Response of Aphid Parasitoids to Volatile Organic Compounds from Undamaged and Infested Brassica oleracea with Myzus persicae
Abstract
:1. Introduction
2. Results
2.1. VOCs Released from M. persicae Infested and Uninfested Plant
2.2. Effect of VOCs on Attractive Parasitoid
3. Discussion
4. Materials and Methods
4.1. Experimental Plants
4.2. Insect Culture
4.3. Volatiles Collection and GCMS Analysis using HS-SPME
4.3.1. VOCs Extraction with HS-SPME
4.3.2. Samples Analysis with GC-MS
4.4. Evaluation of Olfactory Responses of M. persicae and Its Parasitoids
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.H.; Jander, G. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J. 2007, 49, 1008–1019. [Google Scholar] [CrossRef]
- Valenzuela, I.; Hoffmann, A.A. Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomol. 2015, 54, 292–305. [Google Scholar] [CrossRef]
- Yoon, C.; Seo, D.K.; Yang, J.O.; Kang, S.H.; Kim, G.H. Attraction of the predator, Harmonia axyridis (Coleoptera: Coccinellidae), to its prey, Myzus persicae (Hemiptera: Aphididae), feeding on Chinese cabbage. J. Asia-Pac. Entomol. 2010, 13, 255–260. [Google Scholar] [CrossRef]
- Amarawardana, L.; Bandara, P.; Kumar, V.; Pettersson, J.; Ninkovic, V.; Glinwood, R. Olfactory response of Myzus persicae (Homoptera: Aphididae) to volatiles from leek and chive: Potential for intercropping with sweet pepper. Acta Agric. Scand. B Soil Plant Sci. 2007, 57, 87–91. [Google Scholar] [CrossRef]
- Liu, T.X.; Sparks, A.N. Aphids on cruciferous crops: Identification and management. Texas Agric. Life Exten. 2001, B-6109, 1–11. [Google Scholar]
- Anstead, J.A.; Williamson, M.S.; Denholm, I. Evidence for multiple origins of identical insecticide resistance mutations in the aphid Myzus persicae. Insect Biochem. Mol. Biol. 2005, 35, 249–256. [Google Scholar] [CrossRef]
- Nauen, R.; Denholm, I. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Arch. Insect Biochem. Physiol. 2005, 58, 200–215. [Google Scholar] [CrossRef]
- Reed, H.; Tan, S.; Haapanen, K.; Killmon, M.; Reed, D.; Elliott, N. Olfactory responses of the parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) to odor of plants, aphids, and plant-aphid complexes. J. Chem. Ecol. 1995, 21, 407–418. [Google Scholar] [CrossRef]
- Takemoto, H.; Takabayashi, J. Parasitic wasps Aphidius ervi are more attracted to a blend of host-induced plant volatiles than to the independent compounds. J. Chem. Ecol. 2015, 41, 801–807. [Google Scholar] [CrossRef]
- Goh, H.G.; Kim, J.H.; Han, M.W. Application of Aphidius colemani Viereck for control of the aphid in greenhouse. J. Asia-Pac. Entomol. 2001, 4, 171–174. [Google Scholar] [CrossRef]
- Guerrieri, D.M. Aphid-plant interactions. J. Plant Interact. 2008, 3, 223–232. [Google Scholar] [CrossRef]
- De Farias, A.M.; Hopper, K.R. Responses of female Aphelinus asychis (Hymenoptera: Aphelinidae) and Aphidius matricariae (Hymenoptera: Aphidiidae) to host and plant-host odors. Environ. Entomol. 1997, 26, 989–994. [Google Scholar] [CrossRef]
- Shiojiri, K.; Takabayashi, J.; Yano, S.; Takafuji, A. Flight response of parasitoids toward plant-herbivore complexes: A comparative study of two parasitoid-herbivore systems on cabbage plants. Appl. Entomol. Zool. 2000, 35, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Vuorinen, T.; Nerg, A.M.; Ibrahim, M.; Reddy, G.; Holopainen, J.K. Emission of Plutella xylostella induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol. 2004, 135, 1984–1992. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, S.; Dicke, M.; Vet, L.; Wanningen, R. Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals: Effects of bioassay set-up, parasitoid age and experience and barometric flux. Entomol. Exp. Appl. 1992, 63, 163–175. [Google Scholar] [CrossRef]
