Synthesis of Copper Oxide-Based Nanoformulations of Etoricoxib and Montelukast and Their Evaluation through Analgesic, Anti-Inflammatory, Anti-Pyretic, and Acute Toxicity Activities
Abstract
:1. Introduction
2. Results and Discussions
2.1. Structural Analysis
2.1.1. UV/Vis Spectroscopy
2.1.2. FTIR Spectroscopy
2.1.3. X-ray Diffractometry
2.1.4. Scanning Electron Microscopy
2.1.5. Particle Size Analysis
2.1.6. Quantification of ET and MT
Calibration Curve
Specificity
Validation of Method
2.2. Bioactivities Studies
2.2.1. In Vitro Anti-Inflammatory Activity
2.2.2. In Vivo Anti-Inflammatory Activity
2.2.3. In Vivo Analgesic Activity
2.2.4. In Vivo Anti Pyretic Activity
Drug | Dose (mg/kg) | Temperature (°F) | |||||
---|---|---|---|---|---|---|---|
Before Yeast Injection | 0 h | 1 h | 2 h | 3 h | 4 h | ||
Negative control (normal saline) | - | 98.6 | 101 | 101 | 101 | 101 | 101 |
Positive control (paracetamol) | 20 [56] | 98.6 | 100 | 98.6 | 98.6 | 98.6 | 98.6 |
Et | 20 | 98.6 | 99.8 | 99 | 98.6 | 98.6 | 98.6 |
Mt | 20 [54] | 98.6 | 100.7 | 101 | 101 | 100.5 | 100.5 |
CE1 | 5 | 98.6 | 101 | 98.6 | 98.6 | 98.6 | 98.6 |
CE2 | 5 | 98.6 | 100.5 | 98.6 | 98.6 | 98.6 | 98.6 |
CE6 | 5 | 98.6 | 101.5 | 98.6 | 98.6 | 98.6 | 98.6 |
2.2.5. In Vivo Acute Toxicity Activity
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Copper Oxide Nanoparticles
3.3. Synthesis of Etoricoxib and Montelukast Conjugated CuO Nanomaterials (CE)
3.3.1. Quantification Protocol
3.3.2. Samples Preparation
3.4. Characterization
3.5. Bioactivities
3.5.1. In Vitro Anti-Inflammatory Activity
3.5.2. In Vivo Anti-Inflammatory Activity
3.5.3. In Vivo Analgesic Activity
3.5.4. In Vivo Anti Pyretic Activity
3.5.5. In Vivo Acute Toxicity Activity
3.5.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shah, S.S.; Shaikh, M.N.; Khan, M.Y.; Alfasane, M.A.; Rahman, M.M.; Aziz, M.A. Present status and future prospects of jute in nanotechnology: A review. Chem. Rec. 2021, 21, 1631–1665. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R. There’s plenty of room at the bottom. In Feynman and Computation; CRC Press: Boca Raton, FL, USA, 2018; pp. 63–76. [Google Scholar]
- Love, L.; Post, B.; Noakes, M.; Nycz, A.; Kunc, V. There’s Plenty of Room at the Top; Elsevier: Amsterdam, The Netherlands, 2021; Volume 39, p. 101727. [Google Scholar]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An introduction to nanotechnology. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 1–27. [Google Scholar]
- Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Khan, A.U. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2021, 123, 108369. [Google Scholar] [CrossRef]
- Marcolongo, D.M.S.; Nocito, F.; Ditaranto, N.; Comparelli, R.; Aresta, M.; Dibenedetto, A. Opto-Electronic Characterization of Photocatalysts Based on p, n-Junction Ternary and Quaternary Mixed Oxides Semiconductors (Cu2O-In2O3 and Cu2O-In2O3-TiO2). Catalysts 2022, 12, 153. [Google Scholar] [CrossRef]
- Rupashree, M.; Soppin, K.; Pratibha, S.; Chethan, B. Cost effective photocatalytic and humidity sensing performance of green tea mediated copper oxide nanoparticles. Inorg. Chem. Commun. 2021, 134, 108974. [Google Scholar] [CrossRef]
- Trukawka, M.; Wenelska, K.; Singer, L.; Klingeler, R.; Chen, X.; Mijowska, E. Hollow carbon spheres loaded with uniform dispersion of copper oxide nanoparticles for anode in lithium-ion batteries. J. Alloy. Compd. 2021, 853, 156700. [Google Scholar] [CrossRef]
