Optimization of the Ultrasonic-Assisted Extraction Technology of Steroidal Saponins from Polygonatum kingianum Collett & Hemsl and Evaluating Its Quality Planted in Different Areas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Different Extraction Methods on the Yield
2.2. Single-Factor Experiments
2.2.1. Effect of the Liquid-Solid Ratio on the Extraction Yield
2.2.2. Effect of the Ethanol Concentration on the Extraction Yield
2.2.3. Effect of the Extraction Time on the Extraction Yield
2.2.4. Effect of the Extraction Temperature on the Extraction Yield
2.2.5. Effect of the Numbers of Extractions on the Extraction Yield
2.3. Optimization of UAE through BBD and RSM
2.3.1. Fitting the Model and Checking Model Adequacy
2.3.2. Response Surface Analysis
2.4. Method Validation with HPLC
2.4.1. Calibration Curves and Linear Range
2.4.2. Precision
2.4.3. Extraction Recovery Rate
2.4.4. Test of Biological Sample Stability
2.4.5. Contents of Dioscin and Diosgenin in the Rhizomes of P. kingianum Planted in Different Areas
3. Materials and Methods
3.1. Reagents and Apparatus
3.2. Plant Material
3.3. Comparison of the Extraction Methods
3.4. Determination of Total Steroidal Saponins
3.5. Single-Factor Experiment
3.6. Response Surface Methodology
3.7. HPLC Analysis of Dioscin and Diosgenin in P. kingianum
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.J.; Si, J.P. Herbal textual research on Chinese medicine “Huangjing” (Polygonati Rhizoma) and some enlightenments. China J. Chin. Mater. Med. 2018, 43, 631–636. [Google Scholar]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food. Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Cheng, C.C.; Li, X.; Gao, Q.Z.; Huang, L.Q.; Xiao, P.G.; Gao, W.Y. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2017, 214, 274–291. [Google Scholar] [CrossRef]
- Yan, H.L.; Lu, J.M.; Wang, Y.F.; Gu, W.; Yang, X.X.; Yu, J. Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats. Phytomedicine 2017, 26, 45–54. [Google Scholar] [CrossRef] [PubMed]
- KEGG. Kyoto Encyclopedia of Genes and Genomes. Developed by Kanehisa Laboratories. 2017. Available online: http://www.genome.jp/kegg/ (accessed on 6 June 2017).
- Vincken, J.P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007, 68, 275–297. [Google Scholar] [CrossRef]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Sparg, S.G.; Light, M.E.; Van, S.J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef] [PubMed]
- Osbourn, A.E.; Qi, X.; Townsend, B.; Qin, B. Dissecting plant secondary metabolism constitutive chemical defences in cereals. New. Phytol. 2003, 159, 101–108. [Google Scholar] [CrossRef]
- Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev. 2010, 9, 425–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, N.P.; Banerjee, S.; Mondal, N.B.; Mandal, D. Steroidal saponins. Fortschritte der Chemie Organischer Naturstoffe. In Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 2008; Volume 89, pp. 45–141. [Google Scholar]
- Yang, Z.Y.; Yang, L.F.; Liu, C.K.; Qin, X.J.; Liu, H.Y.; Chen, J.H.; Ji, Y.H. Transcriptome analyses of Paris polyphylla var. chinensis, Ypsilandra thibetica, and Polygonatum kingianum characterize their steroidal saponin biosynthesis pathway. Fitoterapia 2019, 135, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.T.; Yang, D.J. Determination of steroidal saponins in different organs of yam (Dioscorea pseudojaponica Yamamoto). Food. Chem. 2008, 108, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Ye, M.; Xiang, C.; Wang, Q.; Liu, C.F.; Miao, W.J.; Guo, D.A. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J. Chromatogr. A. 2012, 1258, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Dong, X.; Yang, J.; Hu, Y.H.; Peng, L.Q.; Zheng, H.; Cao, J. Vesicle based ultrasonic-assisted extraction of saponins in Panax notoginseng. Food. Chem. 2020, 303, 125394. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Wei, M.C.; Huang, T.C.; Lee, S.Z.; Lin, S.S. Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae. Ind. Crop. Prod. 2013, 45, 182–190. [Google Scholar] [CrossRef]
