Formation of Catalytically Active Nanoparticles under Thermolysis of Silver Chloroplatinate(II) and Chloroplatinate(IV)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photo Stability of Complex Compounds
2.2. Thermal Properties of Ag2[PtCl4] in a Inert Atmosphere
2.3. Thermal Properties of Ag2[PtCl4] in a Hydrogen Atmosphere
2.4. Thermal Properties of Ag2[PtCl4] in a Inert Atmosphere
2.5. Thermal Properties of Ag2[PtCl6] in a Hydrogen Atmosphere
2.6. In Situ X-ray Diffraction Study of the Ag2[PtCl6] Thermolysis in a Hydrogen Atmosphere
2.7. Catalytic Properties
3. Materials and Methods
3.1. Synthesis of Initial Compounds and Nanoparticles
3.2. Characterisation of Synthesised Substances
3.3. Catalytic Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Deng, R.; Xia, Z.; Sun, R.; Wang, S.; Sun, G. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells. J. Energy Chem. 2020, 43, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Prodromidis, G.N.; Coutelieris, F.A. Solid Oxide Fuel Cell systems for electricity generation: An optimization prospect. Renew. Energy 2020, 146, 38–43. [Google Scholar] [CrossRef]
- Wang, H.; An, K.; Sapi, A.; Liu, F.; Somorjai, G.A. Effects of nanoparticle size and metal/support interactions in Pt-catalyzed methanol oxidation reactions in gas and liquid phases. Catal. Lett. 2014, 144, 1930–1938. [Google Scholar] [CrossRef]
- Lefferts, L.; Van Ommen, J.G.; Ross, J.R.H. The influence of hydrogen treatment and catalyst morphology on the interaction of oxygen with a silver catalyst. Appl. Catal. 1987, 34, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Yaroslavtsev, A.B.; Dobrovolsky, Y.A.; Shaglaeva, N.S.E.; Frolova, L.A.E.; Gerasimova, E.V.; Sanginov, E.A. Nanostructured materials for low-temperature fuel cells. Russ. Chem. Rev. 2012, 81, 191. [Google Scholar] [CrossRef]
- Ren, L.P.; Dai, W.L.; Yang, X.L.; Xu, J.H.; Cao, Y.; Li, H.; Fan, K. Direct dehydrogenation of methanol to formaldehyde over pre-treated polycrystalline silver catalyst. Catal. Lett. 2005, 99, 83–87. [Google Scholar] [CrossRef]
- Dai, W.L.; Cao, Y.; Ren, L.P.; Yang, X.L.; Xu, J.H.; Li, H.X.; Fan, K.N. Ag–SiO2–Al2O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol. J. Catal. 2004, 228, 80–91. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Yang, X.; Wu, Y. Catalytic oxidation of methanol to methyl formate over silver—A new purpose of a traditional catalysis system. Catal. Lett. 2005, 100, 205–211. [Google Scholar] [CrossRef]
- Balbuena, P.B.; Callejas-Tovar, R.; Hirunsit, P.D.; De La Hoz, J.M.; Ma, Y.; Ramírez-Caballero, G.E. Evolution of Pt and Pt-alloy catalytic surfaces under oxygen reduction reaction in acid medium. Top. Catal. 2012, 55, 322–335. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J. Bimetallic Ag–hollow Pt heterodimers via inside-out migration of Ag in core–shell Ag–Pt nanoparticles at elevated temperature. J. Mater. Chem. A 2014, 2, 7075–7081. [Google Scholar] [CrossRef]
- He, W.; Wu, X.; Liu, J.; Zhang, K.; Chu, W.; Feng, L.; Xie, S. Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties. Langmuir 2010, 26, 4443–4448. [Google Scholar] [CrossRef]
