Storage Stability and In Vitro Bioaccessibility of Liposomal Betacyanins from Red Pitaya (Hylocereus polyrhizus)
Abstract
:1. Introduction
2. Results and Discussions
2.1. Optimization of the Formulation Parameters for Preparation of HPBL
2.2. Characterization of the HPBL
2.3. Storage Stability of HPBL
2.3.1. Temperature
2.3.2. PH
2.4. In Vitro Gastrointestinal Stability of HPBL
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of HPBL
3.2.1. Extraction of Betacyanins
3.2.2. Quantification of Betacyanin Content
3.2.3. Preparation of Liposomes
3.2.4. Separation of HPBL and FHPB
3.2.5. Determination of EE
3.3. Optimization of the Formulation Parameters for Preparation of HPBL
3.4. Analysis of Properties of HPBL
3.4.1. Determination of ζ-Potential, Particle Size, and Polydispersity Index
3.4.2. Morphology Observation
3.4.3. Determination of DPPH Radical Scavenging Activity
3.4.4. Evaluation of Color Value
3.5. Storage Stability Evaluation of HPBL
3.5.1. Temperature Stability Evaluation
3.5.2. PH Stability Evaluation
3.6. In Vitro Gastrointestinal Stability Evaluation of HPBL
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wiset, L.; Srilaong, V. Comparisons of antioxidant activity and bioactive compounds of dragon fruit peel from various drying methods. World Acad. Sci. Eng. Technol. 2012, 6, 994–997. [Google Scholar]
- Strack, D.; Vogt, T.; Schliemann, W. Recent advances in betalain research. Phytochemistry 2003, 62, 247–269. [Google Scholar] [CrossRef]
- Madadi, E.; Mazloum-Ravasan, S.; Yu, J.S.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Therapeutic application of betalains: A review. Plants 2020, 9, 1219. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I. Stabilization of betalains: A review. Food Chem. 2016, 197, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Krantz, C.; Monier, M.; Wahlström, B. Absorption, excretion, metabolism and cardiovascular effects of beetroot extract in the rat. Food Cosmet. Toxicol. 1980, 18, 363–366. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Karim, N.; Gowd, V.; Zheng, X.; Chen, W. Liposomal delivery of natural product: A promising approach in health research. Trends Food Sci. Technol. 2019, 85, 177–200. [Google Scholar] [CrossRef]
- Guldiken, B.; Gibis, M.; Boyacioglu, D.; Capanoglu, E.; Weiss, J. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Res. Int. 2018, 108, 491–497. [Google Scholar] [CrossRef]
- Zhao, L.; Temelli, F.; Chen, L. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods 2017, 34, 159–167. [Google Scholar] [CrossRef]
- Nogueira, E.; Gomes, A.C.; Pret, A.; Cavaco-Paulo, A. Design of liposomal formulations for cell targeting. Colloids Surfaces B Biointerfaces 2015, 136, 514–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andar, A.U.; Hood, R.R.; Vreeland, W.N.; Devoe, D.L.; Swaan, P.W. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm. Res. 2014, 31, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Nagayasu, A.; Uchiyama, K.; Kiwada, H. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 1999, 40, 75–87. [Google Scholar] [CrossRef]
- Marín, D.; Alemán, A.; Sánchez-Faure, A.; Montero, P.; Gómez-Guillén, M.C. Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chem. 2018, 245, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Amjadi, S.; Ghorbani, M.; Hamishehkar, H.; Roufegarinejad, L. Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chem. 2018, 256, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Malheiros, P.; Sant’Anna, V.; Micheletto, Y.M.S.; Da Silveira, N.P.; Brandelli, A. Nanovesicle encapsulation of antimicrobial peptide P34: Physicochemical characterization and mode of action on Listeria monocytogenes. J. Nanoparticle Res. 2011, 13, 3545–3552. [Google Scholar] [CrossRef]
