inside the solid particles | kg |
K | Equilibrium coefficient | m3·kg−1 |
kf | Mass transfer coefficient for fluid phase | m·s−1 |
ks | Mass transfer coefficient for solid phase | m·s−1 |
kTM | Internal mass transfer coefficient | m·s−1 |
l | Characteristic dimension | m |
Mt | Mass extracted at a given time | g |
M∞ | Mass extracted in an infinite time | g |
N | Solid phase mass free from solute | kg |
n | Number of the series expansion | - |
O | Initial solute mass in solid phase | kg |
P | Easily accessible solute mass | kg |
P | Pressure | bar |
p | Descriptive p-value level | - |
Q | Solvent flow rate | g·s−1 |
q | Specific quantity of solvent | - |
q | Extract fraction in solid phase | kg·kg−1 |
qm | Specific amount of solvent at the beginning of extraction in the interior of particles | - |
qn | Specific amount of solvent at the end of the extraction of easily accessible solute | - |
q0 | Initial concentration of extract in solid phase | kg·kg−1 |
q* | Concentration in the solid–fluid interface | kg·kg−1 |
Solvent mass flow in regard to N | s−1 | |
r | Particle radius | m |
T | Temperature | °C |
t | Extraction time | s |
ti | Time for internal diffusion | s |
u | Solvent superficial velocity | m·s−1 |
V | Extractor volume | m³ |
x | Fraction of solute in the solid phase (solute free basis) | |
x0 | Initial concentration of free solute in the solid phase (mass fraction) | |
xk | Initial extract concentration inside the solid particles (mass fraction) | |
xp | Easily accessible solute concentration (mass fraction) | |
y | Solute fraction in fluid phase (free basis) | |
yr | Extract solubility on solvent | |
W | Sovová model parameter for the slow extraction period | |
Z | Sovová model parameter for the rapid extraction period | |
zw | Boundary coordinate between fast and slow extraction | |
Greek Letters | ||
Porosity | - | |
μ | Constant related to the particle geometry | - |
ρ | Solvent density | kg·m−3 |
ρs | Solid phase density | kg·m−3 |
References
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Feng, X.; Rasool, A.; Sun, W.; Li, C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol. Adv. 2020, 43, 107555. [Google Scholar] [CrossRef] [PubMed]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Myers, S.P.; Leach, D.N.; Lin, G.D.; Leach, G. A cross-cultural study: Anti-inflammatory activity of Australian and Chinese plants. J. Ethnopharmacol. 2003, 85, 25–32. [Google Scholar] [CrossRef]
- Chaubal, R.; Mujumdar, A.M.; Misar, A.; Deshpande, V.H.; Deshpande, N.R. Structure-activity relationship study of androstene steroids with respect to local anti-inflammatory activity. Arzneim. Forsch./Drug Res. 2006, 56, 394–398. [Google Scholar] [CrossRef]
- Barry, K.M.; Mihara, R.; Davies, N.W.; Mitsunaga, T.; Mohammed, C.L. Polyphenols in Acacia mangium and Acacia auriculiformis heartwood with reference to heart rot susceptibility. J. Wood Sci. 2005, 51, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Meena, P.D.; Meena, R.L.; Chattopadhyay, C.; Kumar, A. Identification of critical stage for disease development and biocontrol of alternaria blight of Indian mustard (Brassica juncea). J. Phytopathol. 2004, 152, 204–209. [Google Scholar] [CrossRef]
