Development and Validation of Multi-Residue Method for Drugs Analysis in Human Feces by Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Optimization of the LC–MS/MS Method
2.2. Method Validation
2.3. Application in Feces Samples
3. Materials and Methods
3.1. Chemicals, Reagents, and Stock Solutions
3.2. Preparation of Standard Solutions
3.3. Equipment
3.4. Feces Samples
3.5. LC–MS/MS Conditions
3.6. Extraction Method Optimization
3.7. Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pavlov, A.L.; Lashev, L.; Vachin, I.; Rusev, V. Residues of antimicrobial drugs in chicken meat and offals. Trakia J. Sci. 2008, 6, 23–25. [Google Scholar]
- Commission Reglulation (EU) 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Commun. 2010, L15, 1–72.
- Commission Regulation (EC) No 124/2009 of 10 February 2009 setting maximum levels for the presence of coccidiostats or histomonostats in food resulting from the unavoidable carry-over of these substances in non-target feed. Off. J. Eur. Commun. 2009, L40, 7–11.
- European Commission. Establishment of Maximum Residue Limits (MRLs) for Residues of Veterinary Medicinalproducts in Foodstuffs of Animal Origin. Volume 8, Notice to Applicants and Note for Guidance. 2001. Available online: http://www.it-asso.com/gxp/eudralex_v27/contents/vol-8/pdf/vol8_10-2005_.pdf (accessed on 20 December 2021).
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic Use in Plant Agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Cropp, R.A.; Hawker, D.W.; Boonsaner, M. Predicting the Accumulation of Organic Contaminants from Soil by Plants. Bull. Environ. Contam. Toxicol. 2010, 85, 525–529. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Álvarez-Esmorís, C.; Paradelo-Núñez, R.; Nóvoa-Muñóz, J.C.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.; Núñez-Delgado, A. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J. Clean. Prod. 2018, 197, 491–500. [Google Scholar] [CrossRef]
- King, L.D.; Safley, L.M.; Spears, J.W. A greenhouse study on the response of corn (Zea mays L.) to manure from beef cattle fed antibiotics. Agr. Wastes 1983, 8, 185–190. [Google Scholar] [CrossRef]
- Boleda, M.R.; Alechaga, E.; Moyano, E.; Galceran, M.T.; Ventura, F. Survey of the occurrence of pharmaceuticals in Spanish finished drinking waters. Environ. Sci. Pollut. Res. 2014, 21, 10917–10939. [Google Scholar] [CrossRef]
- Veiga-Gómez, M.; Nebot, C.; Falqué, E.; Pérez, B.; Franco, C.M.; Cepeda, A. Determination of pharmaceuticals and heavy metals in groundwater for human and animal consumption and crop irrigation in Galicia. Food Addit. Contam. Part A 2021, 38, 2055–2076. [Google Scholar] [CrossRef]
- Iglesias, A.; Nebot, C.; Miranda, J.; Vazquez, B.; Cepeda, A. Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tandem mass spectrometry. Environ. Sci. Pollut. Res. 2012, 19, 3235–3249. [Google Scholar] [CrossRef]
- Franquet-Griell, H.; Gómez-Canela, C.; Ventura, F.; Lacorte, S. Anticancer drugs: Consumption trends in Spain, prediction of environmental concentrations and potential risks. Environ. Pollut. 2017, 229, 505–515. [Google Scholar] [CrossRef]
