Geraniol and Carvacrol in Essential Oil Bearing Thymus pulegioides: Distribution in Natural Habitats and Phytotoxic Effect
Abstract
:1. Introduction
2. Results
2.1. Distribution of Carvacrol and Geraniol in Thymus pulegioides
2.2. Species of Medicinal Plants and Forage Grasses of Genus Poaceae Growing in Investigated Habitats of Thymus pulegioides
2.3. Phytotoxic Effect of Essential Oils of Thymus pulegioides Carvacrol and Geraniol Chemotypes
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Isolation and Analysis of Essential Oils
4.3. Analysis of Phytotoxic Effect
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, J.D.; Manicacci, D.; Tarayre, M. Thirty-Five Years of Thyme: A Tale of Two Polymorphisms. Why so many females? Why so many chemotypes? BioScience 1998, 48, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Ložienė, K. Selection of fecund and chemically valuable clones of thyme (Thymus) species growing wild in Lithuania. Ind. Crops Prod. 2009, 29, 502–508. [Google Scholar] [CrossRef]
- Zarzuelo, A.; Crespo, E. The medicinal and non-medicinal uses of thyme. In Medicinal and Aromatic Plants—Industrial Profiles; Stahl-Biskup, E., Sáez, F., Eds.; Taylor & Francis: London, UK, 2002; Volume 17, pp. 263–292. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Pauli, A.; Schilcher, H. Specific Selection of Essential Oil Compounds for Treatment of Children’s Infection Diseases. Pharmaceuticals 2004, 1, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Groendahl, E.; Ehlers, K.B. Local adaption to biotic factors: Reciprocal transplants of four species associated with aromatic Thymus pulegioides and Thymus. serpyllum. J. Ecol. 2008, 96, 981–992. [Google Scholar] [CrossRef]
- Michet, A.; Chalchar, C.J.; Figueredo, G.; Thebaud, G.; Billy, F.; Petel, G. Chemotypes in the volatiles of wild thyme (Thymus pulegioides L.). J. Essent. Oil Res. 2008, 20, 101–103. [Google Scholar] [CrossRef]
- Mártonfi, P. Polymorfism of essential oil of Thymus pulegioides subc. chamaedrys in Slovakia. J. Essent. Oil Res. 1992, 4, 173–179. [Google Scholar] [CrossRef]
- Mockutė, D.; Bernotienė, G. The α-terpinyl acetate chemotype of essential oil of Thymus pulegioides L. Biochem. Syst. Ecol. 2001, 29, 69–73. [Google Scholar] [CrossRef]
- Ložienė, K.; Vaičiūnienė, J.; Venskutonis, P.R. Chemical composition of the essential oil of different varieties of thyme (Thymus pulegioides L.) growing wild in Lithuania. Biochem. Syst. Ecol. 2003, 31, 249–259. [Google Scholar] [CrossRef]
- Mártonfi, P.; Grejtovsky, A.; Repčak, M. Chemotype pattern differentiation of Thymus pulegioides on different substrates. Biochem. Syst. Ecol. 1994, 22, 819–825. [Google Scholar] [CrossRef]
- Mockutė, D.; Bernotienė, G. Chemical composition of the essential oils and the odor of Thymus pulegioides L. growing wild in Vilnius. J. Essent. Oil Res. 2005, 17, 415–418. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K.; Taraškevičius, R.; Butkienė, R. Variation of essential oil composition of Thymus pulegioides in relation with soil chemistry. Ind. Crops Prod. 2017, 95, 422–433. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Protect. 2002, 10, 1545–1560. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Q.; Khan, R.; Qamar, W.; Lateef, A.; Rehman, M.U.; Tahir, M.; Ali, F.; Hamiza, O.O.; Hasan, S.K.; Sultana, S. Geraniol attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and inflammation in mouse skin: Possible role of p38 MAP Kinase and NF-κB. Exp. Mol. Pathol. 2013, 94, 419–429. [Google Scholar] [CrossRef]