- Mihara, R.; Barry, K.M.; Mohammed, C.L.; Mitsunaga, T. Comparison of antifungal and antioxidant activities of Acacia mangium and A. auriculiformis heartwood extracts. J. Chem. Ecol. 2005, 31, 789–804. [Google Scholar] [CrossRef]
- García, S.; Alarcón, G.; Rodríguez, C.; Heredia, N. Extracts of Acacia farnesiana and Artemisia ludoviciana inhibit growth, enterotoxin production and adhesion of Vibrio cholerae. World J. Microbiol. Biotechnol. 2006, 22, 669–674. [Google Scholar] [CrossRef]
- Mandal, P.; Sinha Babu, S.P.; Mandal, N.C. Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia 2005, 76, 462–465. [Google Scholar] [CrossRef]
- Mutai, C.; Abatis, D.; Vagias, C.; Moreau, D.; Roussakis, C.; Roussis, V. Cytotoxic lupane-type triterpenoids from Acacia mellifera. Phytochemistry 2004, 65, 1159–1164. [Google Scholar] [CrossRef]
- Hoffmann, J.J.; Timmermann, B.N.; Mclaughlin, S.P.; Punnapayak, H. Potential antimicrobial activity of plants from the southwestern United States. Pharm. Biol. 1993, 31, 101–115. [Google Scholar] [CrossRef]
- Sulaiman, C.T.; Gopalakrishnan, V.K.; Balachandran, I. Phenolic Compounds and Antioxidant Properties of Selected Acacia species. J. Biol. Act. Prod. Nat. 2014, 4, 316–324. [Google Scholar] [CrossRef]
- Maldini, M.; Montoro, P.; Hamed, A.I.; Mahalel, U.A.; Oleszek, W.; Stochmal, A.; Piacente, S. Strong antioxidant phenolics from Acacia nilotica: Profiling by ESI-MS and qualitative-quantitative determination by LC-ESI-MS. J. Pharm. Biomed. Anal. 2011, 56, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Wu, J.H.; Wang, S.Y.; Kang, P.L.; Yang, N.S.; Shyur, L.F. Antioxidant activity of extracts from Acacia confusa Bark and Heartwood. J. Agric. Food Chem. 2001, 49, 3420–3424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, J.; Duan, J.; Liang, Z.; Zhang, L.; Huo, Y.; Zhang, Y. Quantitative and qualitative analysis of flavonoids in leaves of Adinandra nitida by high-performance liquid chromatography with UV and electrospray ionization tandem mass spectrometry detection. Anal. Chim. Acta 2005, 532, 97–104. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.R.; Sarma, B.K.; Singh, H.B. Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem. Biol. Interact. 2009, 181, 20–28. [Google Scholar] [CrossRef]
- Nisar, M.; Khan, S.; Dar, A.; Rehman, W.; Khan, R.; Jan, I. Antidepressant screening and flavonoids isolation from Eremostachys laciniata (L) Bunge. Afr. J. Biotechnol. 2011, 10, 9. [Google Scholar] [CrossRef]
- Drijfhout, F.P.; Morgan, E.D. Terrestrial natural products as antifeedants. In Comprehensive Natural Products II; Elsevier Science: Oxford, UK, 2010; Volume 4, pp. 457–501. ISBN 9780080453828. [Google Scholar] [CrossRef]
- Johnson, W. Final Report of the Safety Assessment of Acacia Catechu Gum, Acacia Concinna Fruit Extract, Acacia Dealbata Leaf Extract, Acacia Dealbata Leaf Wax, Acacia Decurrens Extract, Acacia Farnesiana Extract, Acacia Farnesiana Flower Wax, Acacia Farnesiana Gum, Acacia Senegal Extract, Acacia Senegal Gum, and Acacia Senegal Gum Extract1. Int. J. Toxicol. 2005, 24, 75–118. [Google Scholar] [CrossRef]