- Yang, B.Y.; Zhang, M.Y.; Weng, H.Y.; Xu, Y.; Zeng, L.H. Optimization of ultrasound assisted extraction (UAE) of kinsenoside compound from Anoectochilus roxburghii (Wall.) Lindl by response surface methodology (RSM). Molecules 2020, 25, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.T.; Pham, H.N.T.; Bowyer, M.C.; Altena, I.A.; Scarlett, C.J. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus. Chem. Pap. 2016, 70, 556–566. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.B.; Liang, Z.S.; Wang, W.L. Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason. Sonochem. 2010, 17, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Elhag, H.E.E.A.; Naila, A.; Ajit, A.; Aziz, B.A.; Sulaiman, A.Z. Sequential extraction of saponins from Eurycoma longifolia roots by water extraction and ultrasound-assisted extraction. Mater. Today Proc. 2018, 5, 21672–21681. [Google Scholar] [CrossRef]
- Sun, Y.S.; Liu, Z.B.; Wang, J.H.; Yan, S.F.; Li, B.Q.; Xu, N. Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne. Ultrason. Sonochem. 2013, 20, 180–186. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Kabra, A.; Hano, C. Enrichment in antioxidant flavonoids of stamen extracts from Nymphaea lotus L. using ultrasonic-assisted extraction and macroporous resin adsorption. Antioxidants 2020, 9, 576. [Google Scholar] [CrossRef]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Charalampos, P.; Michael, K. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. Food. Sci. Tech. 2008, 41, 652–659. [Google Scholar]
- Kamaljit, V.; Raymond, M.; Lloyd, S.; Darren, B. Application and opportunities for ultrasound assisted extraction in the food industry: A review. Innov. Food. Sci. Emerg. 2008, 9, 161–169. [Google Scholar]
- Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Ultrasound-assisted extraction of Catharanthus roseus L. G. Don (Patricia White cultivar) stem for maximizing saponin yield and antioxidant capacity. J. Food. Process. Preserv. 2018, 42, e13597. [Google Scholar] [CrossRef]
- Zhang, H.X.; Birch, J.; Xie, C.N.; Yang, H.Y.; Bekhit, A.E.D. Optimization of ultrasound assisted extraction method for phytochemical compounds and in-vitro antioxidant activity of New Zealand and China Asparagus cultivars (officinalis L.) roots extracts. Food. Chem. 2019, 294, 276–284. [Google Scholar] [CrossRef]
- Herodez, S.S.; Hadolin, M.; Skerget, M.; Knez, Z. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food. Chem. 2003, 80, 275–282. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, Y.; Hu, B.H.; Wu, H.; Lai, F.; Li, X.F. Microwave-assisted extraction and a new determination method for total steroid saponins from Dioscorea zingiberensis CH. Wright. Steroids 2015, 104, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Gribova, N.Y.; Filippenko, T.A.; Nikolaevskii, A.N.; Belaya, N.I.; Tsybulenko, A.A. Optimization of conditions for the extraction of antioxidants from solid parts of medicinal plants. J. Anal. Chem. 2008, 63, 1034–1037. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Y.Y.; Zhou, Q.F.; Zhong, X.K.; Zhu, L.; Piao, J.H.; Chen, J.; Jiang, J.G. Optimization of ultrasonic-assisted extraction of total saponins from Eclipta prostrasta L. using response surface methodology. J. Food. Sci. 2012, 77, C975–C982. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.J.; Fang, H.T.; Shen, J.L.; Zhang, J.; Liu, S.S.; Ding, X.M.; Zhang, M.H.; Tang, H.Y.; Tang, X. Optimization of extraction of flavonoids from Pteridum aquilinum var. latiusculum. In Proceedings of the International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 8373–8378. [Google Scholar]
- Allaf, T.; Tomao, V.; Ruiz, K.; Chemat, F. Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants. Ultrason. Sonochem. 2013, 20, 239–246. [Google Scholar] [CrossRef]
- Belwal, T.; Huang, H.; Li, L.; Duan, Z.H.; Zhang, X.B.; Aalim, H.; Luo, Z.S. Optimization model forultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis ‘starkrimson’ fruit peel. Food. Chem. 2019, 297, 124993. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, W.P.; Zhang, H.S.; Huang, Q. Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohyd. Polym. 2012, 87, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.Y.; Yu, G.Y.; Zhu, C.H.; Qiao, J.L. Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrason. Sonochem. 2012, 19, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Parkhey, P.; Ram, A.K.; Diwan, B.; Eswari, J.S.; Gupta, P. Artificial neural network and response surface methodology: A comparative analysis for optimizing rice straw pretreatment and saccharification. Prep. Biochem. Biotech. 2020, 20, 760–780. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Deng, Z.Y.; Wu, T.; Liu, R.H.; Loewen, S.; Tsao, R. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food. Chem. 2012, 130, 928–936. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, Q.; Wang, Y.; Liu, H.B.; Song, Z.X. Optimization of extraction process of total polysaccharides, saponins and flavonoids in stem of Huangjing (Polygonatum sibiricum) by response surface method. Guid. J. Tradit. Chin. Med. Pharm. 2019, 25, 64–67. (In Chinese) [Google Scholar] [CrossRef]
- Huang, J.Y.; Cui, F.Y.; Zheng, S.J.; Jiang, J.X.; Yang, J.Y.; Wang, Z.G.; Yu, C.M.; Yang, B. Extraction process of total saponins and total flavonoids from Polygonati Rhizoma by response surface optimization and its application in contents comparison from Polygonati rhizoma in different origin. Acta Chin. Med. Pharmacol. 2021, 9, 56–61. (In Chinese) [Google Scholar] [CrossRef]
- Wang, P.; Ma, C.Y.; Chen, S.W.; Zhu, S.; Lou, Z.S.; Wang, H.X. Ionic liquid-based ultrasonic/microwave-assisted extraction of steroidal saponins from Dioscorea zingiberensis C. H. Wright. Trop. J. Pharm. Res. 2014, 13, 1339–1345. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yin, H.W.; Wang, X.W.; Li, Z.H.; Shen, Y.P.; Jia, X.B. In situ pressurized biphase acid hydrolysis, a promising approach to produce bioactive diosgenin from the tubers of Dioscorea zingiberensis. Pharm. Mag. 2015, 11, 636–642. [Google Scholar]
- Bi, Y.W.; Yang, Y.H.; Gong, J.H.; Chen, B.F.; Liu, Z.B. Determination of polysaccharide and diosgenin in Polygonatum and Polygonatum multiflorum. J. Chang. Univ. Tradit. Chin. Med. 2010, 26, 649–650. (In Chinese) [Google Scholar] [CrossRef]
- Liu, F.Y. Establishment of Tissue Culture System of Polygonatum multiflorum and Extraction of Steroidal Saponins. Master’s Thesis, Anhui University, HeFei, China, 2017. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201702&filename=1017167492.nh (accessed on 6 June 2017). (In Chinese).