- Fernández-Rubio, J.; Rodríguez-Gil, J.L.; Postigo, C.; Mastroianni, N.; López de Alda, M.; Barceló, D.; Valcárcel, Y. Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment. Chemosphere 2019, 224, 379–389. [Google Scholar] [CrossRef]
- Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020, 144, 106004. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef]
- Estévez, E.; Cabrera, M.C.; Molina-Díaz, A.; Robles-Molina, J.; Palacios-Díaz, M.P. Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Sci. Total Environ. 2012, 433, 538–546. [Google Scholar] [CrossRef]
- Teijon, G.; Candela, L.; Tamoh, K.; Molina-Díaz, A.; Fernández-Alba, A.R. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci. Total Environ. 2010, 408, 3584–3595. [Google Scholar] [CrossRef]
- Bexfield, L.M.; Toccalino, P.L.; Belitz, K.; Foreman, W.T.; Furlong, E.T. Hormones and Pharmaceuticals in Groundwater Used as a Source of Drinking Water Across the United States. Environ. Sci. Technol. 2019, 53, 2950–2960. [Google Scholar] [CrossRef] [Green Version]
- Servos, M.R.; Smith, M.; McInnis, R.; Burnison, B.K.; Lee, B.-H.; Seto, P.; Backus, S. The Presence of Selected Pharmaceuticals and the Antimicrobial Triclosan in Drinking Water in Ontario, Canada. Water Qual. Res. J. 2007, 42, 130–137. [Google Scholar] [CrossRef]
- Boleda, M.R.; Galceran, M.T.; Ventura, F. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ. Pollut. 2011, 159, 1584–1591. [Google Scholar] [CrossRef]
- Pojana, G.; Fantinati, A.; Marcomini, A. Occurrence of environmentally relevant pharmaceuticals in Italian drinking water treatment plants. Int. J. Environ. Anal. Chem. 2011, 91, 537–552. [Google Scholar] [CrossRef]
- de Jesus Gaffney, V.; Almeida, C.M.M.; Rodrigues, A.; Ferreira, E.; Benoliel, M.J.; Cardoso, V.V. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 2015, 72, 199–208. [Google Scholar] [CrossRef]
- Praveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Sze Yee, W.; Aris, A.Z. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicol. Environ. Saf. 2019, 180, 549–556. [Google Scholar] [CrossRef]
- Jiang, X.; Qu, Y.; Zhong, M.; Li, W.; Huang, J.; Yang, H.; Yu, G. Seasonal and spatial variations of pharmaceuticals and personal care products occurrence and human health risk in drinking water—A case study of China. Sci. Total Environ. 2019, 694, 133711. [Google Scholar] [CrossRef]
- Roca-Saavedra, P.; Mendez-Vilabrille, V.; Miranda, J.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.; Cepeda, A. Food additives, contaminants and other minor components: Effects on human gut microbiota-a review. J. Physiol. Biochem. 2018, 74, 69–83. [Google Scholar] [CrossRef]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of Antibiotics on Gut Microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, S.; Zeng, Z.; Fu, Z. Effects of environmental pollutants on gut microbiota. Environ. Pollut. 2017, 222, 1–9. [Google Scholar] [CrossRef]