- Vet, L.E.; Dicke, M. Ecology of info chemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 1992, 37, 141–172. [Google Scholar] [CrossRef]
- Najar-Rodriguez, A.J.; Friedli, M.; Klaiber, J.; Dorn, S. Aphid-deprivation from Brassica plants results in increased isothiocyanate release and parasitoid attraction. Chemoecology 2015, 25, 303–311. [Google Scholar] [CrossRef]
- Girling, R.; Hassall, M. Behavioural responses of the seven-spot ladybird Coccinella septempunctata to plant headspace chemicals collected from four crop Brassicas and Arabidopsis thaliana, infested with Myzus persicae. Agric. For. Entomol. 2008, 10, 297–306. [Google Scholar] [CrossRef]
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Hatano, E.; Kunert, G.; Michaud, J.; Weisser, W.W. Chemical cues mediating aphid location by natural enemies. Eur. J. Entomol. 2008, 105, 797. [Google Scholar] [CrossRef] [Green Version]
- Hågvar, E.; Hofsvang, T. Effect of honeydew and hosts on plant colonization by the aphid parasitoid Ephedrus cerasicola. Entomophaga 1989, 34, 495–501. [Google Scholar] [CrossRef]
- Leroy, P.D.; Sabri, A.; Heuskin, S.; Thonart, P.; Lognay, G.; Verheggen, F.J.; Francis, F.; Brostaux, Y.; Felton, G.W.; Haubruge, E. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat. Commun. 2011, 2, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rijk, M.; Dicke, M.; Poelman, E.H. Foraging behaviour by parasitoids in multiherbivore communities. Anim. Behav. 2013, 85, 1517–1528. [Google Scholar] [CrossRef]
- Hagvar, E.; Hofsvang, T. Aphid parasitoids (Hymenoptera, Aphidiidae): Biology, host selection and use in biological control. Biocontrol. News Inf. 1991, 12, 13–42. [Google Scholar]
- Bruinsma, M.; Posthumus, M.A.; Mumm, R.; Mueller, M.J.; van Loon, J.J.; Dicke, M. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: Effects of time and dose, and comparison with induction by herbivores. J. Exp. Botany 2009, 60, 2575–2587. [Google Scholar] [CrossRef] [Green Version]
- Taveira, M.; Fernandes, F.; de Pinho, P.G.; Andrade, P.B.; Pereira, J.A.; Valentão, P. Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT-MS. Microchem. J. 2009, 93, 140–146. [Google Scholar] [CrossRef]
- Mathur, V.; Tytgat, T.O.; Hordijk, C.A.; Harhangi, H.R.; Jansen, J.J.; Reddy, A.S.; Harvey, J.A.; Vet, L.E.; Dam, N.M. An ecogenomic analysis of herbivore-induced plant volatiles in Brassica juncea. Mol. Ecol. 2013, 22, 6179–6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vos, M.; Jander, G. Volatile communication in plant–aphid interactions. Curr. Opin. Plant Biol. 2010, 13, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Hien, T.T.; Heuskin, S.; Delaplace, P.; Francis, F.; Lognay, G. VOC emissions and protein expression mediated by the interactions between herbivorous insects and Arabidopsis plant. A review. Biotechnol. Agron. Soc. Environ. 2014, 18, 455–464. [Google Scholar]