- Zhao, L.R.; Luo, H.; Xiang, Y.L.; Sun, H.J.; Mei, G.L.; Fang, C.W. Optimization of microwave extracting total saponins from rhizoma Polygonati by Box-Benhken response surface method. Mod. Chin. Med. 2018, 20, 1010–1015. [Google Scholar]
- Zhao, P.P.; Li, B.M.; He, L.Y. Studies on the method of determination of combined sugars in glycosides. Acta Pharm. Sin. 1987, 22, 70–74. [Google Scholar]
Run | Factors | Response | ||||
---|---|---|---|---|---|---|
Liquid- Solid Ratio | Volume Fraction of Ethanol (%) | Extraction Time (min) | Ultrasound Extraction Temperature (°C) | Total Steroid Saponins (mg/g) | ||
Measured | Predicted | |||||
1 | 5 | 75 | 75 | 50 | 1.43 | 1.46 |
2 | 15 | 75 | 75 | 50 | 2.44 | 2.09 |
3 | 5 | 95 | 75 | 50 | 1.32 | 1.38 |
4 | 15 | 95 | 75 | 50 | 2.23 | 1.91 |
5 | 10 | 85 | 60 | 40 | 2.14 | 2.30 |
6 | 10 | 85 | 90 | 45 | 2.28 | 2.18 |
7 | 10 | 85 | 60 | 55 | 2.20 | 2.02 |
8 | 10 | 85 | 90 | 55 | 3.08 | 2.63 |
9 | 5 | 85 | 75 | 45 | 1.77 | 1.76 |
10 | 15 | 85 | 75 | 45 | 2.20 | 2.51 |
11 | 5 | 85 | 75 | 55 | 2.17 | 2.01 |
12 | 15 | 85 | 75 | 55 | 2.28 | 2.43 |
13 | 10 | 75 | 60 | 50 | 1.59 | 1.67 |
14 | 10 | 95 | 60 | 50 | 1.99 | 1.71 |
15 | 10 | 75 | 90 | 50 | 1.67 | 2.09 |
16 | 10 | 95 | 90 | 50 | 1.72 | 1.78 |
17 | 5 | 85 | 60 | 50 | 1.48 | 1.52 |
18 | 15 | 85 | 60 | 50 | 2.22 | 2.36 |
19 | 5 | 85 | 90 | 50 | 2.03 | 2.03 |
20 | 15 | 85 | 90 | 50 | 2.28 | 2.35 |
21 | 10 | 75 | 75 | 45 | 2.37 | 2.02 |
22 | 10 | 95 | 75 | 45 | 1.76 | 1.74 |
23 | 10 | 75 | 75 | 55 | 1.80 | 1.96 |
24 | 10 | 95 | 75 | 55 | 1.49 | 1.98 |
25 | 10 | 85 | 75 | 50 | 3.86 | 4.30 |
26 | 10 | 85 | 75 | 50 | 4.01 | 4.30 |
27 | 10 | 85 | 75 | 50 | 4.95 | 4.30 |
28 | 10 | 85 | 75 | 50 | 3.94 | 4.30 |
29 | 10 | 85 | 75 | 50 | 4.75 | 4.30 |
Source | Total Steroid Saponins | ||
---|---|---|---|
Coefficient | F-Value | p-Value | |
Model | 4.30 | 10.43 | <0.0001 ** |
A | 0.29 | 6.02 | 0.0278 |
B | −0.065 | 0.31 | 0.5892 |
C | 0.12 | 1.06 | 0.3199 |
D | 0.043 | 0.13 | 0.7246 |
AB | −0.025 | 0.014 | 0.9065 |
AC | −0.13 | 0.39 | 0.5412 |
AD | −0.081 | 0.15 | 0.7001 |
BC | −0.086 | 0.18 | 0.6791 |
BD | 0.075 | 0.13 | 0.7196 |
CD | 0.18 | 0.81 | 0.3840 |
A2 | −1.17 | 52.97 | <0.0001 ** |
B2 | −1.42 | 78.15 | <0.0001 ** |
C2 | −1.07 | 43.94 | <0.0001 ** |
D2 | −0.95 | 35.12 | <0.0001 ** |
Lack of fit | 0.51 | 0.8235 | |
C.V. % | 17.11 | ||
R2 | 0.9125 | ||
Pred.R2 | 0.65676 | ||
Adj-R2 | 0.8250 |
Analytes | Calibration Curves | Linear Range (mg) | R2 |
---|---|---|---|
Dioscin | y = 18.895x − 6.272 | 14.4 × 10−3–86.4 × 10−3 | 0.9999 |
Diosgenin | y = 41.514x + 15.031 | 1.95 × 10−3–11.7 × 10−3 | 0.9958 |
Analytes | Peak Area | Average | SD | RSD (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Dioscin | 1163.7 | 1152.5 | 1117.6 | 1111.3 | 1139.2 | 1126.9 | 1135.2 | 20.38 | 1.79 |
