Microwave-Assisted Conversion of Carbohydrates
Abstract
:1. Introduction
2. Catalytic Processes for Conversion of Carbohydrates Based on the Use of Microwave Irradiation
2.1. Synthesis of 5-Hydroxymethylfurfural
2.2. Synthesis of Furfural and Derivatives
2.3. Synthesis of Levulinic Acid
2.4. Production of Other Products under Microwave Activation of Carbohydrates
Source | Product | Catalyst | Microwave Conditions | Advantages over the Thermal Process | Ref. |
---|---|---|---|---|---|
Synthesis of 5-HMF | |||||
D-fructose, D-glucose, sucrose, maltose, cellobiose | 5-HMF | Mesoporous TiO2 | Water or DMSO, 5 min, 120 °C 300 W | 5-HMF yield up to 54% | [11] |
Carbohydrates | 5-HMF | Hierarchical macro/mesoporous titanium phosphate | A few minutes at 100–120 °C | Increased 5-HMF yield up to 60% | [12] |
Fructose, glucose, sucrose, cellobiose, and cellulose | Mesoporous tin phosphate | 150 °C, 20 min | The yields of 5-HMF of 77, 50, 51, 39, and 32%, respectively, were obtained from fructose, glucose, sucrose, cellobiose, and cellulose | [13] | |
Glucose | 5-HMF | AlCl3 | A few minutes at 165 °C | 5-HMF yield 70% | [14] |
Carbohydrates | 5-HMF | Bifunctional crystalline microporous organic polymers containing sulfonic acid and secondary amine groups | 110–120 °C, 5–30 min, | Shortened reaction time (a few minutes) | [15] |
Fructose | 5-HMF | Highly ordered 2D-hexagonal mesoporous SBA-15 organosilica | 135 °C, 20 min | Yield of 74% from fructose | [16] |
Derivatives of fructose, glucose and cellulose | 5-HMF | Tungstophosphoric acid encapsulated dendritic fibrous mesoporous silica | 110–120 °C, 30 min, 150 W | Yield of 96.5% 5-HMF from fructose (microwave) vs. 18–41.5% (thermal) | [17] |
Carbohydrates | 5-HMF and levulinic acid | Sulfuric acid and montmorillonite clay | 190 °C 200 W | The reaction time was reduced. Larger amounts of levulinic acid were found under microwave radiation vs. thermal treatment | [18] |
Fructose, glucose, sucrose, and cellulose | 5-HMF | ZrMo mixed oxides modified by carboxylic acids (stearic acid, palmitic acid, myristic acid, and lauric acid) | 100–120 °C, 5–30 min | Reduced time of the reaction and lower reaction temperatures | [19] |
Fructose | 5-HMF | Ionic liquids | 155 °C, 3 min at 240 W, 1 min at 400 W | The yield of 5-HMF up to 98% (microwave) vs. 80% (thermal). Decrease of the reaction time from 5 min to 1 min (microwave vs. thermal). | [24] |
Cellulose | 5-HMF | Ionic liquids | 2 min | The yield of 5-HMF was 62% in 2 min using ionic liquids as the reaction medium | [35,36] |
Fructose, glucose, cellulose | 5-HMF | Zr(O)Cl2/CrCl3 | 300 W, 120 °C, 5 min | The yield of 5-HMF up to 84% and 66% from fructose and glucose | [37,38] |
Cellulose | 5-HMF | ScCl3 in 1-butyl-3-methylimidazolium chloride | 2 min, 400 W | Microwave irradiation not only reduced reaction time from hours to minutes, but also improved the 5-HMF yield up to over 73% compared to the thermal heating | [39] |
Glucose and cellulose | 5-HMF | CrCl3 or ZrCl4 | 400 W, 2–3.5 min | The yields are 60% and 93% for cellulose and glucose under microwave conditions compared to thermal conditions (about 12%) | [41,42] |
Synthesis of fructose and furfural derivatives | |||||
D-glucose | D-fructose | Hierarchical BEA zeotypes | 75 W, 75 °C, 0–2 min | TOF values increased by about 30% in microwave conditions compared to thermal mode | [20] |
Xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob | Furfural | Tin-loaded montmorillonite | 600 W, 100 °C, 3 min | The furfural yield (76.79%) and selectivity (82.45%) | [21] |