- Winde, I.; Wittstock, U. Insect herbivore counteradaptations to the plant glucosinolate–myrosinase system. Phytochemistry 2011, 72, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Weldegergis, B.T.; Chamontri, S.; Dicke, M.; Gols, R. Does aphid infestation interfere with indirect plant defense against lepidopteran caterpillars in wild cabbage? J. Chem. Ecol. 2017, 43, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Mumm, R.; Posthumus, M.A.; Dicke, M. Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Environ. 2008, 31, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Zevallos, D.M.; Bezerra, R.H.; Souza, S.R.; Ambrogi, B.G. Species-and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. Exp. Appl. Acarol. 2018, 74, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Hori, M. Role of host plant odors in the host finding behaviors of aphids. Appl. Entomol. Zool. 1999, 34, 293–298. [Google Scholar] [CrossRef]
- Döring, T.F. How aphids find their host plants, and how they do not. Annal. Appl. Biol. 2014, 165, 3–26. [Google Scholar] [CrossRef]
- Verheggen, F.J.; Haubruge, E.; De Moraes, C.M.; Mescher, M.C. Aphid responses to volatile cues from turnip plants (Brassica rapa) infested with phloem-feeding and chewing herbivores. Arthropod Plant Interact. 2013, 7, 567–577. [Google Scholar] [CrossRef]
- Züst, T.; Agrawal, A.A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2016, 2, 15206. [Google Scholar] [CrossRef]
- Hopkins, D.P.; Cameron, D.D.; Butlin, R.K. The chemical signatures underlying host plant discrimination by aphids. Sci. Rep. 2017, 7, 8498. [Google Scholar] [CrossRef]
- Khidr, S.K. Effects of organic fertilizers and wheat varieties on infestation by, corn leaf aphid, Rhopalosiphum maidis and wheat thrips, Haplothrips tritici and their predators. Iraqi J. Agric. Sci. 2018, 49, 93–104. [Google Scholar]
- Ahmed, Q.; Agarwal, M.; Alsabte, A.; Aljuboory, A.B.; Ren, Y. Evaluation of Volatile Organic Compounds from Broccoli Plants Infested with Myzus persicae and Parasitoids Aphidius colemani Attraction. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Baghdad, Iraq, 1 May 2021; IOP Publishing: Bristol, UK, 2021; Volume 761, p. 012029. [Google Scholar]
- Ahmed, N.; Darshanee, H.L.; Khan, I.A.; Zhang, Z.F.; Liu, T.X. Host selection behavior of the green peach aphid, Myzus persicae, in response to volatile organic compounds and nitrogen contents of cabbage cultivars. Front. Plant Sci. 2019, 12, 10–79. [Google Scholar]
- Kalule, T.; Wright, D. The influence of cultivar and cultivar-aphid odours on the olfactory response of the parasitoid Aphidius colemani. J. Appl. Entomol. 2004, 128, 120–125. [Google Scholar] [CrossRef]
- van Emden, H.F.; Storeck, A.P.; Douloumpaka, S.; Eleftherianos, I.; Poppy, G.M.; Powell, W. Plant chemistry and aphid parasitoids (Hymenoptera: Braconidae): Imprinting and memory. Euro. J. Entomol. 2008, 105, 477. [Google Scholar] [CrossRef] [Green Version]
- da Silva, S.E.; França, J.F.; Pareja, M. Olfactory response of four aphidophagous insects to aphid-and caterpillar-induced plant volatiles. Arthropod Plant Interact. 2016, 10, 331–340. [Google Scholar] [CrossRef]
- Saad, K.A.; Roff, M.M.; Hallett, R.H.; Idris, A. Aphid-induced defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Sci. Rep. 2015, 5, 13697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, T.; Girling, R.; Staley, J.; Trigodet, B.; Wright, D.; Leather, S.; Van Emden, H.; Poppy, G. Effects of organic and conventional fertilizer treatments on host selection by the aphid parasitoid Diaeretiella rapae. J. Appl. Entomol. 2012, 136, 445–455. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. Metabo Analyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucl. Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