- Qian, M.; Wang, J.; Ji, X.; Yang, H.; Tang, B.; Zhang, H.; Yang, G.; Bao, Z.; Jin, Y. Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio). Ecotoxicol. Environ. Saf. 2011, 221, 112464. [Google Scholar] [CrossRef]
- Jackson, M.A.; Goodrich, J.K.; Maxan, M.E.; Freedberg, D.E.; Abrams, J.A.; Poole, A.C.; Sutter, J.L.; Welter, D.; Ley, R.E.; Bell, J.T.; et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 2016, 65, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Duan, Y.-J.; Wang, S.-P.; Wang, L.-T.; Hou, Z.-L.; Cui, Y.-X.; Hou, J.; Das, R.; Mao, D.-Q.; Luo, Y. Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population. J. Hazard. Mater. 2020, 383, 121129. [Google Scholar] [CrossRef]
- Patyra, E.; Nebot, C.; Gavilán, R.E.; Cepeda, A.; Kwiatek, K. Development and validation of multi-residue and multi-class method for antibacterial substances analysis in non-target feed by liquid chromatography–tandem mass spectrometry. Food Addit. Contam. Part A 2018, 35, 467–478. [Google Scholar] [CrossRef]
- Čizmić, M.; Babic, S.; Kaštelan-Macan, M. Multi-class determination of pharmaceuticals in wastewaters by solid-phase extraction and liquid chromatography tandem mass spectrometry with matrix effect study. Environ. Sci. Pollut. Res. 2017, 24, 20521–20539. [Google Scholar] [CrossRef] [PubMed]
- Nebot, C.; Iglesias, A.; Regal, P.; Miranda, J.; Cepeda, A.; Fente, C. Development of a multi-class method for the identification and quantification of residues of antibiotics, coccidiostats and corticosteroids in milk by liquid chromatography–tandem mass spectrometry. Int. Dairy J. 2012, 22, 78–85. [Google Scholar] [CrossRef]
- Pailler, J.-Y.; Krein, A.; Pfister, L.; Hoffmann, L.; Guignard, C. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Sci. Total Environ. 2009, 407, 4736–4743. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, H.; Zhou, X.; Li, K.; Wu, W.; Guo, M. Occurrence and risk assessment of antibiotics in the Xi’an section of the Weihe River, northwestern China. Mar. Pollut. Bull. 2019, 146, 794–800. [Google Scholar] [CrossRef]
- Jank, L.; Martins, M.T.; Arsand, J.B.; Ferrão, M.; Hoff, R.; Barreto, F.; Pizzolato, T.M. An LC–ESI–MS/MS method for residues of fluoroquinolones, sulfonamides, tetracyclines and trimethoprim in feedingstuffs: Validation and surveillance. Food Addit. Contam. Part A 2018, 35, 1975–1989. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, Y.; Zheng, J.; Zhang, Y.; Yang, L.; Liao, C.; Su, L.; Zhou, Y.; Gong, D.; Chen, L.; et al. The application of the QuEChERS methodology in the determination of antibiotics in food: A review. TrAC Trends Anal. Chem. 2019, 118, 517–537. [Google Scholar] [CrossRef]
- European Commission. Commission implementing Regulation (EU) 2021/808 of 22 March 2021 on the performnce of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC setting maximum levels for the presence of coccidiostats or histomonostats in food resulting from the unavoidable carry-over of these substances in non-target feed. Off. J. Eur. Commun. 2021, L180, 84–109. [Google Scholar]
- Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Low-dosage antibiotic intake can disturb gut microbiota in mice. CyTA-J. Food 2018, 16, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
Compound | Therapeutic Groups | CAS | MW | Formula |
---|---|---|---|---|
Mefenamic Acid | Anti-inflammatory | 61-68-7 | 241.28 | C15H15NO2 |
Ciprofloxacin | Antibiotic | 85721-33-1 | 331.34 | C17H18FN3O3 |
Clarithromycin | Antibiotic | 81103-11-9 | 747.96 | C38H69NO13 |
Chlortetracycline | Antibiotic | 57-62-5 | 478.88 | C22H23ClN2O8 |
Danofloxacin | Antibiotic | 112398-08-0 | 357.38 | C19H20FN3O3 |
Diclofenac | Anti-inflammatory | 15307-86-5 | 296.15 | C14H11Cl2NO2 |
Doxycycline | Antibiotic | 564-25-0 | 444.44 | C22H24N2O8 |
Levofloxacin | Antibiotic | 100986-85-4 | 361.37 | C18H20FN3O4 |
Lincomycin | Antibiotic | 154-21-2 | 406.54 | C18H34N2O6S |
Norfloxacin | Antibiotic | 70458-96-7 | 319.33 | C16H18FN3O3 |
Oxytetracycline | Antibiotic | 79-57-2 | 460.44 | C22H24N2O9 |
Sarafloxacin | Antibiotic | 98105-99-8 | 385.36 | C20H17F2N3O3 |
Sulfachloropyridazine | Antibiotic | 80-32-0 | 284.73 | C10H9Cl-NO2S |
Sulfadiazine | Antibiotic | 68-35-9 | 250.28 | C10H10N4O2S |
Sulfadimethoxine | Antibiotic | 122-11-2 | 310.33 | C12H14N4O4S |
Sulfamerazine | Antibiotic | 127-79-7 | 264.31 | C11H12N4O2S |
Sulfamethazine | Antibiotic | 57-68-1 | 278.33 | C12H14N4O2S |
Sulfamethoxazole | Antibiotic | 723-46-6 | 253.28 | C10H11N3O3S |
Sulfamethoxypyridazine | Antibiotic | 80-35-3 | 280.3 | C11H12N4O3S |
Sulfapyridine | Antibiotic | 144.83-2 | 249.29 | C11H11N3O2S |
Sulfaquinoxaline | Antibiotic | 59-40-5 | 300.34 | C14H12N4O2S |
Sulfathiazole | Antibiotic | 72-14-0 | 255.32 | C9H9N3O2S2 |
Tetracycline | Antibiotic | 60-54-8 | 444.43 | C22H24N2O8 |
Trimethoprim | Antibiotic | 738-70-5 | 290.32 | C14H18N4O3 |
Compound | tR (min) | MRM 1 | MRM 2 |
---|---|---|---|
Mefenamic Acid | 6.6 | 242 > 223 | 242 > 209 |
Ciprofloxacin | 3.8 | 332 > 314 | 332 > 231 |
Clarithromycin | 5.5 | 749 > 116 | 749 > 158 |
Chlortetracycline | 4.3 | 479 > 462 | 479 > 444 |
Danofloxacin | 3.9 | 358 > 340 | 358 > 255 |
Diclofenac | 6.2 | 296 > 215 | 296 > 151 |
Doxycycline | 4.4 | 445 > 428 | 445 > 154 |
Levofloxacin | 3.9 | 362 > 261 | 362 > 179 |
Lincomycin | 3.6 | 407 > 126 | 407 > 359 |
Norfloxacin | 3.8 | 320 > 302 | 320 > 276 |
Oxytetracycline | 3.9 | 461 > 443 | 461 > 426 |
Sarafloxacin | 4.2 | 400 > 299 | 400 > 382 |
Sulfachloropyridazine | 4.5 | 285 > 156 | 185 > 108 |
Sulfadiazine | 3.9 | 251 > 156 | 251 > 108 |
Sulfadimethoxine | 4.9 | 311 > 156 | 311 > 108 |
Sulfamerazine | 4.1 | 265 > 172 | 265 > 156 |
Sulfamethazine | 4.3 | 279 > 156 | 279 > 186 |
Sulfamethoxazole | 4.6 | 254 > 92 | 254 > 156 |
Sulfamethoxypyridazine | 4.2 | 281 > 156 | 281 > 92 |
Sulfapyridine | 4.0 | 250 > 156 | 250 > 92 |
Sulfaquinoxaline | 4.9 | 301 > 92 | 301 > 156 |
Sulfathiazole | 3.9 | 256 > 156 | 256 > 92 |
Tetracycline | 4.0 | 445 > 427 | 445 > 410 |
Trimethoprim | 3.9 | 291 > 230 | 291 > 123 |
Compound | R2 | LOQ (ng/g) | Trueness (%) | (Conc) * (ng/g) | RSDr (%) | RSDR (%) | Mean Matrix Factor | Matrix Fractor RSD |