- Barman, K.; Dutta, P.; Chowdhury, D.; Baruah, P.K. Green biosynthesis of copper oxide nanoparticles using waste colocasia esculenta leaves extract and their application as recyclable catalyst towards the synthesis of 1, 2, 3-triazoles. BioNanoScience 2021, 11, 189–199. [Google Scholar] [CrossRef]
- Ghodke, S.A.; Sonawane, S.H.; Bhanvase, B.A.; Potoroko, I. Advanced engineered nanomaterials for the treatment of wastewater. In Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 959–970. [Google Scholar]
- Kaduševičius, E. Novel applications of NSAIDs: Insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy. Int. J. Mol. Sci. 2021, 22, 6637. [Google Scholar] [CrossRef]
- Shaheen, N.J.; Hansen, R.A.; Morgan, D.R.; Gangarosa, L.M.; Ringel, Y.; Thiny, M.T.; Russo, M.W.; Sandler, R.S. The burden of gastrointestinal and liver diseases, 2006. Am. J. Gastroenterol. 2006, 101, 2128–2138. [Google Scholar] [CrossRef] [PubMed]
- Jones, R. Nonsteroidal anti-inflammatory drug prescribing: Past, present, and future. Am. J. Med. 2001, 110, S4–S7. [Google Scholar] [CrossRef]
- Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 121–132. [Google Scholar] [CrossRef]
- Ambati, G.G.; Jachak, S.M. Natural product inhibitors of cyclooxygenase (COX) enzyme: A review on current status and future perspectives. Curr. Med. Chem. 2021, 28, 1877–1905. [Google Scholar] [CrossRef]
- Salvo, F.; Fourrier-Réglat, A.; Bazin, F.; Robinson, P.; Riera-Guardia, N.; Haag, M.; Caputi, A.; Moore, N.; Sturkenboom, M.; Pariente, A. Cardiovascular and gastrointestinal safety of NSAIDs: A systematic review of meta-analyses of randomized clinical trials. Clin. Pharmacol. Ther. 2011, 89, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.H.; Husni, M.E.; Libby, P.A.; Yeomans, N.D.; Lincoff, A.M.; Lϋscher, T.F.; Menon, V.; Brennan, D.M.; Wisniewski, L.M.; Nissen, S.E. The risk of major NSAID toxicity with celecoxib, ibuprofen, or naproxen: A secondary analysis of the PRECISION trial. Am. J. Med. 2017, 130, 1415–1422.e4. [Google Scholar] [CrossRef] [PubMed]
- Hameed, H.A.; Khan, S.; Shahid, M.; Ullah, R.; Bari, A.; Ali, S.S.; Hussain, Z.; Sohail, M.; Khan, S.U.; Htar, T.T. Engineering of Naproxen Loaded Polymer Hybrid Enteric Microspheres for Modified Release Tablets: Development, Characterization, in silico Modelling and in vivo Evaluation. Drug Des. Dev. Ther. 2020, 14, 27–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.S.; Alfajaro, M.M.; Chow, R.D.; Wei, J.; Filler, R.B.; Eisenbarth, S.C.; Wilen, C.B. Nonsteroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. J. Virol. 2021, 95, e00014–e00021. [Google Scholar] [CrossRef]
- Şahin, Z.; Kalkan, M.; Berk, B.; Yurttaş, L.; Bender, C.; Kaleli, S.N.B.; Demirayak, Ş. Synthesis, characterization, COX1/2 inhibition and molecular modeling studies on novel 2-thio-diarylimidazoles. Turk. J. Chem. 2021, 45, 1841–1853. [Google Scholar]
- Abdellatif, K.R.; Abdelall, E.K.; Elshemy, H.A.; Philoppes, J.N.; Hassanein, E.H.; Kahk, N.M. Optimization of pyrazole-based compounds with 1, 2, 4-triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory, ulcerogenicity, cardiovascular evaluation, and molecular modeling studies. Bioorganic Chem. 2021, 114, 105122. [Google Scholar]
- Haddad, N.N.; Bruns, B.R.; Enniss, T.M.; Turay, D.; Sakran, J.V.; Fathalizadeh, A.; Arnold, K.; Murry, J.S.; Carrick, M.M.; Hernandez, M.C. Perioperative use of nonsteroidal anti-inflammatory drugs and the risk of anastomotic failure in emergency general surgery. J. Trauma Acute Care Surg. 2017, 83, 657–661. [Google Scholar] [CrossRef]