- Wisniewska, J.; Yang, C.M.; Ziolek, M. Changes in bimetallic silver–platinum catalysts during activation and oxidation of methanol and propene. Catal. Today 2019, 333, 89–96. [Google Scholar] [CrossRef]
- Wisniewska, J.; Ziolek, M. Formation of Pt–Ag alloy on different silicas–surface properties and catalytic activity in oxidation of methanol. Rsc Adv. 2017, 7, 9534–9544. [Google Scholar] [CrossRef] [Green Version]
- Bauer, U.; Spath, F.; Dull, F.; Bachmann, P.; Steinhauer, J.; Steinrack, H.P.; Papp, C. Reactivity of CO and C2H4 on Bimetallic PtxAg1-x/Pt (111) Surface Alloys Investigated by High-Resolution X-ray Photoelectron Spectroscopy. ChemPhysChem 2018, 19, 1432–1440. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Zhang, C.; Yurchekfrodl, E.; Peng, Z. Property of Pt–Ag alloy nanoparticle catalysts in carbon monoxide oxidation. J. Phys. Chem. C 2014, 118, 28739–28745. [Google Scholar] [CrossRef]
- Yao, W.; Jiang, X.; Li, M.; Li, Y.; Liu, Y.; Zhan, X.; Tang, Y. Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol. Appl. Catal. B Environ. 2021, 282, 119595. [Google Scholar] [CrossRef]
- Cao, J.; Guo, M.; Wu, J.; Xu, J.; Wang, W.; Chen, Z. Carbon-supported Ag@ Pt core–shell nanoparticles with enhanced electrochemical activity for methanol oxidation and oxygen reduction reaction. J. Power Sources 2015, 277, 155–160. [Google Scholar] [CrossRef]
- Semaltianos, N.G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying. Nanotechnology 2017, 28, 155703. [Google Scholar] [CrossRef]
- Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; Du, Y. Facile construction of N-doped graphene supported hollow PtAg nanodendrites as highly efficient electrocatalysts toward formic acid oxidation reaction. Acs Sustain. Chem. Eng. 2018, 6, 609–617. [Google Scholar] [CrossRef]
- Lv, J.J.; Feng, J.X.; Li, S.S.; Wang, Y.Y.; Wang, A.J.; Zhang, Q.L.; Feng, J.J. Ionic liquid crystal-assisted synthesis of PtAg nanoflowers on reduced graphene oxide and their enhanced electrocatalytic activity toward oxygen reduction reaction. Electrochim. Acta 2014, 133, 407–413. [Google Scholar] [CrossRef]
- Kamat, P.V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002, 106, 7729–7744. [Google Scholar] [CrossRef]
- Shao, T.; Zhang, Q.; Li, J.; He, S.; Zhang, D.; Zhou, X. AgPt hollow nanodendrites based on N doping graphene quantum dots for enhanced methanol electrooxidation. J. Alloys Compd. 2021, 882, 160607. [Google Scholar] [CrossRef]
- Bakar, N.A.; Abdullah, N.A.; Salleh, M.M.; Umar, A.A.; Shapter, J.G. Optimum growth time in AgPt nanofern preparation for enhancement of surface-enhanced Raman scattering intensity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 045012. [Google Scholar] [CrossRef]
- Bakar, N.A.; Abdullah, N.A.; Salleh, M.M.; Umar, A.A.; Shapter, J.G. Effect of silver concentration towards formationof AgPt nanofernfilms as SERS substrates. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2019; Volume 948, pp. 231–236. [Google Scholar] [CrossRef]