- Quiroga, P.R.; Asensio, C.M.; Nepote, V. Antioxidant effect of the monoterpenes carvacrol, thymol and sabinene hydrate on chemical and sensory stability of roasted sunflower seeds. J. Sci. Food Agric. 2015, 95, 471–479. [Google Scholar] [CrossRef]
- Baser, K.H.C. Biological and Pharmacological Activities of Carvacrol and Carvacrol Bearing Essential oils. Curr. Pharm. 2008, 14, 3106–3120. [Google Scholar] [CrossRef]
- Ložienė, K.; Vaičiulytė, V. Ecological characteristics of habitats and occurrence of Thymus pulegioides (Lamiaceae) in Lithuania. Thaiszia J. Bot. 2017, 27, 49–64. [Google Scholar]
- Balevičienė, J.; Kizienė, B.; Lazdaukaitė, Ž.; Patalauskaitė, D.; Rašomavičius, V.; Sinkevičienė, Z.; Tučienė, A.; Venckus, Z. Vegetation of Lithuania. 1. Meadows; Šviesa: Kaunas, Lithuania, 1998; pp. 28–107. [Google Scholar]
- Balevičienė, J. Sintaksonomo-Fitogeografičeskaja Struktura Rastitel’Nosti Litvy; Mokslas: Vilnius, Lithuania, 1991; p. 217. [Google Scholar]
- Vaičiulytė, V.; Ložienė, K. Impact of chemical polymorphism of Thymus pulegioides on some associated plant species under natural and laboratory conditions. Plant. Biosyst. 2020, 154, 663–672. [Google Scholar] [CrossRef]
- European Pharmacopoeia. Directorate for the Quality of Medicines and HealthCare of the Council of Europe (EDQM), 10th ed.; EDQM: Strasbourg, France, 2020; Volume 1, pp. 307–308. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie, Grundzüge der Vegetationskunde, 3rd ed.; Springer: Wien, Austria, 1964; p. 865. [Google Scholar]
- Adams, R.P. Identification of Essential oil Components by Gas Chromatography/Mass Spectometry, 4th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2007; pp. 104–510. [Google Scholar]
- Bukantis, A. Climate of Lithuania; Vilnius University: Vilnius, Lithuania, 1994; pp. 24–26. [Google Scholar]
- Amiot, J.; Salmon, Y.; Collin, C.; Thompson, J.D. Differential resistance to freezing and spatial distribution in achemically polymorphic plant Thymus vulgaris. Ecol. Lett. 2005, 8, 370–377. [Google Scholar] [CrossRef]
- Thompson, J.D. Population structure and the spatialdynamics of genetic polymorphism in thyme. In Thyme: The Genus Thymus; Stahl-Biskup, E., Saéz, F., Eds.; Taylor & Francis: London, UK, 2002; pp. 44–54. [Google Scholar]
- Thompson, J.D.; Gauthier, P.; Amiot, J.; Ehlers, B.K.; Collin, C.; Fossat, J.; Barrios, V.; Arnaud-Miramont, F.; Keeforver- Ring, K.; Linhart, Y.B. Ongoing adaption to mediterranenan climate extremes in chemically polimorphic plant. Ecol. Monogr. 2007, 77, 421–439. [Google Scholar] [CrossRef] [Green Version]
- Mockutė, D.; Bernotienė, G. The main citral-geraniol and carvacrol chemotypes of essential oil of Thymus pulegiodes growing wild in Vilnius district (Lithuania). J. Agric. Food Chem. 1999, 47, 3787–3790. [Google Scholar] [CrossRef] [PubMed]