- Veronese, N.; Cooper, C.; Reginster, J.-Y.; Hochberg, M.; Branco, J.; Bruyère, O.; Chapurlat, R.; Al-Daghri, N.; Dennison, E.; Herrero-Beaumont, G. Type 2 diabetes mellitus and osteoarthritis. Proc. Semin. Arthritis Rheum. 2019, 49, 9–19. [Google Scholar] [CrossRef]
- Tang, S.; Davoudi, Z.; Wang, G.; Xu, Z.; Rehman, T.; Prominski, A.; Tian, B.; Bratlie, K.M.; Peng, H.; Wang, Q. Soft materials as biological and artificial membranes. Chem. Soc. Rev. 2021, 50, 12679–12701. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, J.; Zhao, M.; Tang, S.; Cheng, X.; Zhang, W.; Li, W.; Liu, X.; Peng, H.; Wang, Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 2021, 13, 10748–10764. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, Z.; Peroutka-Bigus, N.; Bellaire, B.; Jergens, A.; Wannemuehler, M.; Wang, Q. Gut organoid as a new platform to study alginate and chitosan mediated PLGA nanoparticles for drug delivery. Mar. Drugs 2021, 19, 282. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, M.; Yamgar, D.B.; Desale, M.N.; Fegade, B. A Review on Various Analytical Methodologies for Etoricoxib. Adv. J. Grad. Res. 2022, 11, 61–70. [Google Scholar] [CrossRef]
- Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother. 2017, 89, 1067–1077. [Google Scholar] [CrossRef]
- Vaidehi, D.; Bhuvaneshwari, V.; Bharathi, D.; Sheetal, B.P. Antibacterial and photocatalytic activity of copper oxide nanoparticles synthesized using Solanum lycopersicum leaf extract. Mater. Res. Express 2018, 5, 085403. [Google Scholar] [CrossRef]
- Gade, J.V.; Sharma, P.P.; Jain, B.; Rawat, R. Synthesis and characterization of paclitaxel nanoparticles for drug delivery. Mater. Today Proc. 2021, 51, 445–450. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Rizwanullah, M.; Ahmad, J.; Alasmary, M.Y.; Akhter, M.H.; Abdel-Wahab, B.A.; Warsi, M.H.; Haque, A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int. J. Polym. Mater. Polym. Biomater. 2021, 1–22. [Google Scholar] [CrossRef]
- Esfahani, M.K.M.; Islam, N.; Cabot, P.J.; Izake, E.L. Development of Thiabendazole-Loaded Mesoporous Silica Nanoparticles for Cancer Therapy. ACS Biomater. Sci. Eng. 2021. [Google Scholar] [CrossRef] [PubMed]
- Domper Arnal, M.-J.; Hijos-Mallada, G.; Lanas, A. Gastrointestinal and cardiovascular adverse events associated with NSAIDs. Expert Opin. Drug Saf. 2021, 1–12. [Google Scholar] [CrossRef]
- Gurianov, Y.; Nakonechny, F.; Albo, Y.; Nisnevitch, M. LLDPE composites with nanosized copper and copper oxides for water disinfection. Polymers 2020, 12, 1713. [Google Scholar] [CrossRef]
- Padmavathi, A.R.; Murthy, P.S.; Das, A.; Rao, T.S. Enhanced Antifouling Property of Polydimethylsiloxane-CuO nanocomposite in Marine Environment. Mater. Lett. 2021, 301, 130342. [Google Scholar] [CrossRef]
- Shimabuku, Q.L.; Ueda-Nakamura, T.; Bergamasco, R.; Fagundes-Klen, M.R. Chick-Watson kinetics of virus inactivation with granular activated carbon modified with silver nanoparticles and/or copper oxide. Process. Saf. Environ. Prot. 2018, 117, 33–42. [Google Scholar] [CrossRef]
- Menazea, A.; Ahmed, M. Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J. Mol. Struct. 2020, 1218, 128536. [Google Scholar] [CrossRef]
- El-Trass, A.; ElShamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 2012, 258, 2997–3001. [Google Scholar] [CrossRef]