- Griffin, A.R.; Midgley, S.J.; Bush, D.; Cunningham, P.J.; Rinaudo, A.T. Global uses of Australian acacias-recent trends and future prospects. Divers. Distrib. 2011, 17, 837–847. [Google Scholar] [CrossRef]
- da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC-Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.G.; Meireles, M.A.A. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess. Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food by-products, algae and microalgae-A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Reverchon, E. Mathematical Modeling of Supercritical Extraction of Sage Oil. AIChE J. 1996, 42, 1765–1771. [Google Scholar] [CrossRef]
- Anklam, E.; Berg, H.; Mathiasson, L.; Sharman, M.; Ulberth, F. Supercritical fluid extraction (SFE) in food analysis: A review. Food Addit. Contam. 1998, 15, 729–750. [Google Scholar] [CrossRef]
- Sharif, K.M.; Rahman, M.M.; Azmir, J.; Mohamed, A.; Jahurul, M.H.A.; Sahena, F.; Zaidul, I.S.M. Experimental design of supercritical fluid extraction-A review. J. Food Eng. 2014, 124, 105–116. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [Green Version]
- Aydar, A.Y. Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. Stat. Approaches Emphas. Des. Exp. Appl. Chem. Processes 2018, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xu, Y.; Jin, Y.X.; Wu, Y.Y.; Tu, Y.Y. Response surface optimization of supercritical fluid extraction of kaempferol glycosides from tea seed cake. Ind. Crops Prod. 2010, 32, 123–128. [Google Scholar] [CrossRef]
- do Espirito Santo, A.T.; Siqueira, L.M.; Almeida, R.N.; Vargas, R.M.F.; Franceschini, G.d.N.; Kunde, M.A.; Cappellari, A.R.; Morrone, F.B.; Cassel, E. Decaffeination of yerba mate by supercritical fluid extraction: Improvement, mathematical modeling and infusion analysis. J. Supercrit. Fluids 2021, 168, 105096. [Google Scholar] [CrossRef]
- da Silva, G.F.; Gandolfi, P.H.K.; Almeida, R.N.; Lucas, A.M.; Cassel, E.; Vargas, R.M.F. Analysis of supercritical fluid extraction of lycopodine using response surface methodology and process mathematical modeling. Chem. Eng. Res. Des. 2015, 100, 353–361. [Google Scholar] [CrossRef]
- Mokhtari, L.; Ghoreishi, S.M. Supercritical carbon dioxide extraction of trans-anethole from Foeniculum vulgare (fennel) seeds: Optimization of operating conditions through response surface methodology and genetic algorithm. J. CO2 Util. 2019, 30, 1–10. [Google Scholar] [CrossRef]
- Morcelli, A.; Cassel, E.; Vargas, R.; Rech, R.; Marcílio, N. Supercritical fluid (CO2+ethanol) extraction of chlorophylls and carotenoids from Chlorella sorokiniana: COSMO-SAC assisted prediction of properties and experimental approach. J. CO2 Util. 2021, 51, 101649. [Google Scholar] [CrossRef]
- Pinto, D.; De La Luz Cádiz-Gurrea, M.; Sut, S.; Ferreira, A.S.; Leyva-Jimenez, F.J.; Dall’acqua, S.; Segura-Carretero, A.; Delerue-Matos, C.; Rodrigues, F. Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by supercritical fluid extraction with CO2: A response surface methodology approach. J. CO2 Util. 2020, 40, 101194. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Borror, C.M.; Montgomery, D.C. Response surface design evaluation and comparison. J. Stat. Plan. Inference 2009, 139, 629–641. [Google Scholar] [CrossRef]