- Ložienė, K.; Venskutonis, P.R.; Vaičiūnienė, J. Chemical diversity of essential oils of Thymus pulegioides and Thymus serpyllum growing in Lithuania. Biologija 2002, 1, 62–64. [Google Scholar]
- Pavel, M.; Ristic, M.; Stevic, T. Essential oils of Thymus pulegioides and Thymus glabrescens from Romania: Chemical composition and antimicrobial activity. J. Serb. Chem. Soc. 2010, 75, 27–34. [Google Scholar] [CrossRef]
- Radulescu, V.; Pavel, M.; Teodor, A.; Tanase, A.; Ilies, D.C. Analysis from volatile compounds from infusio and hidrodistilate obtained from the species Thymus pulegioides (Lamiaceae). Farmacia 2009, 57, 282–289. [Google Scholar]
- De Martino, L.; Bruno, M.; Formisano, K.; De Feo, V.; Napolitano, F.; Rosselli, S.; Senatore, F. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in souththern Italy. Molecules 2009, 14, 4614–4624. [Google Scholar] [CrossRef] [Green Version]
- Senatore, F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides) growing wild in Campania (Southern Italy). J. Agric. Food Chem. 1996, 46, 1327–1332. [Google Scholar] [CrossRef]
- Pinto, E.; Pina–Vaz, C.; Salgueiro, L.; Concalves, M.J.; Costa-de- Oliveira, S.; Cavaleiro, C.; Palmaeira, A.; Rodrigues, A.; Martinez-de-Oliveira, J. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermophyte species. J. Med. Micro. 2006, 55, 1367–1373. [Google Scholar] [CrossRef] [Green Version]
- Stahl-Biskup, E. Das ätherische Öl norwegischer Thymian Arten; II. Thymus pulegioides. Planta Med. 1986, 3, 233–235. [Google Scholar] [CrossRef]
- Mastelic, J.; Gruznov, K.; Kravar, A. The chemical composition of terpene alcohols and phenols from the essential oil and terpene glycosides isolated from Thymus pulegioides growing wild in Dalmantia. Planta Med. 1992, 58, 679–680. [Google Scholar] [CrossRef]
- Matuszkiewicz, W. Przewodnik do oznaczania zbiorowisk roślinnych Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1984; p. 298. [Google Scholar]
- Laime, B.; Tjarve, D. Grey dune plant communities (Koelerio-Corynephoretea) on the Baltic coast in Latvia. Tuexenia 2009, 29, 409–435. [Google Scholar]
- Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Heinze, H.J.; Crockett, S.; Sharbel, T.F.; Pahnke, J. Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr. Alzheimer Res. 2013, 10, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Krysko, D.V.; Vandenabeele, P.; Agostinis, P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol. Immunother. 2012, 61, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.I.; Pincho, C.; Sarmento, B.; Dias, A.C.P. Neuroprotective Activity of Hypericum perforatum and Its Major Components. Front. Plant. Sci. 2016, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidi, M.M.; Hoseini, B.; Abtahi, M.; Mirlohi, A.; Araghi, B. Genetic analysis of seed related traits in Orchardgrass (Dactylis glomerata) under normal and drought stress conditions. Euphytica 2015, 203, 409–420. [Google Scholar] [CrossRef]