- Khashan, K.; Jabir, M.; Abdulameer, F. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid. Proc. J. Phys. Conf. Ser. 2018, 1003, 12100. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, A.; Verma, A.; Ghosh, A.K.; Mishra, A.K. A simple Ultraviolet spectrophotometric method for the determination of etoricoxib in dosage formulations. J. Adv. Pharm. Technol. Res. 2012, 3, 237. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, M.; Reddy, P.P.; Naidu, M.; Babu, J.M.; Srivastava, A.K.; Kumar, T.L.; Sekhar, B.C.; Satyanarayana, B. Identification, synthesis, isolation and spectral characterization of potential impurities of montelukast sodium. J. Pharm. Biomed. Anal. 2008, 48, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds; John Wiley and Son Inc.: New York, NY, USA; London, UK, 1963. [Google Scholar]
- Padil, V.V.T.; Černík, M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013, 8, 889. [Google Scholar]
- Wahid, A.; Sridhar, B.; Shivakumar, S. Preparation and evaluation of transdermal drug delivery system of etoricoxib using modified chitosan. Indian J. Pharm. Sci. 2008, 70, 455. [Google Scholar]
- Kesharwani, R.; Sachan, A.; Singh, S.; Patel, D. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib. J. Appl. Pharm. Sci. 2016, 6, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.; Suhagia, B.; Shah, S.; Rathod, I.; Parmar, V. Preparation and characterization of etoricoxib-β-cyclodextrin complexes prepared by the kneading method. Acta Pharm. 2007, 57, 351–359. [Google Scholar] [CrossRef]
- Das, A.; Nayak, A.K.; Mohanty, B.; Panda, S. Solubility and dissolution enhancement of etoricoxib by solid dispersion technique using sugar carriers. ISRN Pharm. 2011, 2011, 819765. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, K.; Hasan, S.A.A. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J. Young Pharm. 2012, 4, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 2015, 9, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.-B.; Tang, P.-F.; Zhang, W.; Zhao, Y.-P.; Zhang, L.-C.; Zhang, H. Green synthesis of CuO nanoparticles using Cassia auriculata leaf extract and in vitro evaluation of their biocompatibility with rheumatoid arthritis macrophages (RAW 264.7). Trop. J. Pharm. Res. 2017, 16, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, K.; Vijaya, C. Formulation development of mouth dissolving film of etoricoxib for pain management. Adv. Pharm. 2015, 2015, 702963. [Google Scholar] [CrossRef]
- ZAVERI, M.; Khandhar, A. Development and Validation of a RP-HPLC for the Simultaneous estimation of Atenolol and Hydrochlorothiazide in Pharmaceutical Dosage Forms. Asian J. Pharm. Res. Health Care 2010, 2, 3. [Google Scholar]
- Williams, L.; O’Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 2008, 57, 327–331. [Google Scholar] [PubMed]
- Kolhe, A.M.; Kale, A. Evaluation of analgesic, anti-inflammatory, and antipyretic activity of leukotriene receptor antagonist-montelukast: An experimental study. Natl. J. Physiol. Pharm. Pharmacol. 2017, 7, 32. [Google Scholar] [CrossRef]
- Ullah, R.; Alsaid, M.S.; Alqahtani, A.S.; Shahat, A.A.; Naser, A.A.; Mahmood, H.M.; Ahamad, S.R.; Al-Mishari, A.A.; Ahmad, S. Anti-inflammatory, antipyretic, analgesic, and antioxidant activities of Haloxylon salicornicum aqueous fraction. Open Chem. 2019, 17, 1034–1042. [Google Scholar] [CrossRef]