Xylan, D-xylose and D-lyxose | Furfural and other products | Heterogeneous molybdate catalyst | 200–300 W, 10 s–10 min | The reaction time under microwave irradiation was reduced 400 times in comparison with the thermal process (from 25 h to 10 s to 5 min) | [22] |
Synthesis of glucose | |||||
Polysaccharides | Glucose | Polyoxometalates as catalysts | 1 kW, 10 min, 120–220 °C. | The energy consumption in hydrolysis can be reduced by up to 23% using microwave activation | [23] |
Microcrystalline cellulose | Glucose | NaOH as a catalyst | 800 W, 20 min | The yield of 100%, the ratio of degraded solid residue was about 7 times higher in microwave compared to thermal regime | [32] |
Cellulose | Glucose | Without catalysts | 100–150 °C, 20–60 min | 55% yield of glucose | [26] |
Cellulose | Glucose or levulinic acid | H2SO4, NaOH, p-toluenesulfonic acid | 140 °C, 2 h, 950 W | The yields of glucose or levulinic acid were 50 and 69% | [25] |
Synthesis of levulinic acid and derivatives | |||||
Furfural | Levulinic acid | Hierarchical zeolites | 160–200 °C, 1 h | Yield of levulinic acid 42% at 90% furfural conversion | [27] |
Glucose, molasses and sucrose | Levulinic acid | ZnBr2-HCl | 6 min | Yield of levulinic acid from glucose was 53% | [28] |
Cellulose | Levulinic acid | SO3H-functionalized ionic liquids | 800 W, 160 °C 30 min | The yield 40–50% | [40] |
Polysaccharides | Methyl levulinate | Al2(SO4)3 | 160 °C, 45 min | The yield of methyl levulinate enhanced by the use of microwave heating was about 40% | [29] |
Carbohydrates | Methyl levulinate | Acid–base bifunctional hybrid zirconia–zeolite catalysts | 140–180 °C, 3 min | The yields of methyl levulinate from glucose, mannose and galactose, sucrose, starch and cellulose, respectively, were around 67–73%, 78%, 53% and 27% | [30] |
Cellulose | Levoglucosan | Without catalysts | 300 W, 200–280 °C, 3 min | Levoglucosan was formed with a high yield by the microwave-assisted conversion of cellulose at 260 °C, i.e., at a much lower temperature than the thermal process (T > 400 °C) | [31] |
Starch, sucrose, inulin, cellulose | Methyl levulinate | SnCl4/H2SO4 | 800 W, 180 ℃, 50 min | Yield up to 61.5% | [33] |
Synthesis of lactic acid and other products | |||||
Normal corn starch, high-amylose corn starch, and waxy corn starch | Lactic acid | Without catalysts | 5–15 min, 135–165 °C | Yields are 53–55% from waxy corn starch under the microwave irradiation at a shorter re-action time (0–5 min) was much higher compared to thermal heating | [34] |
Potato peel and sporocarps of the fungus Cortinarius armillatus | Lactic acid | H2SO4, CrCl3 or AlCl3 | 180 °C, 15 min | Lactic acid yield of 62% | [50] |
Cellulose | Cellulose esters | 4-(N,N-Dimethylamino)pyridine | 90–450 W, 1–3 min | Reduced reaction time (from 2–24 h to 1–3 min) | [48] |
Cellulose | Bio-oil | Without catalysts | 200–280 °C | Yield of bio-oil 45% | [31] |
Source | Product Yield | Microwave Conditions | Thermal Heating | Reference |
---|---|---|---|---|
Coffee hull pellets | Oil yield, wt. % | 9.80–13.57 | 7.90–9.19 | [60] |
Pine sawdust | H2 yield, vol. % CO2 yield, vol. % | 16–32 6–28 | 0–22 10–53 | [61] |
Wheat or corn straw | Synthesis gas, vol. % | Over 55% of the total gas volume | Less than 40% of the total gas volume | [63] |
3. Perspectives and Future Outlook
- The proper choice of the catalyst that should be both active/selective in the target conversion and capable of fast and controllable heating under microwave conditions by one of several possible mechanisms (dipolar polarization, conduction mechanism, interphase polarization, i.e., Maxwell–Wagner mechanism).
