Structural Characterization and Assessment of Anti-Inflammatory Activities of Polyphenols and Depsidone Derivatives from Melastoma malabathricum subsp. normale
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Anti-Inflammatory Activity Assays
3. Experimental
3.1. Materials
3.2. General Experimental Procedures
3.3. Extraction and Separation
3.4. Spectroscopic Data
3.5. Acid-Catalyzed Degradation of 1
3.6. Methylation of 1
3.7. Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Editorial Committee of the Flora of China of Chinese Academy of Sciences. Flora Reipublicae Popularis Sinicae, 1st ed.; Science Press: Beijing, China, 1984; Volume 53, pp. 154–155. [Google Scholar]
- Yao, L.L.; Liu, X.Y. Advances on investigation of chemical constituents, pharmacological activities and clinical applications of Melastoma. J. Jiangxi Univ. Tradit. Chin. Med. 2010, 22, 52–55. [Google Scholar]
- Zheng, W.J.; Ren, Y.S.; Wu, M.L.; Yang, Y.L.; Fan, Y.; Piao, X.H.; Ge, Y.W.; Wang, S.M. A review of the traditional uses, phytochemistry and biological activities of the melastoma genus. J. Ethnopharmacol. 2020, 264, 113322. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.X.; Zhang, R.Z.; Lou, B.; Cheng, K.J.; Xiong, J.; Hu, J.F. Chemical constituents from Melastoma dodecandrum and their inhibitory activity on interleukin-8 production in HT-29 cells. Nat. Prod. Res. 2014, 28, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.D.; Cheng, A.F.; Li, X.L. Study on the extraction and agglutination of lectin from Melastoma dodecandrum Lour. Heilongjiang Agric. Sci. 2015, 68, 7654–7658. [Google Scholar]
- Khoo, L.T.; Abdullah, J.O.; Abas, F.; Tohit, M.E.R.; Hamid, M. Bioassay-guided fractionation of Melastoma malabathricum Linn. leaf solid phase extraction fraction and its anticoagulant activity. Molecules 2015, 20, 3697–3715. [Google Scholar] [CrossRef] [Green Version]
- Alwash, M.S.; Ibrahim, N.; Ahmad, W.Y. Identification and mode of action of antibacterial components from Melastoma malabathricum Linn leaves. Am. J. Infect. Dis. 2013, 9, 46–58. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from south China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Xu, D.P.; Lin, S.J.; Li, Y.; Zheng, J.; Zhou, Y.; Zhang, J.J.; Li, H.B. Ultrasound-assisted extraction and identification of natural antioxidants from the fruit of Melastoma sanguineum Sims. Molecules 2017, 22, 306. [Google Scholar] [CrossRef]
- Mamat, S.S.; Kamarolzaman, M.F.; Yahya, F.; Mahmood, N.R.; Shahril, M.S.; Jakius, F.; Mohtarrudin, N.; Ching, S.M.; Susanti, D.; Taher, M.; et al. Methanol extract of Melastoma malabathricum leaves exerted antioxidant and liver protective activity in rats. BMC Complement. Altern. Med. 2013, 13, 326. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.A.; Balan, T.; Mamat, S.S.; Mohtarrudin, N.; The, L.K.; Salleh, M.Z. Mechanisms of gastroprotection of methanol extract of Melastoma malabathricum leaves. BMC Complement. Altern. Med. 2015, 15, 135. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.S.; Kim, I.S.; Lee, Y.M.; Lee, Y.; Kim, J.H.; Kim, J.S. 2″,4″-O-Diacetylquercitrin, a novel advanced glycation end-product formation and aldose reductase inhibitor from Melastoma sanguineum. Chem. Pharm. Bull. 2013, 61, 662–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susanti, D.; Sirat, H.M.; Ahmad, F.; Ali, R.M.I.; Aimi, N.; Kitajima, M. Antioxidant and cytotoxic flavonoids from the flowers of Melastoma malabathricum L. Food Chem. 2007, 103, 710–716. [Google Scholar] [CrossRef]
- Zou, J.M.; Zhong, X.Q.; Lu, G.R. Selection and Compilation of Characteristic Chinese Herbal Medicine Resources in Guangxi, 1st ed.; Science Press: Beijing, China, 2011; pp. 273–274. [Google Scholar]
- Food and Drug Administration of Guangxi Zhuang Autonomous Region. Quality Standard of Yao Medicinal Materials in Guangxi Zhuang Autonomous Region, 1st ed.; Guangxi Science and Technology Press: Nanning, China, 2014; p. 102. [Google Scholar]
- Okuda, T.; Yoshida, T.; Hatano, T. Classification of oligomeric hydrolysable tannins and specificity of their occurrence in plants. Phytochemistry 1993, 32, 507–521. [Google Scholar] [CrossRef]
- Yoshida, T.; Nakata, F.; Hosotani, K.; Nitta, A.; Okuda, T. Tannins and related polyphenols of Melastomataceous plants. v. Three new complex tannins from Melastoma Malabathricum L. Chem. Pharm. Bull. 1992, 40, 1727–1732. [Google Scholar] [CrossRef] [Green Version]
- He, R.J.; Li, J.; Huang, Y.L.; Wang, Y.F.; Li, D.P. Structural characterization and assessment of the tyrosinase activity of polyphenols from Melastoma normale. Molecules 2021, 26, 3913. [Google Scholar] [CrossRef]
- Fujieda, M.; Tanaka, T.; Suwa, Y.; Koshimizu, S.; Kouno, I. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins. J. Agric. Food Chem. 2008, 56, 7305–7310. [Google Scholar] [CrossRef]
- Catherine, L.M.; Hervedu, P.; Veronique, M.F. (−)-Salzol, an isopimarane diterpene, and a chalcone from Hyptis salzmanii. Phytochemistry 1991, 30, 329–332. [Google Scholar]
- Nawwar, M.; Buddrus, J.; Bauer, H. Dimeric phenolic constituents from the roots of Tamarix nilotica. Phytochemistry 1982, 21, 1755–1758. [Google Scholar] [CrossRef]
- Li, S.; Chen, R.Y.; Yu, D.Q. Study on chemical constituents of cypress twigs from sanchunshui. Chin. Tradit. Herbal Drugs 2008, 39, 1459–1461. [Google Scholar]
- Ye, G.; Peng, H.; Fan, M.S.; Huang, C.G. Ellagic acid derivatives from the stem bark of Dipentodon sinicus. Chem. Nat. Compd. 2007, 43, 125–127. [Google Scholar] [CrossRef]
- Duc, D.K.; Sung, T.V.; Angela, M.C.; Lallemand, J.Y. Ellagic compounds from Diplopanax stachyanthus. Phytochemistry 1990, 29, 251–256. [Google Scholar]
- Guo, Y.S.; Wang, G.C.; Wang, C.H.; Huang, X.J.; Li, Y.L.; Ye, W.C. Study on chemical constituents of Origanum vulgare. Chin. Pharmac. J. 2012, 47, 1109–1113. [Google Scholar]