- Lemežienė, N.; Kanapeckas, J.; Tarakanovas, P.; Nekrošas, S. Analysis of dry matter yield structure of forage grasses. Plant Soil Environ. 2004, 50, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Inderjit, D.A.; Wardle, R.; Karban, R.M.; Callaway, M. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol. Evol. 2011, 26, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Linhart, Y.B.; Gauthier, P.; Keefover-Ring, K.; Thompson, J.D. Variable phytotoxin effects of Thymus vulgaris (Lamiaceae) terpenes on associated species. IJPS 2015, 176, 20–30. [Google Scholar]
- Tarayre, M.; Thompson, J.D.; Escarre, J.; Linhart, Y.B. Intra-specific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed germination. Oecologia 1995, 101, 110–118. [Google Scholar] [CrossRef]
- Linhart, Y.B.; Thompson, J.D. Terpene-based selective herbivory by Helix aspersa (Mollusca) on Thymus vulgaris (Labiatae). Oecologia 1995, 102, 126–132. [Google Scholar] [CrossRef]
- Linhart, Y.B.; Thompson, J.D. Thyme is of the essence: Biochemical polymorphism and multi-species deterrence. Evol. Ecol. Res. 1999, 1, 151–171. [Google Scholar]
- Pavolainen, L.; Kitunen, V.; Smolander, A. Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 1998, 205, 147–154. [Google Scholar] [CrossRef]
- White, C.S. Monoterpenes: Their efects on ecosystem nutrient cycling. J. Chem. Ecol. 1994, 20, 1381–1406. [Google Scholar] [CrossRef] [PubMed]
- Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280. [Google Scholar] [CrossRef]
- Gershenzon, J.; Dudareva, N. The function of terpenes natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Gawad, A.M.; Elshamy, A.; El Gendy, A.E.-N.; Al-Rowaily, S.L.; Assaeed, A.M. Preponderance of oxygenated sesquiterpenes and diterpenes in the volatile oil constituents of Lactuca serriola L. revealed antioxidant and allelopathic activity. Chem. Biodivers 2019, 16, e1900278. [Google Scholar] [CrossRef] [PubMed]
Percentages of Carvacrol or Geraniol | Number of Habitats | |
---|---|---|
With Carvacrol | With Geraniol | |
Not found | 1 | 17 |
(0.00–5.00] | 5 | 67 |
(5.00–10.00] | 20 | 16 |
(10.00–15.00] | 31 | 10 |
(15.00–20.00] | 25 | 8 |
(20.00–25.00] | 23 | 5 |
(25.00–30.00] | 12 | 3 |
(30.00–35.00] | 8 | 3 |
(35.00–40.00] | 2 | 2 |
(40.00–45.00] | 3 | 0 |
(45.00–50.00] | 1 | 0 |
Cluster or Habitat Number | Percentage of Compound | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Carvacrol | Thymol | p-Cymene | γ-Terpinene | Geraniol | Geranial | Nerol | Neral | Linalool | α-Terpinyl Acetate | ||
Cluster 1′ (N = 34) | Mean | 11.24 | 1.55 | 4.94 | 8.86 | 18.56 | 3.09 | 9.92 | 8.63 | 2.05 | 4.94 |
SD | 5.51 | 2.46 | 3.85 | 6.36 | 8.90 | 1.44 | 5.40 | 6.18 | 4.94 | 2.01 | |
Min | 0.00 | 0.00 | 0.39 | 0.00 | 3.48 | 0.32 | 0.88 | 0.65 | 0.00 | 0.00 | |
Max | 24.28 | 10.28 | 12.60 | 23.85 | 39.87 | 6.57 | 20.57 | 34.92 | 22.94 | 9.84 | |
CV, % | 49 | 159 | 78 | 72 | 48 | 47 | 54 | 72 | 241 | 41 | |
Cluster 2′ (N = 17) | Mean | 13.38 | 12.10 | 17.61 | 16.59 | 2.39 | 0.40 | 1.43 | 1.02 | 0.36 | 0.27 |
SD | 4.12 | 7.48 | 7.27 | 6.59 | 2.85 | 0.46 | 1.73 | 1.35 | 0.10 | 0.53 | |
Min | 7.09 | 4.50 | 5.20 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | |
Max | 21.31 | 31.00 | 29.55 | 30.64 | 10.04 | 1.45 | 5.66 | 4.23 | 0.51 | 1.84 | |