- Vargas, R.M.F.; Barroso, M.S.T.; Neto, R.G.; Scopel, R.; Falcão, M.A.; da Silva, C.F.; Cassel, E. Natural products obtained by subcritical and supercritical fluid extraction from Achyrocline satureioides (Lam) D.C. using CO2. Ind. Crops Prod. 2013, 50, 430–435. [Google Scholar] [CrossRef]
- Melreles, M.A.A.; Zahedi, G.; Hatami, T. Mathematical modeling of supercritical fluid extraction for obtaining extracts from vetiver root. J. Supercrit. Fluids 2009, 49, 23–31. [Google Scholar] [CrossRef]
- Cassel, E.; Vargas, R.M.F.; Martinez, N.; Lorenzo, D.; Dellacassa, E. Steam distillation modeling for essential oil extraction process. Ind. Crops Prod. 2009, 29, 171–176. [Google Scholar] [CrossRef]
- Mouahid, A.; Bombarda, I.; Claeys-Bruno, M.; Amat, S.; Myotte, E.; Nisteron, J.P.; Crampon, C.; Badens, E. Supercritical CO2 extraction of Moroccan argan (Argania Spinosa L.) oil: Extraction kinetics and solubility determination. J. CO2 Util. 2021, 46, 101458. [Google Scholar] [CrossRef]
- Saha, R.; Ghosh, A.; Saha, B. Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chem. Eng. Sci. 2013, 99, 23–27. [Google Scholar] [CrossRef]
- Jänichen, J.; Petersen, W.; Jenny, R.; Nobis, M. Process to Manufacture 4-Methoxybenzoic Acid from Herbal Anethole and the Use of 4-Methoxybenzoic Acid in Cosmetic and Dermatologic Products as Well as Foodstuffs. U.S. Patent 7728168, 1 June 2010. [Google Scholar]
- Gandhi, P.J.; Murthy, Z.V.P. Transmission of p-anisic acid through nanofiltration and goat membranes. Desalination 2013, 315, 46–60. [Google Scholar] [CrossRef]
- Gandhi, P.J.; Talia, Y.H.; Murthy, Z.V.P. Production of p-Anisic acid by modified williamson etherification reaction using design of experiments. Chem. Prod. Process. Modeling 2010, 5. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee Evaluation of Certain Food Additives and Contaminants. World Health Organ. Tech. Rep. Ser. 2002. Available online: http://apps.who.int/iris/handle/10665/42578 (accessed on 6 January 2022).
- Hawthorne, S.B.; Grabanski, C.B.; Martin, E.; Miller, D.J. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: Recovery, selectivity and effects on sample matrix. J. Chromatogr. A 2000, 892, 421–433. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A 2007, 1163, 2–24. [Google Scholar] [CrossRef] [PubMed]
- Gamlieli-Bonshtein, I.; Korin, E.; Cohen, S. Selective separation of cis-trans geometrical isomers of β-carotene via CO2 supercritical fluid extraction. Biotechnol. Bioeng. 2002, 80, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.A. de Estudo Químico e Biológico das Flores e das Folhas de Acacia podalyriifolia A. Cunn. Ex, G. Don, Leguminosae -Mimosoideae [Chemical and Biologic Study of Flowers and Leaves of Acacia podalyriifolia A. Cunn. Ex, G. Don, Leguminosae-Mimosoideae]. Ph.D. Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2010. [Google Scholar]
- Kwon, Y.I.; Apostolidis, E.; Labbe, R.G.; Shetty, K. Inhibition of Staphylococcus aureus by phenolic phytochemicals of selected clonal herbs species of Lamiaceae family and likely mode of action through proline oxidation. Food Biotechnol. 2007, 21, 71–89. [Google Scholar] [CrossRef]