No | Compound Name | RT 1 | Uninfested Plant Area ± SD 2 | Infested Plant Area ± SD | LSD 4 | p-Value |
---|---|---|---|---|---|---|
1 | Propane, 2-methoxy | 3.12 | 23.10 ± 3.13 | 7.84 ± 2.70 | 11.45 | 0.020 * |
2 | n-Hexane | 3.28 | 15.38 ± 4.21 | 8.40 ± 3.83 | 15.8 | 0.199 |
3 | Benzene | 3.61 | 72.20 ± 1.55 | 601.75 ± 28.09 | 78 | 0.305 |
4 | 3-Hexen-1-ol, (E) | 6.38 | ND 3 | 28.83 ± 1.51 | 4.197 | 0.223 |
5 | 4,6-Heptadiyn-3-one | 9.33 | 90.28 ± 2.26 | 601.75 ± 28.09 | 78.2 | 1.211 |
6 | Toluene | 11.02 | 12.50 ± 3.48 | 1.65 ± 0.31 | 9.7 | 0.653 |
7 | Oxime-, methoxy-phenyl | 12.43 | 757.69 ± 322.83 | 680.68 ± 300.96 | 1223.9 | 0.200 |
8 | 2-Pentenal, (E)- | 12.49 | 16.86 ± 0.82 | 23.36 ± 0.76 | 3.105 | 0.136 |
9 | Alpha-Pinene | 13.32 | 24.44 ± 4.96 | 131.41 ± 16.53 | 47.87 | 0.003 * |
10 | Sabinene | 13.47 | 72.54 ± 34.72 | 137.59 ± 37.07 | 140.8 | 0.377 |
11 | Myrcene | 15.22 | 20.15 ± 7.96 | 68.45 ± 30.99 | 88.7 | 0.046 * |
12 | beta-Pinene | 16.25 | ND | 55.75 ± 17.03 | 47.24 | 0.930 |
13 | 1-Hexanone, 5-methyl-1-phenyl | 16.81 | 21.05 ± 3.78 | 35.38 ± 7.44 | 23.14 | 0.004 * |
14 | p-Cymene | 17.28 | 422.85 ± 144.03 | 564.67 ± 82.08 | 459.7 | 0.339 |
15 | 3-Hexen-1-ol, acetate, (Z) | 17.48 | 394.93 ± 152.39 | 245.99 ± 62.11 | 456.3 | 0.277 |
16 | Eucalyptol | 19.97 | 129.50 ± 5.22 | 96.14 ± 34.98 | 98.1 | 0.036 * |
17 | Limonene | 20.38 | 14.66 ± 1.92 | 247.26 ± 84.09 | 233.2 | 0.003 * |
18 | Decane | 23.57 | ND | 39.31 ± 5.50 | 15.25 | 0.020 * |
19 | gamma-Terpinen | 24.81 | 9.03 ± 1.70 | 56.55 ± 3.68 | 11.23 | 0.007 * |
20 | Heptane, 2,4,4-trimethyl | 26.24 | 3.75 ± 1.44 | 91.50 ± 45.46 | 126.1 | 0.001 * |
21 | Cyclopentasiloxane, decamethyl | 27.84 | 1.95 ± 0.23 | 314.91 ± 12.00 | 33.29 | 0.212 |
22 | 1-Undecyne | 30.22 | 2.68 ± 0.52 | 110.55 ± 13.59 | 37.72 | 0.036 * |
23 | Heptane, 2,5,5-trimethyl | 30.82 | 2.17 ± 0.43 | 33.82 ± 4.85 | 13.5 | 0.630 |
24 | Cyclohexasiloxane | 34.24 | 123.62 ± 53.60 | 1.16 ± 0.17 | 148.6 | 0.301 |
25 | 3,4-Dihydroxyphenylglycol | 37.29 | 20.15 ± 7.96 | 1.72 ± 0.41 | 22.09 | 0.286 |
26 | 1,5-Pentanediamine | 40.10 | 249.45 ± 12.70 | 10.33 ± 0.64 | 35.27 | 0.127 |
27 | octamethyl | 42.66 | 565.00 ± 22.07 | 7.89 ± 2.42 | 61.6 | 0.129 |
28 | decamethyl | 41.43 | 113.05 ± 55.42 | ND | 153.7 | 0.401 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, Q.; Agarwal, M.; Alobaidi, R.; Zhang, H.; Ren, Y. Response of Aphid Parasitoids to Volatile Organic Compounds from Undamaged and Infested Brassica oleracea with Myzus persicae. Molecules 2022, 27, 1522. https://doi.org/10.3390/molecules27051522
Ahmed Q, Agarwal M, Alobaidi R, Zhang H, Ren Y. Response of Aphid Parasitoids to Volatile Organic Compounds from Undamaged and Infested Brassica oleracea with Myzus persicae. Molecules. 2022; 27(5):1522. https://doi.org/10.3390/molecules27051522
Chicago/Turabian StyleAhmed, Qasim, Manjree Agarwal, Ruaa Alobaidi, Haochuan Zhang, and Yonglin Ren. 2022. "Response of Aphid Parasitoids to Volatile Organic Compounds from Undamaged and Infested Brassica oleracea with Myzus persicae" Molecules 27, no. 5: 1522. https://doi.org/10.3390/molecules27051522
APA StyleAhmed, Q., Agarwal, M., Alobaidi, R., Zhang, H., & Ren, Y. (2022). Response of Aphid Parasitoids to Volatile Organic Compounds from Undamaged and Infested Brassica oleracea with Myzus persicae. Molecules, 27(5), 1522. https://doi.org/10.3390/molecules27051522