- Zhao, L.; Temelli, F. Preparation of anthocyanin-loaded liposomes using an improved supercritical carbon dioxide method. Innov. Food Sci. Emerg. Technol. 2017, 39, 119–128. [Google Scholar] [CrossRef]
- Khan, M.I. Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef] [Green Version]
- He, J. Calculation of Excited States and One-Electron Reduction Potentials of Betalain Natural Plant Pigments. Master Thesis, Tianjin University, Tianjin, China, May 2019. [Google Scholar]
- Taira, J.; Tsuchida, E.; Katoh, M.C.; Uehara, M.; Ogi, T. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem. 2015, 166, 531–536. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Zhu, L.; Gan, Q.; Le, X. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res. Int. 2015, 74, 97–105. [Google Scholar] [CrossRef]
- Liu, W.; Ye, A.; Han, F.; Han, J. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv. Colloid Interface Sci. 2019, 263, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Maherani, B.; Arab-Tehrany, E.; Kheirolomoom, A.; Geny, D.; Linder, M. Calcein release behavior from liposomal bilayer; Influence of physicochemical/mechanical/structural properties of lipids. Biochimie 2013, 95, 2018–2033. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain stability and degradation—Structural and chromatic aspects. J. Food Sci. 2006, 71, 41–50. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Cabanes, J.; Escribano, J.; García-Carmona, F.; Jiménez-Atiénzar, M. Encapsulation of the most potent antioxidant betalains in edible matrixes as powders of different colors. J. Agric. Food Chem. 2013, 61, 4294–4302. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Roy, K.; Gullapalli, S.; Chaudhuri, U.R.; Chakraborty, R. The use of a natural colorant based on betalain in the manufacture of sweet products in India. Int. J. Food Sci. Technol. 2004, 39, 1087–1091. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Jiménez-Atiénzar, M.; Cabanes, J.; García-Carmona, F.; Escribano, J. Stabilization of the bioactive pigment of opuntia fruits through maltodextrin encapsulation. J. Agric. Food Chem. 2010, 58, 10646–10652. [Google Scholar] [CrossRef]
- Montes-Lora, S.; Hurtado, N.; Mosquera, N.; Heredia, F.J.; Cejudo-Bastante, M.J. Effect of technological practices on individual betalains and antioxidant activity of Columbian betalain-rich raw materials. Int. J. Food Sci. Technol. 2016, 51, 1041–1047. [Google Scholar] [CrossRef]
- Celli, G.B.; Brooks, M.S.L. Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins—A current review. Food Res. Int. 2017, 100, 501–509. [Google Scholar] [CrossRef]
- Gliszczynska-Swiglo, A.; Szymusiak, H.; Malinowska, P. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit. Contam. 2005, 11, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Purification and antiradical properties of the structural unit of betalains. J. Nat. Prod. 2012, 75, 1030–1036. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, J.A.; Cruzy Victoria, M.T.; Barragán-Huerta, B.E. Betaxanthins and antioxidant capacity in Stenocereus pruinosus: Stability and use in food. Food Res. Int. 2017, 91, 63–71. [Google Scholar] [CrossRef]
- Liu, W.; Hou, Y.; Jin, Y.; Wang, Y.; Xu, X.; Han, J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. Technol. 2020, 104, 177–189. [Google Scholar] [CrossRef]
- Tesoriere, L.; Fazzari, M.; Angileri, F.; Gentile, C.; Livrea, M.A. In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins and antioxidative potential of food digesta. J. Agric. Food Chem. 2008, 56, 10487–10492. [Google Scholar] [CrossRef]
- Montiel-Sánchez, M.; García-Cayuela, T.; Gómez-Maqueo, A.; García, H.S.; Cano, M.P. In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem. 2021, 342, 128087. [Google Scholar] [CrossRef] [PubMed]