- Fernández, M.A.; García, M.D.; Sáenz, M.T. Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophularia sambucifolia. J. Ethnopharmacol. 1996, 53, 11–14. [Google Scholar] [CrossRef]
- Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Basri, D.F.; Zin, N.M.; Bakar, N.S.; Rahmat, F.; Mohtar, M. Synergistic effects of phytochemicals and oxacillin on laboratory passage-derived vancomycin-intermediate Staphylococcus aureus strain. J. Med. Sci. 2008, 8, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, G.G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 31, 247–256. [Google Scholar] [CrossRef]
- Siqueira, S.; Falcão-Silva, V.D.S.; Agra, M.D.F.; Dariva, C.; De Siqueira-Júnior, J.P.; Fonseca, M.J.V. Biological activities of Solanum paludosum Moric. Extracts obtained by maceration and supercritical fluid extraction. J. Supercrit. Fluids 2011, 58, 391–397. [Google Scholar] [CrossRef]
- Olajuyigbe, O.O.; Afolayan, A.J. Synergistic interactions of methanolic extract of Acacia mearnsii de wild. with antibiotics against bacteria of clinical relevance. Int. J. Mol. Sci. 2012, 13, 8915–8932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uckay, I.; Pittet, D.; Vaudaux, P.; Sax, H.; Lew, D.; Waldvogel, F. Foreign body infections due to Staphylococcus epidermidis. Ann. Med. 2009, 41, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for study of quantitative variables Box Behnken. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Barros, F.M.C.; Silva, F.C.; Nunes, J.M.; Vargas, R.M.F.; Cassel, E.; Von Poser, G.L. Supercritical extraction of phloroglucinol and benzophenone derivatives from Hypericum carinatum: Quantification and mathematical modeling. J. Sep. Sci. 2011, 34, 3107–3113. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.N.; Neto, R.G.; Barros, F.M.C.; Cassel, E.; von Poser, G.L.; Vargas, R.M.F. Supercritical extraction of Hypericum caprifoliatum using carbon dioxide and ethanol+water as co-solvent. Chem. Eng. Processing Process Intensif. 2013, 70, 95–102. [Google Scholar] [CrossRef]
- Da Silva, C.G.F.; Lucas, A.M.; Do, E.; Santo, A.T.; Almeida, R.N.; Cassel, E.; Vargas, R.M.F. Sequential processing of Psidium guajava L. Leaves: Steam distillation and supercritical fluid extraction. Braz. J. Chem. Eng. 2019, 36, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Scopel, R.; da Silva, C.F.; Lucas, A.M.; Garcez, J.J.; do Espirito Santo, A.T.; Almeida, R.N.; Cassel, E.; Vargas, R.M.F. Fluid phase equilibria and mass transfer studies applied to supercritical fluid extraction of Illicium verum volatile oil. Fluid Phase Equilibria 2016, 417, 203–211. [Google Scholar] [CrossRef]
- Sovová, H. Rate of the vegetable oil extraction with supercritical CO2—I. Modeling of extraction curves. Chem. Eng. Sci. 1994, 49, 409–414. [Google Scholar] [CrossRef]
- Goto, M.; Roy, B.C.; Kodama, A.; Hirose, T. Modeling supercritical fluid extraction process involving solute-solid interaction. J. Chem. Eng. Jpn. 1998, 31, 171–177. [Google Scholar] [CrossRef]