- The proper choice of the media for conducting the microwave-assisted transformation of a carbohydrate, this medium should be capable of: (1) dissolving the initial carbohydrate material and final product and (2) absorbing microwave irradiation so that fast heating and enhanced reaction kinetics may be realized, here ionic liquids are solvents of choice without any doubts.
- The proper choice of the reaction conditions to ensure the highest selectivity at the desired conversion and minimum energy consumption. There are many examples in the literature showing that too high impact microwave powers or improper use of active but poorly microwave-absorbing catalysts may eliminate the benefits of the microwave processing.
- The use of solid municipal wastes containing a large fraction of cellulose as a packaging material.
- The processing of a wide range of different natural carbohydrate wastes (lignocellulose, sugar bagasse, and agricultural wastes).
- Deep studies of the application of hybrid catalysts and hybrid nanomaterials for the microwave-assisted conversion of carbohydrate wastes, such hybrid materials are expected to provide a synergy of the properties of the components including unexpected responses to the microwave irradiation applied in the course of processing.
- Attempts to combine microwave activation with other engineering solutions such as the use of supercritical fluids (CO2, fluorocarbons, and water). An attempt to use such a combination has been made by Patil et al. who studied in-situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions [82].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jiang, Z.; Hu, C. Selective extraction and conversion of lignin in actual biomass to monophenols: A review. J. Energy Chem. 2016, 25, 947–956. [Google Scholar] [CrossRef]
- Roy, R.; Rahman, M.S.; Raynie, D.E. Recent advances of greener pretreatment technologies of lignocellulose. Curr. Res. Green Sustain. Chem. 2020, 3, 100035. [Google Scholar] [CrossRef]
- Sheldon, R.A. The Road to Biorenewables: Carbohydrates to Commodity Chemicals. ACS Sustain. Chem. Eng. 2018, 6, 4464–4480. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liang, Y.; Li, P.; He, C. Conversion of biomass lignin to high-value polyurethane: A review. J. Biores. Bioprod. 2020, 5, 163–179. [Google Scholar] [CrossRef]
- De Corato, U.; De Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renew. Sustain. Energy Rev. 2018, 88, 326–346. [Google Scholar] [CrossRef]
- Becker, J.; Wittmann, C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol. Adv. 2019, 37, 107360. [Google Scholar] [CrossRef]
- Fan, J.; Budarin, V.; Gronnow, M.J.; Clark, J.H. Low-Temperature Microwave Pyrolysis and Large Scale Microwave Applications. In Alternative Energy Sources for Green Chemistry; Stefanidis, G., Stankiewicz, A., Eds.; Royal Chemical Soiciety: London, UK, 2016; pp. 64–92. [Google Scholar]
- Kunwar, B.; Cheng, H.N.; Chandrashekaran, S.R.; Sharma, B.K. Plastics to fuel: A review. Renew. Sustain. Energy Rev. 2016, 54, 421–428. [Google Scholar] [CrossRef]
- Lam, S.S.; Chase, H.A. A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies 2012, 5, 4209–4232. [Google Scholar] [CrossRef]
- Undri, A.; Meini, S.; Rosi, L.; Frediani, M.; Frediani, P. Microwave Pyrolysis of Polymeric Materials: Waste Tires Treatment and Characterization of the Value-Added Products. J. Anal. Appl. Pyrolysis 2013, 103, 149–158. [Google Scholar] [CrossRef]
- Dutta, S.; De, S.; Patra, A.K.; Sasidharan, M.; Bhaumik, A.; Saha, B. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl. Catal. A Gen. 2011, 409–410, 133–139. [Google Scholar] [CrossRef]