- Abbah, J.; Amos, S.; Chindo, B.; Ngazal, I.; Vongtau, H.; Adzu, B.; Farida, T.; Odutola, A.; Wambebe, C.; Gamaniel, K. Pharmacological evidence favouring the use of Nauclea latifolia in malaria ethnopharmacy: Effects against nociception, inflammation, and pyrexia in rats and mice. J. Ethnopharmacol. 2010, 127, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Luna, I.Z.; Commission, B.A.E. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. Open Access Libr. J. 2015, 2, 1. [Google Scholar] [CrossRef]
- Jat, R.; Chhipa, R.; Sharma, S. Spectrophotometric quantification of Etoricoxib in bulk drug and tablets using hydrotropic agent. Phramacore 2010, 1, 96–102. [Google Scholar]
- Dalmora, S.L.; Brum Junior, L.; Ferretto, R.M.; Oliveira, P.R.d.; Barth, T.; Sangoi, M.d.S. Determination of etoricoxib in human plasma using automated on-line solid-phase extraction coupled with LC-APCI/MS/MS. Química Nova 2008, 31, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Mukai, Y.; Okamoto, R.; Takeuchi, S. Quantum fourier-transform infrared spectroscopy in the fingerprint region. arXiv 2021, arXiv:2110.14247. [Google Scholar]
- Romanitan, C.; Mihalache, I.; Tutunaru, O.; Pachiu, C. Effect of the lattice mismatch on threading dislocations in heteroepitaxial GaN layers revealed by X-ray diffraction. J. Alloy. Compd. 2021, 858, 157723. [Google Scholar] [CrossRef]
- Berkowicz, S.; Perakis, F. Exploring the validity of the Stokes–Einstein relation in supercooled water using nanomolecular probes. Phys. Chem. Chem. Phys. 2021, 23, 25490–25499. [Google Scholar] [CrossRef] [PubMed]
- Leelaprakash, G.; Dass, S.M. Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res. 2011, 3, 189–196. [Google Scholar]
- Ratheesh, M.; Helen, A. Anti-inflammatory activity of Ruta graveolens Linn on carrageenan induced paw edema in wistar male rats. Afr. J. Biotechnol. 2007, 6, 10. [Google Scholar]
- Moilanen, L.J.; Laavola, M.; Kukkonen, M.; Korhonen, R.; Leppänen, T.; Högestätt, E.D.; Zygmunt, P.M.; Nieminen, R.M.; Moilanen, E. TRPA1 contributes to the acute inflammatory response and mediates carrageenan-induced paw edema in the mouse. Sci. Rep. 2012, 2, 1–6. [Google Scholar] [CrossRef]
- O’Callaghan, J.P.; Holtzman, S.G. Quantification of the analgesic activity of narcotic antagonists by a modified hot-plate procedure. J. Pharmacol. Exp. Ther. 1975, 192, 497–505. [Google Scholar] [PubMed]
- Pathak, A.; Argal, A. Analgesic activity of Calotropis gigantea flower. Fitoterapia 2007, 78, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Makonnen, E.; Debella, A.; Zerihun, L.; Abebe, D.; Teka, F. Antipyretic properties of the aqueous and ethanol extracts of the leaves of Ocimum suave and Ocimum lamiifolium in mice. J. Ethnopharmacol. 2003, 88, 85–91. [Google Scholar] [CrossRef]
- Pohocha, N.; Grampurohit, N.D. Antispasmodic activity of the fruits of Helicteres isora Linn. Phytother. Res. An. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2001, 15, 49–52. [Google Scholar]
S.No. | Name/Code | Crystallite Size (nm) |
---|---|---|
1 | CuO | 13.7 |
2 | ET | 41.64 |
3 | MT | Amorphous |
4 | CE1 | 19.17 |
5 | CE2 | 17.87 |
6 | CE3 | 20.97 |
7 | CE4 | 22.53 |
8 | CE5 | 19.60 |
9 | CE6 | 21.98 |
10 | CE7 | 18.88 |
S.NO. | 5 mg | Etoricoxib (mg) | Montelukast (mg) | RSD (±) |
---|---|---|---|---|
1. | CE1 | 2.8 | - | 0.07 |
2. | CE2 | 2.1 | 0.7 | 0.05 |
3. | CE3 | 1.80 | 0.77 | 0.08 |
4. | CE4 | 1.45 | 1.35 | 0.06 |
5. | CE5 | 0.77 | 1.75 | 0.07 |
6. | CE6 | 0.75 | 2.10 | 0.08 |
7. | CE7 | - | 2.95 | 0.06 |
