Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition
Abstract
:1. Introduction
Trends in Cannabis Use across Ages
2. Methodology
3. Results
4. Discussion
4.1. Effects of Prenatal Cannabinoid Exposure on Cognition
Article | Species and Sex | Dose and Delivery in Dams | Age of Behavioral Assessment | Outcome |
---|---|---|---|---|
[20] | mice; males and females | THC 3 mg/kg; intraperitoneal injections; E10.5–E17.5 | P60–90 | No alterations in the novel object recognition task; impaired performance in the object location task in male mice only |
[21] | Wistar rats; males | THC 5 mg/kg; oral gavage; E5–E20 | P65–90 | Impaired short-term memory in the Y-maze test |
[22] | Wistar rats; males | THC 2 mg/kg; subcutaneous injections; E5–E20 | P25–30 | No alterations in the novel object recognition task; impairments in the emotional object recognition test |
[23] | Long Evans rats; males and females | 400 mg/mL cannabis extract (99.2 mg/mL THC, 4.8 mg/mL CBD, and 8.4 mg/mL CBN) or 50 mg/mL cannabis extract; twice a day one-hour vapor exposure; mating and gestation | P80–P110 | Impaired behavioral flexibility in the attentional set-shifting after 400 mg/mL cannabis extract in both sexes |
[24] | Wistar rats; males and females | WIN55,212-2 0.5 mg/kg; subcutaneous injections; E5–E20 | P28–P35 (males) P22–P28 (females); P50–60 (males) P30–P40 (females) | No alterations in the temporal order memory test at both periods in both sexes |
[35] | mice; males and females | CBD 20 mg/kg daily; oral gavage; from 14 days before mating through gestation and lactation | P84 | Improved performance in the Y-maze test in females; no alterations in males |
4.2. Effects of Adolescent Cannabinoid Exposure on Cognition
4.3. Effects of Cannabinoid Exposure in Older Animals
Article | Species and Sex | Dose and Delivery | Age | Behavioral Outcome |
---|---|---|---|---|
[62] | C57BL6/J mice; males | THC (3 mg/kg/day); Alzet minipumps implanted subcutaneously with a delivery of 28 days | 12 and 18 months | Improved performance in the Morris water maze, the novel object location recognition task and the partner recognition task |
[63] | C57BL6/J mice; males | THC (1 mg/kg/day), or a 1:1 mixture of THC and CBD (THC/CBD, 1 mg/kg/day each); Alzet minipumps implanted subcutaneously with a delivery of 28 days | 18 months | 1 mg/kg/day THC dose improved spatial learning in the Morris water maze;1:1 combination of THC and CBD had no effect |
[64] | Institute of Cancer Research mice; females | THC 0.002 mg/kg; single intraperitoneal injection | 24 months | Better performance in 6 different behavioral assays of various aspects of memory and learning |
[65] | AβPP/PS1 transgenic mice; males | THC 0.75 mg/kg + CBD 0.75 mg/kg; intraperitoneal injections once a day for 5 weeks | 12 months | Reduced memory impairment in the two-object recognition test in a V-maze |
[68] | Swiss-Webster mice; males | β-caryophyllene 100 and 178 mg/kg; intraperitoneal injections 3 days a week for one week | 12 months | Improved performance in the Y-maze task |
[69] | BALB/c mice; males | β-caryophyllene 10 mg/kg; oral administration for 4 weeks | 12 weeks (ageing induced by 8 weeks of treatment with D-galactose) | No effect on cognitive flexibility in the Morris water maze test |
5. Conclusions
Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- United Nations. World Drug Report 2021; Sales No. E.21.XI; United Nations Publication: New York, NY, USA; Available online: https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html (accessed on 29 December 2021).
- Di Forti, M.; Quattrone, D.; Freeman, T.P.; Tripoli, G.; Gayer-Anderson, C.; Quigley, H.; Rodriguez, V.; Jongsma, H.E.; Ferraro, L.; La Cascia, C.; et al. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): A multicentre case-control study. Lancet Psychiatry 2019, 6, 427–436. [Google Scholar] [CrossRef] [Green Version]
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2020: Key Issues Summary; Publications Office of the European Union: Luxembourg, 2020; Available online: https://www.emcdda.europa.eu/publications/edr/key-issues/2020_en (accessed on 29 December 2021).