- Dutta, A.; Patra, A.K.; Dutta, S.; Saha, B.; Bhaumik, A. Hierarchically porous titanium phosphatenanoparticles: An efficient solid acid catalyst for microwave assisted conversion of biomass and carbohydrates into 5-hydroxymethylfurfural. J. Mater. Chem. 2012, 22, 14094–14100. [Google Scholar] [CrossRef]
- Dutta, A.; Gupta, D.; Patra, A.K.; Saha, B.; Bhaumik, A. Synthesis of 5-hydroxymethylfurural from carbohydrates using large-pore mesoporous tin phosphate. ChemSusChem 2014, 7, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.B.; Sun, Y. Microwave-Assisted Production of 5-Hydroxymethylfurfural from Glucose. ChemistrySelect 2021, 6, 10582–10586. [Google Scholar] [CrossRef]
- Bhanja, P.; Sharma, S.K.; Chongdar, S.; Paul, B.; Bhaumik, A. Bifunctional crystalline microporous organic polymers: Efficient heterogeneous catalysts for the synthesis of 5-hydroxymethylfurfural. Mol. Catal. 2021, 515, 111877. [Google Scholar] [CrossRef]
- Bhanja, P.; Modak, A.; Chatterjee, S.; Bhaumik, A. Bifunctionalized Mesoporous SBA-15: A New Heterogeneous Catalyst for the Facile Synthesis of 5-Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2017, 5, 2763–2773. [Google Scholar] [CrossRef]
- Vasudevan, S.V.; Kong, X.; Cao, M.; Wang, M.; Mao, H.; Bu, Q. Microwave-assisted liquefaction of carbohydrates for 5-hydroxymethylfurfural using tungstophosphoric acid encapsulated dendritic fibrous mesoporous silica as a catalyst. Sci. Total Environ. 2021, 760, 143379. [Google Scholar] [CrossRef]
- Lucas-Torres, C.; Lorente, A.; Cabañas, B.; Moreno, A. Microwave heating for the catalytic conversion of melon rind waste into biofuel precursors. J. Clean. Prod. 2016, 138, 59–69. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Liu, J.; Liu, X.; Chang, F.; Liu, Y.; Yue, M.; Yang, S. Selective transformation of carbohydrates into HMF promoted by carboxylic acids modified ZrMo mixed oxides. Biomass Convers. Biorefinery 2014, 4, 59–66. [Google Scholar] [CrossRef]
- Antunes, M.M.; Falcão, D.; Fernandes, A.; Ribeiro, F.; Pillinger, M.; Rocha, J.; Valente, A.A. Catalytic isomerization of D-glucose to D-fructose over BEA base zeotypes using different energy supply methods. Catal. Today 2021, 362, 162–174. [Google Scholar] [CrossRef]
- Li, H.; Ren, J.; Zhong, L.; Sun, R.; Liang, L. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Bioresour. Technol. 2015, 176, 242–248. [Google Scholar] [CrossRef]
- Hricovíniová, Z. Xylans are a valuable alternative resource: Production of d-xylose, d-lyxose and furfural under microwave irradiation. Carbohydr. Polym. 2013, 98, 1416–1421. [Google Scholar] [CrossRef]
- Tsubaki, S.; Oono, K.; Ueda, T.; Onda, A.; Yanagisawa, K.; Mitani, T.; Azuma, J. Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters. Bioresour. Technol. 2013, 144, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, Z.K.; Cai, H.; Wang, A.; Zhang, T. Microwave-promoted conversion of concentrated fructose into 5-hydroxymethylfurfural in ionic liquids in the absence of catalysts. Biomass Bioenergy 2011, 35, 2013–2017. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Aminlashgari, M.; Hakkarainen, M. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals. Carbohydr. Polym. 2014, 112, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Shaveta, S.; Bansal, N.; Singh, P. F−/Cl− mediated microwave assisted breakdown of cellulose to glucose. Tetrahedron Lett. 2014, 55, 2467–2470. [Google Scholar] [CrossRef]
- Velaga, B.; Peela, N.R. Novel One-Step Process for the Production of Levulinic Acid from Furfural over Hierarchical Zeolites in a Microwave Reactor. Adv. Sustain. Syst. 2021, 5, 2000205. [Google Scholar] [CrossRef]
- Kumar, V.B.; Pulidindi, I.N.; Gedanken, A. Synergistic catalytic effect of the ZnBr2-HCl system for levulinic acid production using microwave irradiation. RSC Adv. 2015, 5, 11043–11048. [Google Scholar] [CrossRef]