- Honarvar, B.; Sajadian, S.A.; Khorram, M.; Samimi, A. Mathematical modeling of supercritical fluid extraction of oil from canola and sesame seeds. Braz. J. Chem. Eng. 2013, 30, 159–166. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder–mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Scopel, R.; Falcão, M.A.; Lucas, A.M.; Almeida, R.N.; Gandolfi, P.H.K.; Cassel, E.; Vargas, R.M.F. Supercritical fluid extraction from Syzygium aromaticum buds: Phase equilibrium, mathematical modeling, and antimicrobial activity. J. Supercrit. Fluids 2014, 92, 223–230. [Google Scholar] [CrossRef]
- Nagy, B.; Simándi, B.; Dezso András, C. Characterization of packed beds of plant materials processed by supercritical fluid extraction. J. Food Eng. 2008, 88, 104–113. [Google Scholar] [CrossRef]
- Gallo, M.; Formato, A.; Ianniello, D.; Andolfi, A.; Conte, E.; Ciaravolo, M.; Varchetta, V.; Naviglio, D. Supercritical fluid extraction of pyrethrins from pyrethrum flowers (Chrysanthemum cinerariifolium) compared to traditional maceration and cyclic pressurization extraction. J. Supercrit. Fluids 2017, 119, 104–112. [Google Scholar] [CrossRef]
- Soares, R.D.P.; Secchi, A.R. EMSO: A new environment for modeling, simulation, and optimization. Comput. Aided Chem. Eng. 2003, 14, 947–952. [Google Scholar]
- Garcez, J.J.; da Silva, C.G.F.; Lucas, A.M.; Fianco, A.L.; Almeida, R.N.; Cassel, E.; Vargas, R.M.F. Evaluation of different extraction techniques in the processing of Anethum graveolens L. seeds for phytochemicals recovery. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100263. [Google Scholar] [CrossRef]
- Campos, L.M.A.S.; Michielin, E.M.Z.; Danielski, L.; Ferreira, S.R.S. Experimental data and modeling the supercritical fluid extraction of marigold (Calendula officinalis) oleoresin. J. Supercrit. Fluids 2005, 34, 163–170. [Google Scholar] [CrossRef]
- Carvalho, R.N.; Moura, L.S.; Rosa, P.T.V.; Meireles, M.A.A. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): Kinetic data, extract’s global yield, composition, and antioxidant activity. J. Supercrit. Fluids 2005, 35, 197–204. [Google Scholar] [CrossRef]
- Cassel, E.; Vargas, R.M.F.; Brun, G.W.; Almeida, D.E.; Cogoi, L.; Ferraro, G.; Filip, R. Supercritical fluid extraction of alkaloids from Ilex paraguariensis St. Hil. J. Food Eng. 2010, 100, 656–661. [Google Scholar] [CrossRef]
- Scopel, R.; Neto, R.G.; Falcão, M.A.; Cassel, E.; Vargas, R.M.F. Supercritical CO2 extraction of Schinus molle L with co-solvents: Mathematical modeling and antimicrobial applications. Braz. Arch. Biol. Technol. 2013, 56, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, J.; Lin, S.; Wang, Z.; Wang, C.; Wang, E.; Zhang, Y. Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability. Food Bioprod. Processing 2011, 89, 333–339. [Google Scholar] [CrossRef]
- Cobb, B.F.; Kallenbach, J.; Hall, C.A.; Pryor, S.W. Optimizing the Supercritical Fluid Extraction of Lutein from Corn Gluten Meal. Food Bioprocess Technol. 2018, 11, 757–764. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 3th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2003. [Google Scholar]
- Sodeifian, G.; Sajadian, S.A.; Saadati Ardestani, N. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: Process optimization and oil properties. J. Supercrit. Fluids 2017, 119, 139–149. [Google Scholar] [CrossRef]