CV, % | 31 | 62 | 41 | 40 | 119 | 115 | 121 | 132 | 28 | 196 | |
Cluster 3′ (N = 45) | Mean | 26.11 | 2.09 | 9.44 | 23.78 | 1.89 | 0.29 | 0.75 | 0.56 | 0.56 | 0.07 |
SD | 8.75 | 2.96 | 4.41 | 6.40 | 2.21 | 0.40 | 1.13 | 0.90 | 0.75 | 0.24 | |
Min | 12.10 | 0.00 | 1.23 | 11.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Max | 48.00 | 11.11 | 20.00 | 42.60 | 7.80 | 1.40 | 5.29 | 4.16 | 4.41 | 1.35 | |
CV, % | 34 | 142 | 47 | 27 | 117 | 138 | 151 | 161 | 134 | 343 | |
Cluster 4′ (N = 28) | Mean | 17.89 | 1.56 | 20.66 | 17.49 | 2.94 | 0.72 | 2.72 | 2.06 | 0.35 | 0.34 |
SD | 5.38 | 1.72 | 7.17 | 5.96 | 2.66 | 0.60 | 2.59 | 1.97 | 0.22 | 1.01 | |
Min | 8.19 | 0.00 | 5.73 | 4.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | |
Max | 27.10 | 6.36 | 38.49 | 29.47 | 10.04 | 1.88 | 9.34 | 7.18 | 1.23 | 4.33 | |
CV, % | 30 | 111 | 35 | 34 | 90 | 83 | 95 | 96 | 63 | 297 | |
no. 11 | 13.58 | 2.38 | 20.99 | 11.68 | 1.67 | 0.17 | 0.65 | 0.09 | 14.25 | 2.34 | |
no. 34 | 5.65 | 1.32 | 6.82 | 5.87 | 2.92 | 0.56 | 1.87 | 1.43 | 0.35 | 43.56 | |
no. 39 | 5.65 | 0.00 | 20.70 | 6.44 | 2.08 | 0.12 | 0.07 | 0.00 | 6.51 | 30.77 | |
no. 99 | 0.06 | 0.00 | 0.14 | 0.48 | 12.35 | 1.12 | 3.52 | 2.81 | 0.29 | 57.50 | |
no. 100 | 3.48 | 0.27 | 1.31 | 1.57 | 4.01 | 0.38 | 1.01 | 0.90 | 57.75 | 6.01 | |
no. 106 | 6.39 | 0.00 | 5.38 | 5.85 | 6.36 | 1.32 | 4.78 | 3.87 | 40.37 | 3.99 |
Species | Number of Investigated Habitats with Different Cover-Abundances 1 | Percentage of Habitats, Where This Species Was Found, % | ||||
---|---|---|---|---|---|---|
+ | 1 | 2 | 3 | 4 | ||
Species of medicinal plants | ||||||
Achillea millefolium L. | 70 | 17 | 1 | – | – | 67 |
Arrhenatherum elatius (L.) P. Beauv. Ex J. Presl et C. Presl | – | 1 | – | – | – | 1 |
Agrimonia eupatoria L. | 27 | 12 | 3 | – | – | 32 |
Alchemilla sp. | 19 | 1 | – | – | – | 20 |
Artemisia absinthium L. | 1 | – | – | – | – | 1 |
Betula pendula Roth | 22 | 2 | – | – | – | 18 |
Carum carvi L. | 3 | – | – | – | – | 2 |
Centaurium erythraea Rafn | 4 | 1 | – | – | – | 4 |
Chelidonium majus L. | 1 | – | – | – | – | 1 |
Elytrigia repens (L.) Nevski | 8 | 1 | – | – | – | 7 |
Equisetum arvense L. | 33 | 13 | 2 | 3 | – | 39 |
Fagopyrum esculentum Moench | 1 | – | – | – | – | 1 |
Filipendula ulmaria (L.) Maxim. | 1 | – | – | – | – | 1 |
Frangula alnus Mill. | 5 | – | – | – | – | 4 |
Fumaria officinalis L. | 1 | – | – | – | – | 1 |
Hypericum perforatum L. | 49 | – | – | – | – | 37 |
Juniperus communis L. | 2 | – | – | – | – | 2 |
Melilotus officinalis (L.) Pall. | 1 | – | – | – | – | 1 |
Mentha arvensis L. | 2 | – | – | – | – | 2 |
Oenothera biennis L. | 13 | 1 | – | 1 | – | 12 |
Origanum vulgare L. | 3 | – | – | 3 | – | 5 |
Pinus sylvestris L. | 32 | 6 | 1 | – | – | 30 |
Plantago lanceolate L. | 23 | 11 | 2 | – | – | 28 |
Potentilla erecta (L.) Raeuschel | 3 | – | – | – | – | 2 |
Primula veris L. | 8 | 2 | – | – | – | 8 |
Prunella vulgaris L. | 27 | 1 | – | – | – | 21 |
Quercus robur L. | 18 | – | – | – | – | 14 |
Ribes nigrum L. | 1 | – | – | – | – | 1 |
Rubus idaeus L. | 6 | – | – | – | – | 5 |
Solidago virgaurea L. | 17 | 3 | – | – | – | 15 |