Diosgenin | 225.8 | 207.3 | 228.2 | 220.9 | 211.7 | 230.8 | 220.8 | 9.43 | 4.27 |
NO. | Sampling Quantity (g) | Sample Content (μg) | Added Quantity (μg) | Measured Quantity (μg) | Rate of Recovery (%) | X | RSD (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | A | B | A | B | A | B | |
1 | 20.0004 | 20.0004 | 1939.71 | 514.88 | 1575 | 444 | 3879.43 | 1029.76 | 123.16 | 115.96 | 122.2 | 110.6 | 2.9 | 4.7 |
2 | 20.0010 | 20.0010 | 1960.88 | 501.49 | 1575 | 444 | 3921.77 | 1002.98 | 124.50 | 112.95 | ||||
3 | 20.0031 | 20.0031 | 1960.04 | 467.48 | 1575 | 444 | 3920.07 | 934.95 | 124.45 | 105.29 | ||||
4 | 20.0002 | 20.0002 | 1932.09 | 462.56 | 1575 | 444 | 3864.18 | 925.12 | 122.67 | 104.18 | ||||
5 | 20.0015 | 20.0015 | 1945.01 | 515.84 | 1575 | 444 | 3890.01 | 1031.69 | 123.49 | 116.18 | ||||
6 | 20.0031 | 20.0031 | 1814.81 | 485.30 | 1575 | 444 | 3629.63 | 970.60 | 115.23 | 109.30 |
Analytes | Peak Area | Average | SD | RSD (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Dioscin | 425.7 | 419.2 | 413.2 | 412.6 | 410.6 | 404.4 | 414.3 | 7.35 | 1.77 |
Diosgenin | 207.9 | 200.3 | 223.2 | 217.0 | 207.3 | 213.4 | 211.5 | 8.08 | 3.8 |
Independent Variables | Symbol | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Liquid-solid ratio (mL/g) | A | 5:1 | 10:1 | 15:1 |
Volume fraction of ethanol (%) | B | 75 | 85 | 95 |
Extraction time (minutes) | C | 60 | 75 | 90 |
Ultrasound extraction temperature (°C) | D | 45 | 50 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Wang, X.; Chen, J.; Li, X.; Gu, W.; Zhang, F.; Cao, G.; Yu, J. Optimization of the Ultrasonic-Assisted Extraction Technology of Steroidal Saponins from Polygonatum kingianum Collett & Hemsl and Evaluating Its Quality Planted in Different Areas. Molecules 2022, 27, 1463. https://doi.org/10.3390/molecules27051463
He S, Wang X, Chen J, Li X, Gu W, Zhang F, Cao G, Yu J. Optimization of the Ultrasonic-Assisted Extraction Technology of Steroidal Saponins from Polygonatum kingianum Collett & Hemsl and Evaluating Its Quality Planted in Different Areas. Molecules. 2022; 27(5):1463. https://doi.org/10.3390/molecules27051463
Chicago/Turabian StyleHe, Sen, Xifu Wang, Jiaqiang Chen, Xiaogang Li, Wen Gu, Fan Zhang, Guanhua Cao, and Jie Yu. 2022. "Optimization of the Ultrasonic-Assisted Extraction Technology of Steroidal Saponins from Polygonatum kingianum Collett & Hemsl and Evaluating Its Quality Planted in Different Areas" Molecules 27, no. 5: 1463. https://doi.org/10.3390/molecules27051463
APA StyleHe, S., Wang, X., Chen, J., Li, X., Gu, W., Zhang, F., Cao, G., & Yu, J. (2022). Optimization of the Ultrasonic-Assisted Extraction Technology of Steroidal Saponins from Polygonatum kingianum Collett & Hemsl and Evaluating Its Quality Planted in Different Areas. Molecules, 27(5), 1463. https://doi.org/10.3390/molecules27051463