- U.S. Department of Health and Human Services, Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality. National Survey on Drug Use and Health 2016 (NSDUH-2016-DS0001). 2018. Available online: https://www.datafiles.samhsa.gov/dataset/national-survey-drug-use-and-health-2016-nsduh-2016-ds0001 (accessed on 29 December 2021).
- Han, B.H.; Palamar, J.J. Trends in Cannabis Use Among Older Adults in the United States, 2015–2018. JAMA Intern. Med. 2020, 180, 609–611. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.G.; DiNitto, D.M.; Marti, C.N. Older marijuana users’ marijuana risk perceptions: Associations with marijuana use patterns and marijuana and other substance use disorders. Int. Psychogeriatr. 2018, 30, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Sexton, M.; Cuttler, C.; Mischley, L.K. A Survey of Cannabis Acute Effects and Withdrawal Symptoms: Differential Responses Across User Types and Age. J. Altern. Complement. Med. 2019, 25, 326–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Han, B.; Compton, W.M.; McCance-Katz, E.F. Self-reported Medical and Nonmedical Cannabis Use Among Pregnant Women in the United States. JAMA 2019, 322, 167–169. [Google Scholar] [CrossRef]
- Lozano, J.; Garcia-Algar, O.; Marchei, E.; Vall, O.; Monleon, T.; Di Giovannandrea, R.; Pichini, S. Prevalence of gestational exposure to cannabis in a Mediterranean city by meconium analysis. Acta Paediatr. 2007, 96, 1734–1737. [Google Scholar] [CrossRef]
- Roncero, C.; Valriberas-Herrero, I.; Mezzatesta-Gava, M.; Villeg4eas, J.L.; Aguilar, L.; Grau-Lopez, L. Cannabis use during pregnancy and its relationship with fetal developmental outcomes and psychiatric disorders. A systematic review. Reprod. Health 2020, 17, 25. [Google Scholar] [CrossRef] [Green Version]
- Odom, G.C.; Cottler, L.B.; Striley, C.W.; Lopez-Quintero, C. Perceived Risk of Weekly Cannabis Use, Past 30-Day Cannabis Use, and Frequency of Cannabis Use Among Pregnant Women in the United States. Int. J. Womens Health 2020, 12, 1075–1088. [Google Scholar] [CrossRef]
- Young-Wolff, K.C.; Sarovar, V.; Tucker, L.Y.; Avalos, L.A.; Conway, A.; Armstrong, M.A.; Goler, N. Association of Nausea and Vomiting in Pregnancy with Prenatal Marijuana Use. JAMA Intern. Med. 2018, 178, 1423–1424. [Google Scholar] [CrossRef]
- Cyrus, E.; Coudray, M.S.; Kiplagat, S.; Mariano, Y.; Noel, I.; Galea, J.T.; Hadley, D.; Devieux, J.G.; Wagner, E. A review investigating the relationship between cannabis use and adolescent cognitive functioning. Curr. Opin. Psychol. 2021, 38, 38–48. [Google Scholar] [CrossRef]
- Rubino, T.; Parolaro, D. The Impact of Exposure to Cannabinoids in Adolescence: Insights from Animal Models. Biol. Psychiatry 2016, 79, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Clemenza, K.; Rynn, M.; Lieberman, J. Evidence for the Risks and Consequences of Adolescent Cannabis Exposure. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Alpár, A.; Di Marzo, V.; Harkany, T. At the Tip of an Iceberg: Prenatal Marijuana and Its Possible Relation to Neuropsychiatric Outcome in the Offspring. Biol. Psychiatry 2015, 79, e33–e45. [Google Scholar] [CrossRef]
- Higuera-Matas, A.; Ucha, M.; Ambrosio, E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav. Rev. 2015, 55, 119–146. [Google Scholar] [CrossRef]
- Lu, H.C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Zamberletti, E.; Rubino, T. Impact of Endocannabinoid System Manipulation on Neurodevelopmental Processes Relevant to Schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 6, 616–626. [Google Scholar] [CrossRef]