- Rincón, E.; Zuliani, A.; Jiménez-Quero, A.; Vilaplana, F.; Luque, R.; Serrano, L.; Balu, A.M. Combined Extraction/Purification-Catalytic Microwave-Assisted Conversion of Laurus nobilis L. Pruning Waste Polysaccharides into Methyl Levulinate. ACS Sustain. Chem. Eng. 2020, 8, 11016–11023. [Google Scholar] [CrossRef]
- Li, H.; Fang, Z.; Luo, J.; Yang, S. Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl. Catal. B Environ. 2017, 200, 182–191. [Google Scholar] [CrossRef]
- Al Shra’ah, A.; Helleur, R. Microwave pyrolysis of cellulose at low temperature. J. Anal. Appl. Pyrolysis 2014, 105, 91–99. [Google Scholar] [CrossRef]
- Peng, H.; Chen, H.; Qu, Y.; Hongqiang, L. Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH. Appl. Energy 2014, 117, 142–148. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, T.; Liu, A.; Zhou, X.; Pan, H. Microwave-assisted alcoholysis of cellulose to methyl levulinate catalyzed by SnCl4/H2SO4. Chin. J. Org. Chem. 2016, 36, 1438–1443. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Dumont, M.J. Levulinic Acid Production from Starch Using Microwave and Oil Bath Heating: A Kinetic Modeling Approach. Ind. Eng. Chem. Res. 2016, 55, 8941–8949. [Google Scholar] [CrossRef]
- Joglekar, H.G.; Rahman, I.; Kulkarni, B.D. The Path Ahead for Ionic Liquids. Chem. Eng. Technol. 2007, 30, 819–828. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.I.; De, S.; Dutta, S.; Saha, B. Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel. RSC Adv. 2012, 2, 6890–6896. [Google Scholar] [CrossRef]
- Saha, B.; De, S.; Fan, M. Zr(O)Cl2 catalyst for selective conversion of biorenewable carbohydrates and biopolymers to biofuel precursor 5-hydroxymethylfurfural in aqueous medium. Fuel 2013, 111, 598–605. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Liu, B.; Xu, Z.; Deng, K. Microwave-assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural by ScCl3 in ionic liquids. Carbohydr. Res. 2013, 375, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhou, Y.; Liu, L. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour. Technol. 2013, 129, 616–619. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Zhao, Z.K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett. 2009, 50, 5403–5405. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Z.; Zhao, Z.K. Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids. Chem. Eng. J. 2013, 215–216, 517–521. [Google Scholar]
- Hernoux-Villière, A.; Lévêque, J.-M.; Kärkkäinen, J.; Papaiconomou, N.; Lajunen, M.; Lassi, U. Task-specific ionic liquid for the depolymerisation of starch-based industrial waste into high reducing sugars. Catal. Today 2014, 223, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Hernoux-Villière, A.; Lassi, U.; Hu, T.; Paquet, A.; Rinaldi, L.; Cravotto, G.; Molina-Boisseau, S.; Marais, M.-F.; Léveîque, J.-M. Simultaneous microwave/ultrasound-assisted hydrolysis of starch-based industrial waste into reducing sugars. ACS Sustain. Chem. Eng. 2013, 1, 995–1002. [Google Scholar] [CrossRef]
- Ninomiya, K.; Yamauchi, T.; Ogino, C.; Shimizu, N.; Takahashi, K. Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification. Biochem. Eng. J. 2014, 90, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Watanabe, M.; Aida, T.M.; Smith, J.R.L. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem. 2008, 10, 799–805. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Yu, Z.; Zhang, X.; Li, H.; Gao, M. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour. Technol. 2006, 97, 1964–1968. [Google Scholar] [CrossRef]
- Ratanakamnuan, U.; Atong, D.; Aht-Ong, D. Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohydr. Polym. 2012, 87, 84–94. [Google Scholar] [CrossRef]