- Li, C.W.; Dong, H.J.; Cui, C.B. The synthesis and antitumoractivity of twelve galloyl glucosides. Molecules 2015, 20, 2034–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.L.; Li, D.P.; Yang, Z.M. Chemical constituents from the leaves of Alchornea trewioides (1). Phenolic acids and related compounds. Guihaia 2015, 4, 564–568. [Google Scholar]
- Hao, L.L.; Zhou, D.X.; Qin, X.Y.; Zhang, W.X.; Yang, R.Y.; Li, J.; Huang, X.S. A new depsidone derivative from mangrove endophytic fungus Aspergillus sp. gxnu-a9. Nat. Prod. Res. 2020. [Google Scholar] [CrossRef]
- Lang, G.; Cole, A.; Blunt, J.W.; Robinson, W.T.; Munro, M. Excelsione, a depsidone from an endophytic fungus isolated from the New Zealand endemic tree Knightia excelsa. J. Nat. Prod. 2007, 70, 310–311. [Google Scholar] [CrossRef]
- Rana, A.; Yen, M.; Sadaghiani, A.M.; Seth, M.; Park, C.Y.; Dolmetsch, R.E.; Lewis Richard, S. Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. J. Cell Biol. 2015, 209, 653–669. [Google Scholar] [CrossRef] [Green Version]
- Nonaka, G.I.; Nishimura, H.; Nishioka, I. Tannins and related compounds. part 26. Isolation and structures of stenophyllanins A, B, and C, novel tannins from Quercus stenophylla. Chem. Inform. 1985, 16, 3223–3227. [Google Scholar]
- Yoshida, T.; Hatano, T.; Kuwajima, T.; Okuda, T. Oligomeric hydrolyzable tannins. Their 1H NMR spectra and partial degradation. Heterocycles 1992, 33, 463–482. [Google Scholar]
- Tanaka, T.; Ishida, N.; Ishimatsu, M.; Nonaka, G.I.; Nishioka, I. Tannins and related compounds. cxvi. Six new complex tannins, guajavins, psidinins and psiguavin from the bark of Psidium guajava L. Chem. Pharm. Bull. 2008, 40, 2092–2098. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, K.; Nonaka, G.I.; Nishioka, I. Tannins and related compounds. Lv. Isolation and characterization of acutissimins A and B, novel tannins from Quercus and Castanea species. Chem. Pharm. Bull. 1987, 35, 602–610. [Google Scholar] [CrossRef] [Green Version]
- Takashi, T.; Nobuko, U.; Hideo, S.; Nonaka, G.I.; Kouno, I. Four new-C-glycosidic ellagitannins, castacrenins D–G, from Japanese chestnut wood (Castanea crenata SIEB. et Zucc.). Chem. Pharm. Bull. 1997, 45, 1751–1755. [Google Scholar]
- Okuda, T.; Yoshida, T.; Hatano, T. Circular dichroism of hydrolysable tannins. I. Ellagitannins and gallotannins. Tetrahedron Lett. 1982, 23, 3937–3940. [Google Scholar] [CrossRef]
- He, R.J.; Wang, Y.F.; Li, D.P.; Huang, Y.L. Phenolic constituents from Melastoma normale. Guihaia 2020, 40, 641–647. [Google Scholar]
Pos. | δH | δC | Pos. | δH | δC | Pos. | δH | δC |
---|---|---|---|---|---|---|---|---|
Glc-1 | 4.36 s | 33.9 | HHDP-1′′′ | 114.1 | Catechin-2′′′′′′ | 4.72 br s | 82.4 | |
2 | 4.96 s | 83.2 | 2′′′ | 125.9 | 3′′′′′′ | 4.11 m | 67.5 | |
3 | 5.29 s | 74.4 | 3′′′ | 6.80 s | 108.9 | 4′′′′′′ | 2.83 d (16.1) | 28.8 |
4 | 5.53 d (6.7) | 68.7 | 4′′′ | 144.3 | 2.57 dd (16.1, 7.7) | |||