- Altin, G.; Gültekin-Özgüven, M.; Ozcelik, B. Liposomal dispersion and powder systems for delivery of cocoa hull waste phenolics via Ayran (drinking yoghurt): Comparative studies on in-vitro bioaccessibility and antioxidant capacity. Food Hydrocoll. 2018, 81, 364–370. [Google Scholar] [CrossRef]
- Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm. 2013, 444, 146–154. [Google Scholar] [CrossRef]
- Liu, W.; Ye, A.; Liu, W.; Liu, C.; Han, J.; Singh, H. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem. 2015, 175, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Chu, Q.; Xu, D.; Xu, Y.; Zheng, X. Purified betacyanins from Hylocereus undatus peel ameliorate obesity and insulin resistance in high-fat-diet-fed mice. J. Agric. Food Chem. 2016, 64, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem. 2020, 326, 126973. [Google Scholar] [CrossRef]
No. | A: HP Extract Concentration (g/mL) | B: Lecithin-to-Cholesterol Ratio | C: Lecithin Concentration (g/mL) | EE (%) | |||
---|---|---|---|---|---|---|---|
X1 | Code X1 * | X2 | Code X2 * | X3 | Code X3 * | ||
1 | 0.125 | 0 | 0.000 | −α | 0.018 | 0 | 90.34% |
2 | 0.125 | 0 | 5.000 | 0 | 0.018 | 0 | 88.19% |
3 | 0.125 | 0 | 5.000 | 0 | 0.006 | −α | 93.28% |
4 | 0.200 | α | 5.000 | 0 | 0.018 | 0 | 61.72% |
5 | 0.080 | −1 | 7.973 | 1 | 0.025 | 1 | 85.80% |
6 | 0.170 | 1 | 2.027 | −1 | 0.011 | −1 | 80.41% |
7 | 0.125 | 0 | 5.000 | 0 | 0.018 | 0 | 89.19% |
8 | 0.080 | −1 | 2.027 | −1 | 0.011 | −1 | 93.75% |
9 | 0.170 | 1 | 7.973 | 1 | 0.025 | 1 | 74.48% |
10 | 0.050 | −α | 5.000 | 0 | 0.018 | 0 | 75.84% |
11 | 0.170 | 1 | 7.973 | 1 | 0.011 | −1 | 84.65% |
12 | 0.125 | 0 | 10.000 | α | 0.018 | 0 | 90.24% |
13 | 0.125 | 0 | 5.000 | 0 | 0.030 | α | 87.42% |
14 | 0.125 | 30 | 5.000 | 0 | 0.018 | 0 | 89.66% |
15 | 0.081 | −1 | 2.027 | −1 | 0.025 | 1 | 92.05% |
16 | 0.080 | −1 | 7.973 | 1 | 0.011 | −1 | 88.93% |
17 | 0.170 | 1 | 2.027 | −1 | 0.025 | 1 | 83.67% |
Variables | Sum of Squares | df | Mean Square | F-Value | p-Value Prob. > F |
---|---|---|---|---|---|
Model | 1015.64 | 9 | 112.85 | 15.98 | 0.0007 |
A-HP extract concentration | 264.15 | 1 | 264.15 | 37.41 | 0.0005 |
B-Lecithin-to-cholesterol ratio | 16.67 | 1 | 16.67 | 2.36 | 0.1683 |
C-Lecithin concentration | 31.06 | 1 | 31.06 | 4.4 | 0.0742 |
AB | 3.28 | 1 | 3.28 | 0.464 | 0.5176 |
AC | 1.19 | 1 | 1.19 | 0.1688 | 0.6935 |
BC | 31.42 | 1 | 31.42 | 4.45 | 0.0729 |
A2 | 489.34 | 1 | 489.34 | 69.3 | <0.0001 |
B2 | 11.91 | 1 | 11.91 | 1.69 | 0.2353 |
C2 | 12.15 | 1 | 12.15 | 1.72 | 0.231 |
Lack of fit | 48.3 | 5 | 9.66 | 17.11 | 0.0561 |
Residual | 49.43 | 7 | 7.06 | ||
Pure error | 1.13 | 2 | 0.5646 | ||
Correlation total | 1065.07 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Li, B.; Wen, J.; Wu, J.; Tang, D.; Yu, Y.; Xu, Y.; Xu, B. Storage Stability and In Vitro Bioaccessibility of Liposomal Betacyanins from Red Pitaya (Hylocereus polyrhizus). Molecules 2022, 27, 1193. https://doi.org/10.3390/molecules27041193
Lin X, Li B, Wen J, Wu J, Tang D, Yu Y, Xu Y, Xu B. Storage Stability and In Vitro Bioaccessibility of Liposomal Betacyanins from Red Pitaya (Hylocereus polyrhizus). Molecules. 2022; 27(4):1193. https://doi.org/10.3390/molecules27041193
Chicago/Turabian StyleLin, Xian, Bozhe Li, Jing Wen, Jijun Wu, Daobang Tang, Yuanshan Yu, Yujuan Xu, and Baojun Xu. 2022. "Storage Stability and In Vitro Bioaccessibility of Liposomal Betacyanins from Red Pitaya (Hylocereus polyrhizus)" Molecules 27, no. 4: 1193. https://doi.org/10.3390/molecules27041193
APA StyleLin, X., Li, B., Wen, J., Wu, J., Tang, D., Yu, Y., Xu, Y., & Xu, B. (2022). Storage Stability and In Vitro Bioaccessibility of Liposomal Betacyanins from Red Pitaya (Hylocereus polyrhizus). Molecules, 27(4), 1193. https://doi.org/10.3390/molecules27041193