Biogenic Synthesis of Ag Nanoparticles of 18.27 nm by Zanthozylum armatum and Determination of Biological Potentials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Plant Material
2.2. Preparation of Extracts
2.3. Synthesis of AgNPs
2.4. Characterization of AgNPs by UV-Vis, XRD, SEM and FT-IR
2.5. Antibacterial Activities
2.6. Antioxidant Activity
2.7. Total Phenolic Contents
2.8. Total Flavonoid Contents (TFCs)
3. Results and Discussion
3.1. Visual Observation
3.2. UV-Visible Spectroscopy
3.3. XRD Analysis
3.4. SEM Analysis
3.5. FT-IR Analysis
3.6. Antibacterial Activity
3.7. Antioxidant Activity
3.8. Phenolic and Flavonoid Contents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ahmad, P.; Khandaker, M.U.; Khan, Z.R.; Amin, Y.M. Synthesis of boron nitride nanotubes via chemical vapour deposition: A comprehensive review. RSC Adv. 2015, 5, 35116–35137. [Google Scholar] [CrossRef]
- Goodsell, D.S. Bionanotechnology: Lessons from Nature; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Holsapple, M.P.; Farland, W.H.; Landry, T.D.; Monteiro-Riviere, N.A.; Carter, J.M.; Walker, N.J.; Thomas, K.V. Research strategies for safety evaluation of nanomaterials, part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol. Sci. 2005, 88, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Lanone, S.; Boczkowski, J. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr. Mol. Med. 2006, 6, 651–663. [Google Scholar] [CrossRef]
- Frattini, A.; Pellegri, N.; Nicastro, D.; De Sanctis, O. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys. 2005, 94, 148–152. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef]
- Riaz, M.; Altaf, M.; Khan, M.Q.; Manzoor, S.; Shekheli, M.A.; Shah, M.A.; Ilyas, S.Z.; Hussain, Z. Green Synthesis of Silver Nanoparticles Using Jurinea dolomiaea and Biological Activities. J. Nanosci. Nanotechnol. 2018, 18, 8386–8391. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.C.; Nguyen, T.H.; Ngoc, U.T.P.; Le, N.T.T.; Tran, T.V.; Nguyen, D.H. Preparation, characterization and antifungal properties of chitosan-silver nanoparticles synergize fungicide against Pyricularia oryzae. J. Nanosci. Nanotechnol. 2018, 18, 5299–5305. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Rangasamy, S.; Tak, Y.K.; Kim, S.; Paul, A.; Song, J.M. Bifunctional therapeutic high-valence silver-pyridoxine nanoparticles with proliferative and antibacterial wound-healing activities. J. Biomed. Nanotechnol. 2016, 12, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xiao, P.; Khan, A.; Wang, Z.; He, N. Preparation of DNA-templated silver nanoclusters under macromolecular crowding conditions. Nanosci. Nanotechnol. Lett. 2017, 9, 892–896. [Google Scholar] [CrossRef]
- Lee, C.; Gang, J. A Label-Free Detection of NdeI Endonuclease Activity by Using DNA-Templated Silver Nanoclusters. J. Nanosci. Nanotechnol. 2018, 18, 6339–6342. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Du, J.; He, N.; Deng, Y.; Li, S.; Wang, T. Anodic stripping voltammetry for detection of dna hybridization with porous pseudo-carbon paste electrode by gold nanoparticle-catalyzed silver enhancement. J. Nanosci. Nanotechnol. 2009, 9, 2698–2703. [Google Scholar] [CrossRef]
- He, W.; Kienzle, A.; Liu, X.; Müller, W.E.; Elkhooly, T.A.; Feng, Q. In vitro effect of 30 nm silver nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J. Biomed. Nanotechnol. 2016, 12, 525–535. [Google Scholar] [CrossRef]
- Chen, T.-T.; Chen, Q.-Y.; Liu, M.-Y. GAG-containing nucleotides as mediators of DNA-silver clusters and iron-DNA interplay. Chin. Chem. Lett. 2016, 27, 395–398. [Google Scholar] [CrossRef]
- Li, T.; Yang, J.; Ali, Z.; Wang, Z.; Mou, X.; He, N.; Wang, Z. Synthesis of aptamer-functionalized Ag nanoclusters for MCF-7 breast cancer cells imaging. Sci. China Chem. 2017, 60, 370–376. [Google Scholar] [CrossRef]
- Srinivasan, S.; Bhardwaj, V.; Nagasetti, A.; Fernandez-Fernandez, A.; McGoron, A.J. Multifunctional surface-enhanced raman spectroscopy-detectable silver nanoparticles for combined photodynamic therapy and pH-triggered chemotherapy. J. Biomed. Nanotechnol. 2016, 12, 2202–2219. [Google Scholar] [CrossRef]
- Qiu, L.; Zhao, L.; Xing, C.; Zhan, Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. Chin. Chem. Lett. 2018, 29, 301–304. [Google Scholar] [CrossRef]
- Li, T.; Yi, H.; Liu, Y.; Wang, Z.; Liu, S.; He, N.; Liu, H.; Deng, Y. One-Step Synthesis of DNA Templated Water-Soluble Au–Ag Bimetallic Nanoclusters for Ratiometric Fluorescence Detection of DNA. J. Biomed. Nanotechnol. 2018, 14, 150–160. [Google Scholar] [CrossRef]
- Safaepour, M.; Shahverdi, A.R.; Shahverdi, H.R.; Khorramizadeh, M.R.; Gohari, A.R. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J. Med. Biotechnol. 2009, 1, 111. [Google Scholar]