---|---|---|---|---|---|---|---|---|
Mefenamic Acid | 0.995 | 10 | 109 | 50 | 4.17 | 3.82 | 1.60 | 19.58 |
Ciprofloxacin | 0.995 | 50 | 89 | 50 | 3.11 | 5.74 | 0.91 | 5.74 |
Clarithromycin | 0.959 | 25 | 96 | 50 | 8.02 | 14.24 | 0.87 | 10.23 |
Chlortetracycline | 0.994 | 100 | 113 | 100 | 9.6 | 15.60 | 0.77 | 16.90 |
Danofloxacin | 0.999 | 25 | 116 | 50 | 3.63 | 10.82 | 1.24 | 9.87 |
Diclofenac | 0.995 | 10 | 118 | 50 | 3.55 | 4.50 | 1.76 | 19.00 |
Doxycycline | 0.997 | 25 | 118 | 100 | 4.04 | 3.55 | 0.87 | 16.76 |
Levofloxacin | 0.999 | 25 | 116 | 50 | 4.54 | 3.03 | 0.83 | 20.13 |
Lincomycin | 0.990 | 25 | 91 | 50 | 1.17 | 1.36 | 1.40 | 17.24 |
Norfloxacin | 0.998 | 25 | 104 | 250 | 5.80 | 19.87 | 0.83 | 18.00 |
Oxytetracycline | 0.992 | 10 | 112 | 100 | 7.79 | 6.36 | 0.77 | 19.51 |
Sarafloxacin | 0.999 | 25 | 115 | 25 | 1.74 | 3.40 | 0.89 | 14.68 |
Sulfachloropyridazine | 0.998 | 10 | 117 | 50 | 1.58 | 2.14 | 1.01 | 16.52 |
Sulfadiazine | 0.995 | 250 | 93 | 250 | 10.99 | 19.20 | 0.72 | 96.16 |
Sulfadimethoxine | 0.999 | 10 | 82 | 50 | 6.49 | 2.45 | 0.99 | 19.54 |
Sulfamerazine | 0.999 | 25 | 110 | 50 | 0.89 | 1.89 | 0.10 | 7.40 |
Sulfamethazine | 0.999 | 10 | 118 | 50 | 1.85 | 2.56 | 1.00 | 12.83 |
Sulfamethoxazole | 0.977 | 10 | 111 | 25 | 5.78 | 3.50 | 1.02 | 13.19 |
Sulfamethoxypyridazine | 0.999 | 10 | 108 | 50 | 3.28 | 3.42 | 1.02 | 14.47 |
Sulfapyridine | 0.999 | 25 | 118 | 50 | 1.93 | 3.06 | 1.05 | 10.11 |
Sulfaquinoxaline | 0.999 | 25 | 110 | 25 | 6.71 | 6.87 | 0.95 | 17.61 |
Sulfathiazole | 0.999 | 25 | 110 | 50 | 1.23 | 3.96 | 1.27 | 19.40 |
Tetracycline | 0.995 | 100 | 100 | 25 | 3.44 | 10.21 | 0.98 | 17.09 |
Trimethoprim | 1000 | 10 | 118 | 50 | 2.11 | 2.67 | 1.08 | 11.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Míguez-Suárez, G.; Cardelle-Cobas, A.; Sinisterra-Loaiza, L.; Vázquez, B.; Cepeda, A.; Nebot, C. Development and Validation of Multi-Residue Method for Drugs Analysis in Human Feces by Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2022, 27, 1474. https://doi.org/10.3390/molecules27051474
Míguez-Suárez G, Cardelle-Cobas A, Sinisterra-Loaiza L, Vázquez B, Cepeda A, Nebot C. Development and Validation of Multi-Residue Method for Drugs Analysis in Human Feces by Liquid Chromatography–Tandem Mass Spectrometry. Molecules. 2022; 27(5):1474. https://doi.org/10.3390/molecules27051474
Chicago/Turabian StyleMíguez-Suárez, Gabriel, Alejandra Cardelle-Cobas, Laura Sinisterra-Loaiza, Beatriz Vázquez, Alberto Cepeda, and Carolina Nebot. 2022. "Development and Validation of Multi-Residue Method for Drugs Analysis in Human Feces by Liquid Chromatography–Tandem Mass Spectrometry" Molecules 27, no. 5: 1474. https://doi.org/10.3390/molecules27051474
APA StyleMíguez-Suárez, G., Cardelle-Cobas, A., Sinisterra-Loaiza, L., Vázquez, B., Cepeda, A., & Nebot, C. (2022). Development and Validation of Multi-Residue Method for Drugs Analysis in Human Feces by Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 27(5), 1474. https://doi.org/10.3390/molecules27051474