5 | 5.35 s | 71.7 | 5′′′ | 137.2 | 4′′′′′′a | 100.5 | ||
6a | 4.81 dd (11.8, 6.2) | 63.6 | 6′′′ | 145.2 | 5′′′′′′ | 154.0 | ||
6b | 3.86 m | 7′′′ | 167.8 | 6′′′′′′ | 6.00 s | 96.4 | ||
Cp-1′ | 5.60 s | 45.1 | HHDP-1″″ | 115.1 | 7′′′′′′ | 154.9 | ||
2′ | 84.1 | 2″″ | 125.8 | 8′′′′′′ | 102.9 | |||
3′ | 201.4 | 3″″ | 7.02 s | 108.8 | 8′′′′′′a | 156.2 | ||
4′ | 146.8 | 4″″ | 144.8 | 9′′′′′′ | 131.3 | |||
5′ | 155.9 | 5″″ | 136.7 | 10′′′′′′ | 6.94 d (0.9) | 114.2 | ||
6′ | 164.2 | 6″″ | 146.0 | 11′′′′′′ | 145.6 | |||
7′ | 170.3 | 7″″ | 168.2 | 12′′′′′′ | 145.1 | |||
HHDP-1″ | 115.8 | HHDP-1′′′″ | 114.2 | 13′′′′′′ | 6.86 dd (8.2, 0.9) | 115.9 | ||
2″ | 124.7 | 2′′′″ | 125.0 | 14′′′′′′ | 6.78 d (8.2) | 120.6 | ||
3″ | 112.8 | 3′′′″ | 6.63 s | 108.5 | OCH2 | 4.21q (7.1) | 62.9 | |
4″ | 144.2 | 4′′′″ | 144.1 | CH3 | 1.20 t (7.1) | 14.3 | ||
5″ | 136.5 | 5′′′″ | 135.4 | |||||
6″ | 145.5 | 6′′′″ | 146.0 | |||||
7″ | 168.0 | 7′′′″ | 167.4 |
Pos. | δH | δC | Pos. | δH | δC | Pos. | δH | δC |
---|---|---|---|---|---|---|---|---|
1 | 168.9 | 7 | 160.4 | 13 | 113.9 | |||
2 | 109.5 | 8 | 6.63, s | 114.9 | 14 | 143.7 | ||
3 | 148.6 | 9 | 140.7 | 15 | 5.25, s | 68.3 | ||
4 | 140.1 | 10 | 111.4 | 16 | 2.30, s | 8.7 | ||
5 | 160.5 | 11 | 161.7 | 17 | 2.30, s | 20.4 | ||
6 | 114.9 | 12 | 148.6 | 18 | 2.12, s | 11.0 |
Compound | IC50 (μM) a |
---|---|
1 | 8.02 ± 0.35 |
2 | >50 |
3 | >50 |
4 | >50 |
5 | >50 |
6 | >50 |
7 | >50 |
8 | 21.32 ± 1.05 |
9 | >50 |
10 | >50 |
11 | 6.46 ± 0.23 |
12 | 9.82 ± 0.43 |
Dexamethasone | 2.52 ± 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.-J.; Wang, Y.-F.; Yang, B.-Y.; Liu, Z.-B.; Li, D.-P.; Zou, B.-Q.; Huang, Y.-L. Structural Characterization and Assessment of Anti-Inflammatory Activities of Polyphenols and Depsidone Derivatives from Melastoma malabathricum subsp. normale. Molecules 2022, 27, 1521. https://doi.org/10.3390/molecules27051521
He R-J, Wang Y-F, Yang B-Y, Liu Z-B, Li D-P, Zou B-Q, Huang Y-L. Structural Characterization and Assessment of Anti-Inflammatory Activities of Polyphenols and Depsidone Derivatives from Melastoma malabathricum subsp. normale. Molecules. 2022; 27(5):1521. https://doi.org/10.3390/molecules27051521
Chicago/Turabian StyleHe, Rui-Jie, Ya-Feng Wang, Bing-Yuan Yang, Zhang-Bin Liu, Dian-Peng Li, Bi-Qun Zou, and Yong-Lin Huang. 2022. "Structural Characterization and Assessment of Anti-Inflammatory Activities of Polyphenols and Depsidone Derivatives from Melastoma malabathricum subsp. normale" Molecules 27, no. 5: 1521. https://doi.org/10.3390/molecules27051521
APA StyleHe, R. -J., Wang, Y. -F., Yang, B. -Y., Liu, Z. -B., Li, D. -P., Zou, B. -Q., & Huang, Y. -L. (2022). Structural Characterization and Assessment of Anti-Inflammatory Activities of Polyphenols and Depsidone Derivatives from Melastoma malabathricum subsp. normale. Molecules, 27(5), 1521. https://doi.org/10.3390/molecules27051521