- Tripathi, A.; Chandrasekaran, N.; Raichur, A.; Mukherjee, A. Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J. Biomed. Nanotechnol. 2009, 5, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Khorramizadeh, M.; Saadat, F.; Zomorodian, K. The potential role of nonsteroidal anti-inflammatory drugs (NSAIDSs) in chemopreventation of cancer. Pak. J. Med. Sci. 2003, 19, 13–18. [Google Scholar]
- Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; Pyne, S.; Misra, A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 212–216. [Google Scholar] [CrossRef]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2010, 368, 58–63. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, C.-Y.; Zhang, D.-J.; Hao, R.; Hao, Y.-W.; Liu, Y.-Q. Fabrication of flower-like silver nanoparticles for surface-enhanced Raman scattering. Chin. Chem. Lett. 2016, 27, 689–692. [Google Scholar] [CrossRef]
- Iyer, R.I.; Panda, T. Biosynthesis of gold and silver nanoparticles using extracts of callus cultures of pumpkin (Cucurbita maxima). J. Nanosci. Nanotechnol. 2018, 18, 5341–5353. [Google Scholar] [CrossRef]
- Roy, A.; Elzaki, A.; Tirth, V.; Kajoak, S.; Osman, H.; Algahtani, A.; Islam, S.; Faizo, N.L.; Khandaker, M.U.; Islam, M.N.; et al. Biological Synthesis of Nanocatalysts and Their Applications. Catalysts 2021, 11, 1494. [Google Scholar] [CrossRef]
- Din, S.U.; Iqbal, H.; Haq, S.; Ahmad, P.; Khandaker, M.U.; Elansary, H.O.; Al-Harbi, F.F.; Abdelmohsen, S.A.M.; Zin El-Abedin, T.K. Investigation of the Biological Applications of Biosynthesized Nickel Oxide Nanoparticles Mediated by Buxus wallichiana Extract. Crystals 2022, 12, 146. [Google Scholar] [CrossRef]
- Brijwal, L.; Aseesh, P.; Tamta, S. An overview on phytomedicinal approaches of Zanthoxylum armatum DC.: An important magical medicinal plant. J. Med. Plants Res. 2013, 7, 366–370. [Google Scholar]
- Paridhavi, M.; Agrawal, S. Safety evaluation of a polyherbal formulation. Zuroor-E–Qula 2007, 6, 286–289. Available online: http://nopr.niscair.res.in/ (accessed on 27 December 2021).
- Ur Rahman, S.; Ismail, M.; Muhammad, N.; Ali, F.; Chishti, K.A.; Imran, M. Evaluation of the stem bark of Pistacia integerrima Stew ex Brandis for its antimicrobial and phytotoxic activities. Afr. J. Pharm. Pharmacol. 2011, 5, 1170–1174. [Google Scholar]
- Villano, D.; Fernández-Pachón, M.; Moyá, M.; Troncoso, A.; García-Parrilla, M. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Al-Othman, M.; El-Aziz, A.; Mahmoud, M.; Eifan, S.; El-Shikh, M.; Majrashi, M. Application of silver nanoparticles as antifungal and antiaflatoxin B1 produced by Aspergillus flavus. Dig. J. Nanomater. Bios. 2014, 9, 151–157. [Google Scholar]
- Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 227–233. [Google Scholar] [CrossRef]
- Rokaya, M.B.; Münzbergová, Z.; Timsina, B.; Bhattarai, K.R. Rheum australe D. Don: A review of its botany, ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2012, 141, 761–774. [Google Scholar] [CrossRef]
- Agbo, M.O.; Uzor, P.F.; Nneji, U.N.A.; Odurukwe, C.U.E.; Ogbatue, U.B.; Mbaoji, E.C. Antioxidant, total phenolic and flavonoid content of selected Nigerian medicinal plants. Dhaka Univ. J. Pharm. Sci. 2015, 14, 35–41. [Google Scholar] [CrossRef] [Green Version]
Conc. of MeOH-Extracts | 10 µg/µL | 20 µg/µL | 30 µg/µL |
% Scavenging | 42.58 | 44.84 | 46.65 |
# | Total Phenolic and Flavonoid Contents | mg (GAE or RE)/g DW |
---|---|---|
1 | Total phenolic content | 82 |
2 | Total flavonoid content | 333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, M.; Altaf, M.; Ahmad, P.; Khandaker, M.U.; Osman, H.; Eed, E.M.; Shakir, Y. Biogenic Synthesis of Ag Nanoparticles of 18.27 nm by Zanthozylum armatum and Determination of Biological Potentials. Molecules 2022, 27, 1166. https://doi.org/10.3390/molecules27041166
Riaz M, Altaf M, Ahmad P, Khandaker MU, Osman H, Eed EM, Shakir Y. Biogenic Synthesis of Ag Nanoparticles of 18.27 nm by Zanthozylum armatum and Determination of Biological Potentials. Molecules. 2022; 27(4):1166. https://doi.org/10.3390/molecules27041166
Chicago/Turabian StyleRiaz, Muhammad, Muhammad Altaf, Pervaiz Ahmad, Mayeen Uddin Khandaker, Hamid Osman, Emad M. Eed, and Yasmeen Shakir. 2022. "Biogenic Synthesis of Ag Nanoparticles of 18.27 nm by Zanthozylum armatum and Determination of Biological Potentials" Molecules 27, no. 4: 1166. https://doi.org/10.3390/molecules27041166
APA StyleRiaz, M., Altaf, M., Ahmad, P., Khandaker, M. U., Osman, H., Eed, E. M., & Shakir, Y. (2022). Biogenic Synthesis of Ag Nanoparticles of 18.27 nm by Zanthozylum armatum and Determination of Biological Potentials. Molecules, 27(4), 1166. https://doi.org/10.3390/molecules27041166