- Mawarnis, E.R.; Ali Umar, A.; Tomitori, M.; Balouch, A.; Nurdin, M.; Muzakkar, M.Z.; Oyama, M. Hierarchical bimetallic AgPt nanoferns as high-performance catalysts for selective acetone hydrogenation to isopropanol. Acs Omega 2018, 3, 11526–11536. [Google Scholar] [CrossRef]
- Breisch, M.; Grasmik, V.; Loza, K.; Pappert, K.; Rostek, A.; Ziegler, N.; Sengstock, C. Bimetallic silver–platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology 2019, 30, 305101. [Google Scholar] [CrossRef]
- Wisniewska, J.; Guesmi, H.; Ziolek, M.; Tielens, F. Stability of nanostructured silver-platinum alloys. J. Alloys Compd. 2019, 770, 934–941. [Google Scholar] [CrossRef]
- Yılmaz, V.T.; Icbudak, H. Thermal decomposition characteristics of ammonium hexachlorometallate (IV) complex salts of platinum metals. Acta 1996, 276, 115–122. [Google Scholar] [CrossRef]
- Shubochkin, L.K.; Sorokin, L.D.; Shubochkina, E.F. On the thermal decomposition of palladates(II) and (IV) of alkali metals. Russ. J. Inorg. 1975, 21, 2567–2569. [Google Scholar]
- Thaddeus, B.M. Binary Alloy. Phase Diagrams, 2nd ed.; Materials Park Ohio: Novelty, OH, USA, 1990; pp. 2705–2708. [Google Scholar]
- Snytnikov, P.V.; Belyaev, V.A.; Sobyanin, V.A. Kinetic model and mechanism of the selective oxidation of CO in the presence of hydrogen on platinum catalysts. Kinet. Catal. 2007, 48, 93–102. [Google Scholar] [CrossRef]
- Chernyaev, I. Synthesis of Complex. Compounds of Platinum Group Metals; Nauka: Moscow, Russia, 1964. [Google Scholar]
- Powder Diffraction File, PDF-2; International Centre for Diffraction Data: Newtown Square, PA, USA, 2014.
- Kraus, W.; Nolze, G. POWDERCELL 2.4, Program. for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns; Federal Institute for Materials Research and Testing: Berlin, Germany, 2000. [Google Scholar]
- Krumm, S. An interactive Windows program for profile fitting and size/strain analysis. Mater. Sci. Forum 1996, 183, 228. [Google Scholar]
- Schneider, A.; Esch, U. Das System Silber-Platin. Ein Beitrag zur Frage der Spannungskorrosion. Z. Elektrochem. Angew. Phys. Chem. 1943, 49, 72–89. [Google Scholar]
- Yan, X.S.; Lin, P.; Qi, X.; Yang, L. Finnis–Sinclair potentials for fcc Au–Pd and Ag–Pt alloys. Int. J. Mater. Res. 2011, 102, 381–388. [Google Scholar] [CrossRef]
- Ebert, H.; Abart, J.; Voitlander, J. Metastable solid solutions in Ag® Pt alloys. J. Less Common Met. 1983, 91, 89–96. [Google Scholar] [CrossRef]
- Jaguar, Version 8.2; Schrödinger, Inc.: New York, NY, USA, 2015.
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [Green Version]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Rinaldo, D.; Tian, L.; Harvey, J.N.; Friesner, R.A. Density functional localized orbital corrections for transition metals. J. Chem. Phys. 2008, 129, 164108. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+ G basis set for first-row elements, Li–F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Scofield, J.H. Electron Spectrosc. Relat. Phenomena 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Fairley, N. CasaXPS: Processing Software for XPS, AES, SIMS and More. Available online: www.casaxps.com (accessed on 23 December 2021).