Salix purpurea L. | 3 | – | – | – | – | 2 |
Taraxacum officinale F. H. Wigg. | 18 | 16 | 2 | 2 | – | 29 |
Tilia cordata Mill. | 2 | – | 1 | 1 | – | 3 |
Urtica dioica L. | 2 | – | – | – | – | 2 |
Valeriana officinalis L. | 2 | – | – | – | – | 2 |
Species of genus Poaceae | ||||||
Dactylis glomerata L. | 37 | 41 | 13 | 3 | 1 | 73 |
Deschampsia cespitosa (L.) P. Beauv. | 6 | 1 | – | – | – | 5 |
Festuca ovina-L. | 10 | – | – | – | – | 8 |
Festuca pratensis Huds. | 15 | 14 | 4 | 1 | – | 26 |
Festuca rubra L. | 4 | 20 | 8 | 1 | – | 25 |
Lolium perrene L. | 4 | 1 | – | – | – | 4 |
Phleum pratense L. | 34 | 6 | 1 | – | – | 31 |
Poa annua L. | 1 | 2 | 2 | 1 | – | 5 |
Poa pratensis L. | 5 | 15 | 10 | 3 | 2 | 27 |
Poa trivialis L. | 1 | – | – | – | – | 1 |
Compound | Identification Method | Retention Index | GC Area, % | |
---|---|---|---|---|
Calculated | Literature [24] | |||
α-Thujene | RI, MS | 932 | 924 | 1.14 |
α-Pinene | RI, MS | 940 | 932 | 0.54 |
1-octen-3-ol | RI, MS | 979 | 971 | 1.79 |
α-Terpinene | RI, MS, Std | 1022 | 1014 | 2.01 |
p-Cymene | RI, MS, Std | 1029 | 1020 | 12.38 |
Limonene | RI, MS, Std | 1032 | 1024 | 0.40 |
(E)-β-Ocimene | RI, MS | 1042 | 1044 | 0.40 |
γ-Terpinene | RI, MS, Std | 1053 | 1054 | 15.47 |
Borneol | RI, MS, Std | 1173 | 1165 | 0.42 |
Terpinen-4-ol | RI, MS, Std | 1172 | 1174 | 0.34 |
α-Terpineol | RI, MS | 1194 | 1186 | 0.09 |
Nerol | RI, MS, Std | 1235 | 1227 | 0.47 |
Neral | RI, MS, | 1242 | 1235 | 0.17 |
Geraniol | RI, MS, Std | 1237 | 1249 | 2.31 |
Geranial | RI, MS, | 1272 | 1264 | 0.16 |
Thymol | RI, MS, Std | 1298 | 1289 | 0.29 |
Carvacrol | RI, MS, Std | 1308 | 1298 | 23.71 |
Neryl acetate | RI, MS | 1368 | 1359 | 0.07 |
β-Bourbonene | RI, MS | 1395 | 1387 | 0.21 |
β-Caryophyllene | RI, MS, Std | 1426 | 1417 | 6.87 |
α-Humulene | RI, MS | 1460 | 1452 | 0.06 |
cis-β-Guaiene | RI, MS | 1500 | 1492 | 1.45 |
β-Bisabolene | RI, MS | 1513 | 1505 | 3.36 |
(E)-β-Farnesene | RI, MS | 1463 | 1454 | 0.26 |
(E)-β-Ionone | RI, MS | 1496 | 1487 | 0.15 |
Caryophyllene oxide | RI, MS, Std | 1591 | 1582 | 1.77 |
Monoterpene hydrocarbons | 32.34 | |||
Oxygenated monoterpenes | 42.16 | |||
Sesquiterpene hydrocarbons | 12.21 | |||
Oxygenated sesquiterpenes | 1.38 | |||
Other | 2.01 | |||
Total identified | 90.10 |
Compound | Identification Method | Retention Index | GC Area, % | |
---|---|---|---|---|
Calculated | Literature [24] | |||
α-Pinene | RI, MS | 941 | 932 | 0.29 |
1-octen-3-ol | RI, MS | 980 | 971 | 0.61 |
α-Terpinene | RI, MS, Std | 1023 | 1014 | 0.02 |
p-Cymene | RI, MS, Std | 1029 | 1020 | 0.17 |
Limonene | RI, MS, Std | 1033 | 1024 | 0.13 |
(E)-β-Ocimene | RI, MS | 1053 | 1044 | 0.05 |
γ-Terpinene | RI, MS, Std | 1063 | 1054 | 0.49 |
Linalool | RI, MS, Std | 1104 | 1095 | 0.71 |
Nerol oxide | RI, MS | 1163 | 1154 | 0.16 |
Borneol | RI, MS, Std | 1174 | 1165 | 0.82 |
Terpinen-4-ol | RI, MS, Std | 1183 | 1174 | 0.17 |
α-Terpineol | RI, MS | 1195 | 1186 | 0.08 |
Nerol | RI, MS, Std | 1236 | 1227 | 9.99 |
Neral | RI, MS, | 1245 | 1235 | 7.68 |
Geraniol | RI, MS, Std | 1260 | 1249 | 55.99 |
Geranial | RI, MS, | 1274 | 1264 | 3.87 |