- Durange, J.A.C.; De Souza, M.O.; Santos, M.R.L.; Nele, M.; Caramao, E.B.; Carvalho, N.M.F.; Pereira, M.M. Valorization of sugar cane bagasse and jatropha curcas cake: Production of a biocrude by acetylation reaction under microwave radiation. Energy Fuels 2015, 29, 917–921. [Google Scholar] [CrossRef]
- Lee, X.J.; Ong, H.C.; Gan, Y.Y.; Chen, W.-H.; Mahlia, T.M.I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 2020, 210, 112707. [Google Scholar] [CrossRef]
- Russo, P.A.; Lima, S.; Rebuttini, V.; Pillinger, M.; Willinger, M.-G.; Pinna, N.; Valente, A.A. Microwave-assisted coating of carbon nanostructures with titanium dioxide for the catalytic dehydration of d-xylose into furfural. RSC Adv. 2013, 3, 2595–2603. [Google Scholar] [CrossRef]
- Parameswaram, G.; Roy, S. A novel microwave-assisted hydrothermal route for the synthesis of ZnxTPA/γ-Al2O3 for conversion of carbohydrates into 5-hydroxymethylfurfural. RSC Adv. 2018, 8, 28461–28471. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Lei, H.; Zhang, Y.; Qian, K.; Villota, E.; Qian, M.; Yadavalli, G.; Sun, H. Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons. Appl. Energy 2018, 220, 426–436. [Google Scholar] [CrossRef]
- Mondelli, C.; Gozaydın, G.; Yan, N.; Perez-Ramirez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 2020, 49, 3764–3782. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Dutta, S.; Saha, B. Critical design of heterogeneous catalysts for biomass valorization: Current thrust and emerging prospects. Catal. Sci. Technol. 2016, 6, 7364–7385. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [Green Version]
- Yunpu, W.; Leilei, D.; Liangliang, F.; Shaoqi, S.; Yuhuan, L.; Roger, R. Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J. Anal. Appl. Pyrolysis 2016, 119, 104–113. [Google Scholar] [CrossRef]
- Morgan, H.M.; Bu, Q.; Liang, J.; Liu, Y.; Mao, H.; Shi, A.; Lei, H.; Ruan, R. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour. Technol. 2017, 230, 112–121. [Google Scholar] [CrossRef]
- Mushtaq, F.; Mat, R.; Nasir Ani, F. A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew. Sustain. Energy Rev. 2014, 39, 555–574. [Google Scholar] [CrossRef]
- Domínguez, A.; Menéndez, J.A.; Fernández, Y.; Pis, J.J.; Nabais, J.M.V.; Carrott, P.J.M.; Carrott, M.M.L.R. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. J. Anal. Appl. Pyrolysis 2007, 79, 128–135. [Google Scholar] [CrossRef]
- Wang, X.-H.; Chen, H.-P.; Ding, X.-J.; Yang, H.-P.; Zhang, S.-H.; Shen, Y.-Q. Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources 2009, 4, 946–959. [Google Scholar]
- Fernández, Y.; Menéndez, J.A. Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes. J. Anal. Appl. Pyrolysis 2011, 91, 316–322. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Song, Z.; Liu, H.; Li, L.; Ma, C. Microwave pyrolysis of straw bale and energy balance analysis. J. Anal. Appl. Pyrolysis 2011, 92, 43–49. [Google Scholar] [CrossRef]
- Luque, R.; Menendez, J.A.; Arenillas, A.; Cot, J. Microwave-assisted pyrolysis of biomass feedstocks: The way forward? Energy Environ. Sci. 2012, 5, 5481. [Google Scholar] [CrossRef]
- Miura, M.; Kaga, H.; Sakurai, A.; Kakuchi, T.; Takahashi, K. Rapid pyrolysis of wood block by microwave heating. J. Anal. Appl. Pyrolysis 2004, 71, 187–199. [Google Scholar] [CrossRef]
- Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Breeden, S.W.; Wilson, A.J.; Macquarrie, D.J.; Milkowski, K.; Jones, J.; Bridgeman, T.; et al. The preparation of high-grade bio-oils through the controlled, low-temperature microwave activation of wheat straw. Bioresour. Technol. 2009, 100, 6064–6068. [Google Scholar] [CrossRef]