- Garcez, J.J.; Barros, F.; Lucas, A.M.; Xavier, V.B.; Fianco, A.L.; Cassel, E.; Vargas, R.M.F. Evaluation and mathematical modeling of processing variables for a supercritical fluid extraction of aromatic compounds from Anethum graveolens. Ind. Crops Prod. 2017, 95, 733–741. [Google Scholar] [CrossRef]
- Chai, Y.H.; Yusup, S.; Ruslan, M.S.H.; Chin, B.L.F. Supercritical fluid extraction and solubilization of Carica papaya Linn. leaves in ternary system with CO2 + ethanol solvents. Chem. Eng. Res. Des. 2020, 156, 31–42. [Google Scholar] [CrossRef]
- Lucas, A.M.H.; Bento, A.F.M.L.; Vargas, R.M.F.; Scheffel, T.B.; Rockenbach, L.; Diz, F.M.; Capellari, A.R.; Morrone, F.B.; Cassel, E. Use of supercritical CO2 to obtain Baccharis uncinella extracts with antioxidant and antitumor activity. J. CO2 Util. 2021, 49, 101563. [Google Scholar] [CrossRef]
- Valgas, C.; de Souza, S.M.; Smânia, E.F.A.; Smânia Jr., A. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Nostro, A.; Germanò, M.P.; D’Angelo, V.; Marino, A.; Cannatelli, M.A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett. Appl. Microbiol. 2000, 30, 379–384. [Google Scholar] [CrossRef]
- Falcão, M.A.; Fianco, A.L.B.; Lucas, A.M.; Pereira, M.A.A.; Torres, F.C.; Vargas, R.M.F.; Cassel, E. Determination of antibacterial activity of vacuum distillation fractions of lemongrass essential oil. Phytochem. Rev. 2012, 11, 405–412. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
Standard Run Order | Codified Variables | Uncodified Variables | Global Extract Yield (% w/w) a | S/F b (gsolv./gplant) | ||
---|---|---|---|---|---|---|
Pressure | Modifier | Pressure (bar) | Modifier | |||
1 | −1 | −1 | 120 | Water | 1.25 | 24.2 |
2 | −1 | 1 | 120 | Ethanol | 1.70 | 24.0 |
3 | 1 | −1 | 240 | Water | 1.71 | 24.2 |
4 | 1 | 1 | 240 | Ethanol | 2.49 | 24.0 |
5 | 0 | 0 | 180 | Water:Ethanol (1:1 v/v) | 2.27 | 24.1 |
6 | 0 | 0 | 180 | Water:Ethanol (1:1 v/v) | 2.33 | 24.1 |
7 | 0 | 0 | 180 | Water:Ethanol (1:1 v/v) | 2.30 | 24.1 |
Sample | MIC (mg·mL−1) |
---|---|
Extract 2 (P = 120 bar; cosolvent: ethanol) | 24 |
Extract 7 (P = 180 bar; cosolvent: ethanol:water 1:1 v/v) | 24 |
Extracts 1, 3, 4, 5, and 6 | >24 |
Ethyl acetate fraction | 59.2 |
Subfraction 2 (solvent: hexane:ethyl acetate 80:20) | 35.9 |
Subfraction 4 (solvent: hexane:ethyl acetate 40:60) | 11.8 |
Run Order | Uncodified Variables | Responses | |||
---|---|---|---|---|---|
Pressure (bar) | Temperature (°C) | Medium Particle Size (mesh) | p-Anisic Acid Yield (% w/w) a | Global Extract Yield (% w/w) b | |
1 | 250 | 50 | 60 | 1.83 | 1.76 |
2 | 200 | 60 | 60 | 0.57 | 7.64 |
3 | 300 | 40 | 60 | 2.48 | 2.98 |
4 | 200 | 40 | 60 | 2.19 | 5.11 |
5 | 250 | 50 | 60 | 2.11 | 6.65 |
6 | 250 | 60 | 150 | 1.86 | 4.45 |
7 | 300 | 50 | 150 | 0.82 | 2.51 |
8 | 200 | 50 | 150 | 1.96 | 2.49 |
9 | 200 | 50 | 42 | 1.21 | 4.85 |
10 | 300 | 60 | 60 | 0.84 | 3.26 |
11 | 300 | 50 | 42 | 2.35 | 0.86 |
12 | 250 | 40 | 42 | 2.29 | 1.88 |
13 | 250 | 40 | 150 | 1.85 | 2.92 |
14 | 250 | 50 | 60 | 2.17 | 3.54 |
15 | 250 | 60 | 42 | 1.12 | 2.44 |