- De Salas-Quiroga, A.; García-Rincón, D.; Gómez-Domínguez, D.; Valero, M.; Simón-Sánchez, S.; Paraíso-Luna, J.; Aguareles, J.; Pujadas, M.; Muguruza, C.; Callado, L.F.; et al. Long-term hippocampal interneuronopathy drives sex-dimorphic spatial memory impairment induced by prenatal THC exposure. Neuropsychopharmacology 2020, 45, 877–886. [Google Scholar] [CrossRef]
- Beggiato, S.; Ieraci, A.; Tomasini, M.C.; Schwarcz, R.; Ferraro, L. Prenatal THC exposure raises kynurenic acid levels in the prefrontal cortex of adult rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 100, 109883. [Google Scholar] [CrossRef]
- Brancato, A.; Castelli, V.; Lavanco, G.; Marino, R.A.M.; Cannizzaro, C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J. Psychopharmacol. 2020, 34, 663–679. [Google Scholar] [CrossRef]
- Weimar, H.V.; Wright, H.R.; Warrick, C.R.; Brown, A.M.; Lugo, J.M.; Freels, T.G.; McLaughlin, R.J. Long-term effects of maternal cannabis vapor exposure on emotional reactivity, social behavior, and behavioral flexibility in offspring. Neuropharmacology 2020, 179, 108288. [Google Scholar] [CrossRef]
- Manduca, A.; Servadio, M.; Melancia, F.; Schiavi, S.; Manzoni, O.J.; Trezza, V. Sex-specific behavioural deficits induced at early life by prenatal exposure to the cannabinoid receptor agonist WIN55, 212-2 depend on mGlu5 receptor signalling. J. Cereb. Blood Flow Metab. 2019, 177, 449–463. [Google Scholar] [CrossRef]
- Antonelli, T.; Tomasini, M.C.; Tattoli, M.; Cassano, T.; Tanganelli, S.; Finetti, S.; Mazzoni, E.; Trabace, L.; Steardo, L.; Cuomo, V.; et al. Prenatal Exposure to the CB1 Receptor Agonist WIN 55,212-2 Causes Learning Disruption Associated with Impaired Cortical NMDA Receptor Function and Emotional Reactivity Changes in Rat Offspring. Cereb. Cortex 2005, 15, 2013–2020. [Google Scholar] [CrossRef]
- Mereu, G.; Fà, M.; Ferraro, L.; Cagiano, R.; Antonelli, T.; Tattoli, M.; Ghiglieri, V.; Tanganelli, S.; Gessa, G.L.; Cuomo, V. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc. Natl. Acad. Sci. USA 2003, 100, 4915–4920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrendero, F.; Romero, J.; Garcıa-Gil, L.; Suarez, I.; De la Cruz, P.; Ramos, J.; Fernández-Ruiz, J. Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. Biochim. Biophys. Acta Mol. Basis Dis. 1998, 1407, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Scheyer, A.F.; Melis, M.; Trezza, V.; Manzoni, O.J. Consequences of Perinatal Cannabis Exposure. Trends Neurosci. 2019, 42, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, H.; Ichord, R.; Palmer, C.; Yager, J.Y.; Vannucci, S.J. Animal Models of Developmental Brain Injury: Relevance to Human Disease. Dev. Neurosci. 2002, 24, 364–366. [Google Scholar] [CrossRef]
- Scheyer, A.F.; Borsoi, M.; Pelissier-Alicot, A.-L.; Manzoni, O.J. Maternal Exposure to the Cannabinoid Agonist WIN 55,12,2 during Lactation Induces Lasting Behavioral and Synaptic Alterations in the Rat Adult Offspring of Both Sexes. Eneuro 2020, 7, ENEURO.0144-20.2020. [Google Scholar] [CrossRef]
- Tortoriello, G.; Morris, C.V.; Alpar, A.; Fuzik, J.; Shirran, S.; Calvigioni, D.; Keimpema, E.; Botting, C.H.; Reinecke, K.; Herdegen, T.; et al. Miswiring the brain: 9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J. 2014, 33, 668–685. [Google Scholar] [CrossRef]
- Bara, A.; Ferland, J.-M.N.; Rompala, G.; Szutorisz, H.; Hurd, Y.L. Cannabis and synaptic reprogramming of the developing brain. Nat. Rev. Neurosci. 2021, 22, 423–438. [Google Scholar] [CrossRef]
- Frau, R.; Miczán, V.; Traccis, F.; Aroni, S.; Pongor, C.; Saba, P.; Serra, V.; Sagheddu, C.; Fanni, S.; Congiu, M.; et al. Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nat. Neurosci. 2019, 22, 1975–1985. [Google Scholar] [CrossRef] [Green Version]