- Tenney, S.A.; He, W.; Ratliff, J.S.; Mullins, D.R.; Chen, D.A. Characterization of Pt–Au and Ni–Au Clusters on TiO2(110). Top. Catal. 2011, 54, 42–55. [Google Scholar] [CrossRef]
- Steinrück, H.-P.; Pesty, F.; Zhang, L.; Madey, T.E. Ultrathin films of Pt onTiO2(110): Growth and chemisorption-induced surfactant effects. Phys. Rev. B 1995, 51, 2427–2439. [Google Scholar] [CrossRef]
- Barr, T.L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem. 1978, 82, 1801–1810. [Google Scholar] [CrossRef]
- Bernsmeier, D.; Sachse, R.; Bernicke, M.; Schmack, R.; Kettemann, F.; Polte, J.; Kraehnert, R. Outstanding hydrogen evolution performance of supported Pt nanoparticles: Incorporation of preformed colloids into mesoporous carbon films. J. Catal. 2019, 369, 181–189. [Google Scholar] [CrossRef]
- Gołąbiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Zielińska-Jurek, A.; Zaleska, A. Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles. Appl. Surf. Sci. 2014, 317, 1131–1142. [Google Scholar] [CrossRef]
- Smirnov, M.Y.; Vovk, E.I.; Nartova, A.V.; Kalinkin, A.V.; Bukhtiyarov, V.I. An XPS and STM study of oxidized platinum particles formed by the interaction between Pt/HOPG with NO2. Kinet. Catal. 2018, 59, 653–662. [Google Scholar] [CrossRef]
- Lamb, R. Surface characterisation of Pd-Ag/Al2O3 catalysts for acetylene hydrogenation using an improved XPS procedure. Appl. Catal. A: Gen. 2004, 268, 43–50. [Google Scholar] [CrossRef]
- Kaushik, V.K. XPS core level spectra and Auger parameters for some silver compounds. J. Electron. Spectrosc. Relat. Phenom. 1991, 56, 273–277. [Google Scholar] [CrossRef]
- Bukhtiyarov, A.V.; Stakheev, A.Y.; Mytareva, A.I.; Prosvirin, I.P.; Bukhtiyarov, V.I. In situ XPS study of the size effect in the interaction of NO with the surface of the model Ag/Al2O3/FeCrAl catalysts. Russ. Chem. Bull. 2015, 64, 2780–2785. [Google Scholar] [CrossRef]
- Wang, H.; Luo, S.; Li, X.; Liu, W.; Wu, X.; Weng, D.; Liu, S. Thermally stable Ag/Al2O3 confined catalysts with high diffusion-induced oxidation activity. Catal. Today 2019, 332, 189–194. [Google Scholar] [CrossRef]
- Panafidin, M.A.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Chetyrin, I.A.; Bukhtiyarov, V.I. Model bimetallic Pd–Ag/HOPG catalysts: An XPS and STM study. Kinet. Catal. 2018, 59, 776–785. [Google Scholar] [CrossRef]
- Glyzdova, D.V.; Afonasenko, T.N.; Khramov, E.V.; Leont’eva, N.N.; Prosvirin, I.P.; Bukhtiyarov, A.V.; Shlyapin, D.A. Liquid-phase acetylene hydrogenation over Ag-modified Pd/Sibunit catalysts: Effect of Pd to Ag molar ratio. Appl. Catal. A Gen. 2020, 600, 117627. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filatov, E.; Smirnov, P.; Potemkin, D.; Pishchur, D.; Kryuchkova, N.; Plyusnin, P.; Korenev, S. Formation of Catalytically Active Nanoparticles under Thermolysis of Silver Chloroplatinate(II) and Chloroplatinate(IV). Molecules 2022, 27, 1173. https://doi.org/10.3390/molecules27041173
Filatov E, Smirnov P, Potemkin D, Pishchur D, Kryuchkova N, Plyusnin P, Korenev S. Formation of Catalytically Active Nanoparticles under Thermolysis of Silver Chloroplatinate(II) and Chloroplatinate(IV). Molecules. 2022; 27(4):1173. https://doi.org/10.3390/molecules27041173
Chicago/Turabian StyleFilatov, Evgeny, Pavel Smirnov, Dmitry Potemkin, Denis Pishchur, Natalya Kryuchkova, Pavel Plyusnin, and Sergey Korenev. 2022. "Formation of Catalytically Active Nanoparticles under Thermolysis of Silver Chloroplatinate(II) and Chloroplatinate(IV)" Molecules 27, no. 4: 1173. https://doi.org/10.3390/molecules27041173
APA StyleFilatov, E., Smirnov, P., Potemkin, D., Pishchur, D., Kryuchkova, N., Plyusnin, P., & Korenev, S. (2022). Formation of Catalytically Active Nanoparticles under Thermolysis of Silver Chloroplatinate(II) and Chloroplatinate(IV). Molecules, 27(4), 1173. https://doi.org/10.3390/molecules27041173