S.No. | Code | Absorbance at 660 nm | Inhibition (%)± SEM |
---|---|---|---|
1 | Negative control (DMSO) | 0.6900 | 0 |
2 | CE1 | 0.2039 | 70.45 ± 1.12 |
3 | CE2 | 0.1463 | 78.79 ± 1.56 |
4 | CE3 | 0.3822 | 44.61 ± 1.12 |
5 | CE4 | 0.7444 | 7.884 ± 1.25 |
6 | CE5 | 0.6335 | 8.188 ± 1.46 |
7 | CE6 | 0.2040 | 70.43 ± 1.52 |
8 | CE7 | 0.2802 | 59.39 ± 1.14 |
9 | Etoricoxib (ET) | 0.0221 | 96.80 ± 1.36 |
10 | Montelukast (MT) | 0.1476 | 78.61 ± 1.95 |
11 | CuO | 0.1677 | 75.69 ± 1.80 |
12 | Positive control (diclofenac sodium) | 0.0755 | 89.06 ± 1.75 |
Drug | Dose (mg/kg) | Inhibitory Effect (%) ± SEM | ||
---|---|---|---|---|
1 h | 2 h | 3 h | ||
Negative control (normal saline) | - | 6.37 ± 1.08 | 4.75 ± 1.03 | 5.93 ± 1.02 |
Positive control (diclofenac sodium) | 10 | 68.84 ± 1.23 | 71.33 ± 1.12 | 85.78 ± 1.24 |
Et | 10 | 65.19 ± 1.21 | 64.30 ± 1.53 | 79.26 ± 1.42 |
Mt | 10 | 43 ± 1.24 | 48 ± 1.35 | 57 ± 1.45 |
CE1 | 5 | 62.72 ± 1.21 | 62.77 ± 1.24 | 76.84 ± 1.22 |
CE2 | 5 | 69.17 ± 1.25 | 83.56 ± 1.31 | 86.99 ± 1.32 |
CE6 | 5 | 62.29 ± 1.39 | 63.38 ± 1.42 | 69.59 ± 1.38 |
Drug | Dose (mg/kg) | Inhibitory Effect (%) ± SEM | ||
---|---|---|---|---|
1 h | 2 h | 3 h | ||
Negative control (normal saline) | - | 7.79 ± 1.02 | 6.20 ± 1.10 | 3.03 ± 1.21 |
Positive control (diclofenac sodium) | 10 | 58.34 ± 1.21 | 83.38 ± 1.24 | 83.22 ± 1.45 |
Et | 10 | 24.30 ± 1.24 | 35.37 ± 1.10 | 48.61 ± 1.15 |
Mt | 10 [54] | 9.53 ± 1.32 | 7.95 ± 1.24 | 6.41 ± 1.42 |
CE1 | 5 | 35.97 ± 1.54 | 49.41 ± 1.41 | 63.86 ± 1.24 |
CE2 | 5 | 26.37 ± 1.45 | 51.53 ± 1.32 | 73.88 ± 1.52 |
CE6 | 5 | 19.19 ± 1.12 | 34.71 ± 1.21 | 51.72 ± 1.54 |
S.No. | Code | CuO (%) | Etoricoxib (%) | Montelukast (%) | PVA wt% |
---|---|---|---|---|---|
1 | CE1 | 20 | 80 | - | 2.5 |
2 | CE2 | 20 | 60 | 20 | |
3 | CE3 | 20 | 50 | 30 | |
4 | CE4 | 20 | 40 | 40 | |
5 | CE5 | 20 | 30 | 50 | |
6 | CE6 | 20 | 20 | 60 | |
7 | CE7 | 20 | - | 80 | |
8 | ET | - | 100 | - | - |
9 | MT | - | - | 100 | - |
10 | CuO | 100 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulaiman, S.; Ahmad, S.; Naz, S.S.; Qaisar, S.; Muhammad, S.; Alotaibi, A.; Ullah, R. Synthesis of Copper Oxide-Based Nanoformulations of Etoricoxib and Montelukast and Their Evaluation through Analgesic, Anti-Inflammatory, Anti-Pyretic, and Acute Toxicity Activities. Molecules 2022, 27, 1433. https://doi.org/10.3390/molecules27041433
Sulaiman S, Ahmad S, Naz SS, Qaisar S, Muhammad S, Alotaibi A, Ullah R. Synthesis of Copper Oxide-Based Nanoformulations of Etoricoxib and Montelukast and Their Evaluation through Analgesic, Anti-Inflammatory, Anti-Pyretic, and Acute Toxicity Activities. Molecules. 2022; 27(4):1433. https://doi.org/10.3390/molecules27041433
Chicago/Turabian StyleSulaiman, Sulaiman, Shabir Ahmad, Syeda Sohaila Naz, Sara Qaisar, Sayyar Muhammad, Amal Alotaibi, and Riaz Ullah. 2022. "Synthesis of Copper Oxide-Based Nanoformulations of Etoricoxib and Montelukast and Their Evaluation through Analgesic, Anti-Inflammatory, Anti-Pyretic, and Acute Toxicity Activities" Molecules 27, no. 4: 1433. https://doi.org/10.3390/molecules27041433
APA StyleSulaiman, S., Ahmad, S., Naz, S. S., Qaisar, S., Muhammad, S., Alotaibi, A., & Ullah, R. (2022). Synthesis of Copper Oxide-Based Nanoformulations of Etoricoxib and Montelukast and Their Evaluation through Analgesic, Anti-Inflammatory, Anti-Pyretic, and Acute Toxicity Activities. Molecules, 27(4), 1433. https://doi.org/10.3390/molecules27041433