α-Terpinyl acetate | RI, MS, Std | 1355 | 1346 | 0.14 |
Neryl acetate | RI, MS | 1368 | 1359 | 1.75 |
β-Bourbonene | RI, MS | 1396 | 1387 | 0.21 |
β-Caryophyllene | RI, MS, Std | 1426 | 1417 | 6.67 |
cis-β-Guaiene | RI, MS | 1501 | 1492 | 1.21 |
β-Bisabolene | RI, MS | 1514 | 1505 | 1.04 |
(E)-β-Farnesene | RI, MS | 1463 | 1454 | 0.26 |
Caryophyllene oxide | RI, MS, Std | 1491 | 1582 | 1.77 |
Monoterpene hydrocarbons | 1.15 | |||
Oxygenated monoterpenes | 79.58 | |||
Sesquiterpene hydrocarbons | 9.39 | |||
Oxygenated sesquiterpenes | 1.77 | |||
Other | 2.52 | |||
Total identified | 94.59 |
Effect | Chemical | GP ± SD, % | MGD, % | GI, Seeds/Day | Radicle Development ± SD, mm | |
---|---|---|---|---|---|---|
Control | 96.67 ± 0.50 | 12.13 | 31.38 | 9.77 ± 4.29 | ||
Through air | Essential oil | Geraniol chemotype | 1.25 ± 0.96 a | 0.07 a | 0.08 a | 5.16 ± 5.57 |
Carvacrol chemotype | 11.20 ± 3.83 a | 0.95 a | 2.11 a | 2.13 ± 3.87 a | ||
Analytical standard | Geraniol | 10.25 ± 3.86 A | 0.97 A | 1.60 A | 1.77 ± 0.66 A | |
Carvacrol | 18.00 ± 3.81 A | 2.94 A | 4.87 A | 1.40 ± 0.75 A | ||
Through water | Essential oil | Geraniol chemotype | 47.00 ± 7.87 a | 2.6 a | 4.84 a | 7.00 ± 5.22 |
Carvacrol chemotype | 92.00 ± 1.41 a | 8.09 a | 20.32 a | 5.69 ± 4.89 a | ||
Analytical standard | Geraniol | 1.80 ± 1.79 A | 0.18 A | 0.47 A | 1.22 ± 0.75 A | |
Carvacrol | 88.33 ± 10.70 A | 7.95 A | 17.48 A | 4.38 ± 3.43 A |
Effect | Chemical | GP ± SD, % | MGD, % | GI, Seeds/Day | Radicle Development ± SD, mm | |
---|---|---|---|---|---|---|
Control | 46.67 ± 7.02 | 2.59 | 4.94 | 3.31 ± 1.24 | ||
Through air | Essential oil | Geraniol chemotype | 0.00 b | 0.00 b | 0.00 b | – |
Carvacrol chemotype | 28.00 ± 6.09 b | 1.98 b | 3.45 b | 1.63 ± 0.51 b | ||
Analytical standard | Geraniol | 0.00 B | 0.00 B | 0.00 B | – | |
Carvacrol | 19.67 ± 4.62 B | 1.20 B | 1.74 B | 0.87 ± 0.59 B | ||
Through water | Essential oil | Geraniol chemotype | 0.00 b | 0.00 b | 0.00 b | – |
Carvacrol chemotype | 37.60 ± 9.84 | 2.42 | 5.34 | 1.75 ± 0.76 b | ||
Analytical standard | Geraniol | 0.00 B | 0.00 B | 0.00 B | – | |
Carvacrol | 55.00 ± 7.00 | 3.45 | 7.70 B | 1.60 ± 0.59 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ložienė, K.; Vaičiulytė, V. Geraniol and Carvacrol in Essential Oil Bearing Thymus pulegioides: Distribution in Natural Habitats and Phytotoxic Effect. Molecules 2022, 27, 986. https://doi.org/10.3390/molecules27030986
Ložienė K, Vaičiulytė V. Geraniol and Carvacrol in Essential Oil Bearing Thymus pulegioides: Distribution in Natural Habitats and Phytotoxic Effect. Molecules. 2022; 27(3):986. https://doi.org/10.3390/molecules27030986
Chicago/Turabian StyleLožienė, Kristina, and Vaida Vaičiulytė. 2022. "Geraniol and Carvacrol in Essential Oil Bearing Thymus pulegioides: Distribution in Natural Habitats and Phytotoxic Effect" Molecules 27, no. 3: 986. https://doi.org/10.3390/molecules27030986
APA StyleLožienė, K., & Vaičiulytė, V. (2022). Geraniol and Carvacrol in Essential Oil Bearing Thymus pulegioides: Distribution in Natural Habitats and Phytotoxic Effect. Molecules, 27(3), 986. https://doi.org/10.3390/molecules27030986