- Sarrafpour, S.; Urits, I.; Powell, J.; Nguyen, D.; Callan, J.; Orhurhu, V.; Simopoulos, T.; Viswanath, O.; Kaye, A.D.; Kaye, R.J.; et al. Considerations and Implications of Cannabidiol Use During Pregnancy. Curr. Pain Headache Rep. 2020, 24, 38. [Google Scholar] [CrossRef] [PubMed]
- Wanner, N.M.; Colwell, M.; Drown, C.; Faulk, C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin. Epigenet. 2021, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Spear, L.P. Neurobehavioral changes in adolescence. Curr. Dir. Psychol. Sci. 2000, 9, 111–114. [Google Scholar] [CrossRef]
- Luna, B.; Garver, K.E.; Urban, T.A.; Lazar, N.A.; Sweeney, J.A. Maturation of cognitive processes from late childhood to adulthood. Child Dev. 2004, 75, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- Cuccurazzu, B.; Zamberletti, E.; Nazzaro, C.; Prini, P.; Trusel, M.; Grilli, M.; Parolaro, D.; Tonini, R.; Rubino, T. Adult Cellular Neuroadaptations Induced by Adolescent THC Exposure in Female Rats Are Rescued by Enhancing Anandamide Signaling. Int. J. Neuropsychopharmacol. 2018, 21, 1014–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasten, C.R.; Zhang, Y.; Boehm, S.L. Acute and long-term effects of Delta 9-tetrahydrocannabinol on object recognition and anxiety-like activity are age- and strain-dependent in mice. Pharmacol. Biochem. Behav. 2017, 163, 9–19. [Google Scholar] [CrossRef]
- Murphy, M.; Mills, S.; Winstone, J.; Leishman, E.; Wager-Miller, J.; Bradshaw, H.; Mackie, K. Chronic Adolescent Delta(9)-Tetrahydrocannabinol Treatment of Male Mice Leads to Long-Term Cognitive and Behavioral Dysfunction, Which Are Prevented by Concurrent Cannabidiol Treatment. Cannabis Cannabinoid 2017, 2, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Prini, P.; Rusconi, F.; Zamberletti, E.; Gabaglio, M.; Penna, F.; Fasano, M.; Battaglioli, E.; Parolaro, D.; Rubino, T. Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J. Psychiatr. Neurosci. 2018, 43, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Rubino, T.; Prini, P.; Piscitelli, F.; Zamberletti, E.; Trusel, M.; Melis, M.; Sagheddu, C.; Ligresti, A.; Tonini, R.; Di Marzo, V.; et al. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol. Dis. 2015, 73, 60–69. [Google Scholar] [CrossRef]
- Zamberletti, E.; Gabaglio, M.; Grilli, M.; Prini, P.; Catanese, A.; Pittaluga, A.; Marchi, M.; Rubino, T.; Parolaro, D. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol. Res. 2016, 111, 459–470. [Google Scholar] [CrossRef]
- Zamberletti, E.; Gabaglio, M.; Prini, P.; Rubino, T.; Parolaro, D. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur. Neuropsychopharmacol. 2015, 25, 2404–2415. [Google Scholar] [CrossRef] [PubMed]
- Sabran-Cohen, T.; Bright, U.; Zer-Aviv, T.M.; Akirav, I. Rapamycin prevents the long-term impairing effects of adolescence Delta-9-tetrahydrocannabinol on memory and plasticity in male rats. Eur. J. Neurosci. 2021, 54, 6104–6122. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.G.; Law, W.X.; Weingarten, M.J.; Carnevale, L.N.; Das, A.; Liang, N.C. Combined Delta(9)-tetrahydrocannabinol and moderate alcohol administration: Effects on ingestive behaviors in adolescent male rats. Psychopharmacology 2019, 236, 671–684. [Google Scholar] [CrossRef]
- Jacobs-Brichford, E.; Manson, K.F.; Roitman, J.D. Effects of chronic cannabinoid exposure during adolescence on reward preference and mPFC activation in adulthood. Physiol. Behav. 2019, 199, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Poulia, N.; Delis, F.; Brakatselos, C.; Lekkas, P.; Kokras, N.; Dalla, C.; Antoniou, K. Escalating low-dose Delta(9)-tetrahydrocannabinol exposure during adolescence induces differential behavioral and neurochemical effects in male and female adult rats. Eur. J. Neurosci. 2020, 52, 2681–2693. [Google Scholar] [CrossRef] [PubMed]