- Wu, C.; Budarin, V.L.; Gronnow, M.J.; De Bruyn, M.; Onwudili, J.A.; Clark, J.H.; Williams, P.T. Conventional and microwave-assisted pyrolysis of biomass under different heating rates. J. Anal. Appl. Pyrolysis 2014, 107, 276–283. [Google Scholar] [CrossRef]
- Cha, C.Y.; Kim, B.I. Electromagnetic enhancement of chemical reactions (devolatilization of char and coal). Fuel Sci. Technol. Int. 1993, 11, 1175–1202. [Google Scholar] [CrossRef]
- Borges, F.C.; Du, Z.; Xie, Q.; Trierweiler, J.O.; Cheng, Y.; Wan, Y.; Liu, Y.; Zhu, R.; Lin, X.; Chen, P.; et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour. Technol. 2014, 156, 267–274. [Google Scholar] [CrossRef]
- Cha, C.Y.; Kim, B.I.; Lumpkin, R.E.; Quinga, E.M. Reaction rate of microwave pyrolysis of coal in char bed. Fuel Sci. Technol. Int. 1993, 11, 1269–1287. [Google Scholar] [CrossRef]
- Wang, X.; Morrison, W.; Du, Z.; Wan, Y.; Lin, X.; Chen, P.; Ruan, R. Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition. Appl. Energy 2012, 99, 386–392. [Google Scholar] [CrossRef]
- Liu, Q.; Xia, H. The effect of additive on temperature rising characteristics during coal pyrolysis in microwave field. Adv. Mater. Res. 2012, 512, 1790–1794. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renew. Sustain. Energy Rev. 2000, 4, 1–73. [Google Scholar] [CrossRef]
- Vamvuka, D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview. Int. J. Energy Res. 2011, 35, 835–862. [Google Scholar] [CrossRef]
- Kuan, W.-H.; Huang, Y.-F.; Chang, C.-C.; Lo, S.-L. Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresour. Technol. 2013, 146, 324–329. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Kuan, W.-H.; Chang, C.-C.; Tzou, Y.-M. Catalytic and atmospheric effects on microwave pyrolysis of cornstover. Bioresour. Technol. 2013, 131, 274–280. [Google Scholar] [CrossRef]
- Chao, C.Y.; Kwong, P.C.; Wang, J.; Cheung, C.; Kendall, G. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Bioresour. Technol. 2008, 99, 83–93. [Google Scholar] [CrossRef]
- Hein, K.R.G.; Bemtgen, J.M. EU clean coal technology—Co-combustion of coal and biomass. Fuel Process. Technol. 1998, 54, 159–169. [Google Scholar] [CrossRef]
- Cao, M.; Sun, S.; Long, C.; Luo, J.; Zou, H.; Wu, D. New bi-functionalized ordered mesoporous material as heterogeneous catalyst for production of 5-hydroxymethylfurfural. Microporous Mesoporous Mater. 2021, 312, 110709. [Google Scholar] [CrossRef]
- Xie, Q.; Cabral Borges, F.; Cheng, Y.; Wana, Y.; Li, Y.; Lin, X.; Liu, Y.; Hussain, F.; Chen, P.; Ruan, R. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal. Bioresour. Technol. 2014, 156, 291–296. [Google Scholar] [CrossRef]
- Lina, Q.; Chena, G.; Liu, Y. Scale-up of microwave heating process for the production of bio-oil from sewage sludge. J. Anal. Appl. Pyrolysis 2012, 94, 114–119. [Google Scholar] [CrossRef]
- Patil, P.D.; Reddy, H.; Muppaneni, T.; Schaub, T.; Holguin, O.; Cooke, P.; Lammers, P.; Nirmalakhandan, N.; Li, Y.; Lu, X.; et al. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresour. Technol. 2013, 139, 308–315. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kustov, L.M.; Kustov, A.L.; Salmi, T. Microwave-Assisted Conversion of Carbohydrates. Molecules 2022, 27, 1472. https://doi.org/10.3390/molecules27051472
Kustov LM, Kustov AL, Salmi T. Microwave-Assisted Conversion of Carbohydrates. Molecules. 2022; 27(5):1472. https://doi.org/10.3390/molecules27051472
Chicago/Turabian StyleKustov, Leonid M., Alexander L. Kustov, and Tapio Salmi. 2022. "Microwave-Assisted Conversion of Carbohydrates" Molecules 27, no. 5: 1472. https://doi.org/10.3390/molecules27051472
APA StyleKustov, L. M., Kustov, A. L., & Salmi, T. (2022). Microwave-Assisted Conversion of Carbohydrates. Molecules, 27(5), 1472. https://doi.org/10.3390/molecules27051472