Source | DF | Seq SS | Adj SS | Adj MS | F | p |
---|---|---|---|---|---|---|
Regression | 9 | 0.000501 | 0.000501 | 0.000056 | 5.79 | 0.034 |
Linear | 3 | 0.000252 | 0.000059 | 0.00002 | 2.05 | 0.226 |
T | 1 | 0.000244 | 0.000001 | 0.000001 | 0.09 | 0.773 |
P | 1 | 0.000004 | 0.000057 | 0.000057 | 5.92 | 0.059 |
G | 1 | 0.000004 | 0.000003 | 0.000003 | 0.34 | 0.587 |
Square | 3 | 0.000054 | 0.000054 | 0.000018 | 1.87 | 0.252 |
1 | 0.000007 | 0.00001 | 0.00001 | 1.02 | 0.359 | |
1 | 0.000046 | 0.000047 | 0.000047 | 4.9 | 0.078 | |
1 | 0.000001 | 0.000001 | 0.000001 | 0.1 | 0.76 | |
Interaction | 3 | 0.000195 | 0.000195 | 0.000065 | 6.75 | 0.033 |
1 | 0 | 0 | 0 | 0 | 0.975 | |
1 | 0.000072 | 0.000072 | 0.000072 | 7.47 | 0.041 | |
1 | 0.000123 | 0.000123 | 0.000123 | 12.79 | 0.016 | |
Residual error | 5 | 0.000048 | 0.000048 | 0.00001 | ||
Lack-of-fit | 3 | 0.000041 | 0.000041 | 0.000014 | 4.18 | 0.199 |
Pure error | 2 | 0.000007 | 0.000007 | 0.000003 | ||
Total | 14 | 0.000549 |
Model | Adjusted Parameters | Calculated Parameters | ||||
Crank (R² = 0.9865) | D (m²·s−¹) | |||||
8.424 × 10−10 | ||||||
Sovová (R² = 0.9772) | Z | W | xk | yr | ks (m·s−1) | kf (m·s−1) |
4.721 × 10−2 | 7.753 × 10−2 | 3.532 × 10−2 | 5.368 ×10−1 | 1.206 × 10−9 | 9.684 × 10−10 | |
Reverchon (R² = 0.9420) | ti (s) | K (m³·kg−1) | Di (m²·s−1) | kTM (m·s−1) | ||
1710 | 5.294 × 10−3 | 1.228 × 10−12 | 5.848 × 10−4 |
Solvent | Ratio (% v/v) | Subfraction Collected |
---|---|---|
Hexane | 100 | 1 |
Hexane:Ethyl acetate | 80:20 | 2 |
Hexane:Ethyl acetate | 60:40 | 3 |
Hexane:Ethyl acetate | 40:60 | 4 |
Hexane:Ethyl acetate | 20:80 | 5 |
Ethyl acetate | 100 | 6 |
Ethyl acetate:Dichloromethane | 50:50 | 7 |
Dichloromethane | 100 | 8 |
Dichloromethane:Methanol | 50:50 | 9 |
Methanol | 100 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, G.F.; de Souza Júnior, E.T.; Almeida, R.N.; Fianco, A.L.B.; do Espirito Santo, A.T.; Lucas, A.M.; Vargas, R.M.F.; Cassel, E. The Response Surface Optimization of Supercritical CO2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer. Molecules 2022, 27, 970. https://doi.org/10.3390/molecules27030970
da Silva GF, de Souza Júnior ET, Almeida RN, Fianco ALB, do Espirito Santo AT, Lucas AM, Vargas RMF, Cassel E. The Response Surface Optimization of Supercritical CO2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer. Molecules. 2022; 27(3):970. https://doi.org/10.3390/molecules27030970
Chicago/Turabian Styleda Silva, Graciane Fabiela, Edgar Teixeira de Souza Júnior, Rafael Nolibos Almeida, Ana Luisa Butelli Fianco, Alexandre Timm do Espirito Santo, Aline Machado Lucas, Rubem Mário Figueiró Vargas, and Eduardo Cassel. 2022. "The Response Surface Optimization of Supercritical CO2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer" Molecules 27, no. 3: 970. https://doi.org/10.3390/molecules27030970
APA Styleda Silva, G. F., de Souza Júnior, E. T., Almeida, R. N., Fianco, A. L. B., do Espirito Santo, A. T., Lucas, A. M., Vargas, R. M. F., & Cassel, E. (2022). The Response Surface Optimization of Supercritical CO2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer. Molecules, 27(3), 970. https://doi.org/10.3390/molecules27030970