- Poulia, N.; Delis, F.; Brakatselos, C.; Polissidis, A.; Koutmani, Y.; Kokras, N.; Dalla, C.; Politis, P.K.; Antoniou, K. Detrimental effects of adolescent escalating low-dose Delta(9)-tetrahydrocannabinol leads to a specific bio-behavioural profile in adult male rats. Brit. J. Pharmacol. 2021, 178, 1722–1736. [Google Scholar] [CrossRef] [PubMed]
- Abela, A.R.; Rahbarnia, A.; Wood, S.; Le, A.D.; Fletcher, P.J. Adolescent exposure to Delta 9-tetrahydrocannabinol delays acquisition of paired-associates learning in adulthood. Psychopharmacology 2019, 236, 1875–1886. [Google Scholar] [CrossRef]
- Mathai, D.; Verrico, C.D.; Sampson, A.R.; Lewis, D.A. The Effects of Repeated Delta-9-Tetrahydrocannabinol Administration to Adolescent Rhesus Monkeys on Working Memory. Am. J. Addict. 2018, 27, 294–295. [Google Scholar]
- Verrico, C.D.; Mathai, D.S.; Gu, H.; Sampson, A.R.; Lewis, D.A. Recovery from impaired working memory performance during chronic Delta-9-tetrahydrocannabinol administration to adolescent rhesus monkeys. J. Psychopharmacol. 2020, 34, 211–220. [Google Scholar] [CrossRef]
- Gabaglio, M.; Zamberletti, E.; Manenti, C.; Parolaro, D.; Rubino, T. Long-Term Consequences of Adolescent Exposure to THC-Rich/CBD-Poor and CBD-Rich/THC-Poor Combinations: A Comparison with Pure THC Treatment in Female Rats. Int. J. Mol. Sci. 2021, 22, 8899. [Google Scholar] [CrossRef]
- Withey, S.L.; Kangas, B.D.; Charles, S.; Gumbert, A.B.; Eisold, J.E.; George, S.R.; Bergman, J.; Madras, B.K. Effects of daily delta9-Tetrahydrocannabinol (THC) alone or combined with cannabidiol (CBD) on cognition-based behavior and activity in adolescent nonhuman primates. Drug Alcohol Depend. 2021, 221, 108629. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.S.; Wagner, J.K.; Reid, K.; McGuinness, F.; Arvila, S.; Brooks, M.; Stevenson, H.; Jones, J.; Risch, B.; McGillis, T.; et al. Cannabidiol Exposure During the Mouse Adolescent Period Is Without Harmful Behavioral Effects on Locomotor Activity, Anxiety, and Spatial Memory. Front. Behav. Neurosci. 2021, 15, 711639. [Google Scholar] [CrossRef] [PubMed]
- Kirschmann, E.K.; McCalley, D.M.; Edwards, C.M.; Torregrossa, M.M. Consequences of Adolescent Exposure to the Cannabinoid Receptor Agonist WIN55,212-2 on Working Memory in Female Rats. Front. Behav. Neurosci. 2017, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Kirschmann, E.K.; Pollock, M.W.; Nagarajan, V.; Torregrossa, M.M. Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory. Neuropsychopharmacology 2017, 42, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Stringfield, S.J.; Torregrossa, M.M. Intravenous self-administration of delta-9-THC in adolescent rats produces long-lasting alterations in behavior and receptor protein expression. Psychopharmacology 2021, 238, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Bruijnzeel, A.W.; Knight, P.; Panunzio, S.; Xue, S.; Bruner, M.M.; Wall, S.C.; Pompilus, M.; Febo, M.; Setlow, B. Effects in rats of adolescent exposure to cannabis smoke or THC on emotional behavior and cognitive function in adulthood. Psychopharmacology 2019, 236, 2773–2784. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.M.; Orsini, C.A.; Blaes, S.L.; Bizon, J.L.; Febo, M.; Bruijnzeel, A.W.; Setlow, B. Effects of repeated adolescent exposure to cannabis smoke on cognitive outcomes in adulthood. J. Psychopharmacol. 2021, 35, 848–863. [Google Scholar] [CrossRef]
- Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci. 2014, 16, 30–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilkei-Gorzo, A.; Albayram, O.; Draffehn, A.; Michel, K.; Piyanova, A.; Oppenheimer, H.; Dvir-Ginzberg, M.; Rácz, I.; Ulas, T.; Imbeault, S.; et al. A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat. Med. 2017, 23, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Nidadavolu, P.; Bilkei-Gorzo, A.; Krämer, M.; Schürmann, B.; Palmisano, M.; Beins, E.C.; Madea, B.; Zimmer, A. Efficacy of Δ9 -Tetrahydrocannabinol (THC) Alone or in Combination With a 1:1 Ratio of Cannabidiol (CBD) in Reversing the Spatial Learning Deficits in Old Mice. Front. Aging Neurosci. 2021, 13, 718850. [Google Scholar] [CrossRef]
- Sarne, Y.; Toledano, R.; Rachmany, L.; Sasson, E.; Doron, R. Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. Neurobiol. Aging 2018, 61, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Andrés-Benito, P.; Ferrer, I. Delineating the Efficacy of a Cannabis-Based Medicine at Advanced Stages of Dementia in a Murine Model. J. Alzheimer’s Dis. 2016, 54, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aso, E.; Sánchez-Pla, A.; Vegas-Lozano, E.; Maldonado, R.; Ferrer, I. Cannabis-Based Medicine Reduces Multiple Pathological Processes in AβPP/PS1 Mice. J. Alzheimer’s Dis. 2014, 43, 977–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, L.P.; Daphney, C.M.; Oppong-Damoah, A.; Uchakin, P.N.; Abney, S.E.; Uchakina, O.N.; Khusial, R.D.; Akil, A.; Murnane, K.S. The cannabinoid receptor 2 agonist, β-caryophyllene, improves working memory and reduces circulating levels of specific proinflammatory cytokines in aged male mice. Behav. Brain Res. 2019, 372, 112012. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Hurtado, P.; González-Castañeda, R.E.; Beas-Zarate, C.; Flores-Soto, M.E.; Viveros-Paredes, J.M. β-Caryophyllene Reduces DNA Oxidation and the Overexpression of Glial Fibrillary Acidic Protein in the Prefrontal Cortex and Hippocampus of d-Galactose-Induced Aged BALB/c Mice. J. Med. Food 2020, 23, 515–522. [Google Scholar] [CrossRef]
Article | Species and Sex | Dose and Delivery | Age | Outcome |
---|---|---|---|---|
[38] | Sprague-Dawley rats; females | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired performance in the T-maze |
[39] | Inbred C57Bl/6J and DBA/2J mice; males | THC 10 mg/kg intraperitoneal injections every 72 h | P28–P44 | Impaired performance in the object recognition test |
THC 10 mg/kg intraperitoneal injections every 72 h | P69–P85 | No impairment in the object recognition test | ||
[40] | CD1 mice; males | THC 3 mg/kg, CBD 3 mg/kg, CBD + THC 3 mg/kg each; daily intraperitoneal injections | P28–P48 | Impairment in the object recognition memory after THC; counteracted by concomitant CBD |
[41] | Sprague-Dawley rats; females | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired performance in the object recognition test |
[42] | Sprague-Dawley rats; females | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired performance in the object recognition test |
[43] | Sprague-Dawley rats; males | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired performance in the object recognition test |
[44] | Sprague-Dawley rats; females | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired performance in the object recognition test |
[45] | Sprague-Dawley rats; males | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P30–P41 | Impaired performance in the object recognition test |
[46] | Long-Evans rats; males | THC 3–5–10 mg/kg; subcutaneous injections | P30–P45 | No impairment in the Barnes maze test |
[47] | Long-Evans rats; males and females | WIN55,212-2 1.2 mg/kg; intraperitoneal injections | P30–P60 | Impairment in the probabilistic reward choice task in both sexes |
[48] | Sprague-Dawley rats; males and females | THC 0.3–1–3 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired spatial memory in the object location task |
[49] | Sprague-Dawley rats; males | THC 0.3–1–3 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired spatial memory in the Morris water maze |
[50] | Long-Evans rats; males | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impairment in paired-associate learning task |
[51] | Rhesus monkeys; males | THC 15 to 240 μg/kg 5 days/week for 12 months; intravenous injections | 24–36 months | Impaired the reinforcement-related learning processes |
[52] | Rhesus monkeys; males | THC 15 to 240 μg/kg 5 days/week for 12 months; intravenous injections | 24–36 months | Impaired reinforcement-related learning processes were mitigated after protracted training |
[53] | Sprague-Dawley rats; females | THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | Impaired performance in the object recognition test |
THC/CBD 3:1 ratio | Impaired performance in the object recognition test | |||
CBD 5 mg/kg twice a day | Impaired performance in the object recognition test | |||
[54] | Squirrel monkeys; males | THC (0.1–1 mg/kg) for 3 weeks; daily injections | Adolescence; age range not specified | Impaired discrimination learning, no effect on cognitive flexibility. |
THC + CBD 1:3 (0.1–1:0.3–3 mg/kg) for 3 weeks;daily injections | CBD did not modulate THC effects on cognitive performance | |||
[55] | C57BL/6J mice; males and females | CBD 20 mg/kg twice a day; intraperitoneal injections | P25–P45 | No effects on spatial memory in the Barnes Maze; improved learning in the task |
[56] | Sprague-Dawley rats; females | WIN55,212-2 0.0125 mg/kg/infusion; intravenous self-administration (fixed ratio 1) | P34–P59 | No lasting deficits in the object location test and delayed-match-to-sample working memory task |
[57] | Sprague-Dawley rats; males | WIN55,212-2 0.0125 mg/kg/infusion; self-administration (fixed ratio 1) | P38–P49 | No lasting deficits in the object memory test and object location test |
[58] | Sprague-Dawley rats; males and females | THC 3–10–30–100 μg/kg/infusion intravenous self-administration (fixed ratio 1) | P32–P51 | Unaltered performance in the delayed-match-to-sample working memory task; enhanced working memoryperformance in males that self-administered high doses of THC |
[59] | Long-Evans rats; males and females | 5.6% THC, 0% cannabidiol and 0.4% cannabinol; cannabis smoke | P29–P49 | No effects in the novel object recognition task |
THC 2.5–5–10 mg/kg twice a day; intraperitoneal injections | P35–P45 | No effects in the novel object recognition task | ||
[60] | Long-Evans rats; males | 5.6% THC, 0% cannabidiol and 0.4% cannabinol; cannabis smoke | P29–P49 | No effects on cognition (set shifting, reversal learning, intertemporal choice) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamberletti, E.; Rubino, T. Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition. Molecules 2022, 27, 1411. https://doi.org/10.3390/molecules27041411
Zamberletti E, Rubino T. Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition. Molecules. 2022; 27(4):1411. https://doi.org/10.3390/molecules27041411
Chicago/Turabian StyleZamberletti, Erica, and Tiziana Rubino. 2022. "Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition" Molecules 27, no. 4: 1411. https://doi.org/10.3390/molecules27041411
APA StyleZamberletti, E., & Rubino, T. (2022). Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition. Molecules, 27(4), 1411. https://doi.org/10.3390/molecules27041411