The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of B. oleae Infestation on the Volatile Profile of VOO
2.2. Effect of Bactrocera oleae Infestation on the Phenolic Profile of VOO
2.3. Effect of Bactrocera oleae Infestation on Genes Controlling the Biosynthesis of Volatile and Phenolic Compounds
3. Materials and Methods
3.1. Plant Material
3.2. Olive Oil Extraction
3.3. Extraction and Analysis of Fruit and VOO Phenolic Compounds
3.4. Extraction and Analysis of VOO Volatile Compounds
- C6/LnA aldehydes: (E)-hex-2-enal, (Z)-hex-3-enal, (Z)-hex-2-enal, (E)-hex-3-enal.
- C6/LnA alcohols: (E)-hex-2-enol, (Z)-hex-3-enol, (E)-hex-3-enol.
- C6/LA aldehyde: hexanal.
- C6/LA alcohol: hexan-1-ol.
- C5/LNA carbonyls: pent-1-en-3-one, (E)-pent-2-enal, (Z)-pent-2-enal.
- C5/LNA alcohols: pent-1-en-3-ol, (E)-pent-2-en-1-ol, (Z)-pent-2-en-1-ol.
- PD: pentene dimers (seven isomers).
- C5/LA carbonyls: pentan-3-one, pentanal.
- C5/LA alcohol: pentan-1-ol.
- LOX esters: hexyl acetate, (Z)-hex-3-en-1-yl acetate, (E)-hex-2-en-1-yl acetate.
- Non-LOX esters: methyl acetate, ethyl acetate, methyl hexanoate, ethyl hexanoate.
- Terpenes: limonene, β-ocimene
- BC aldehydes: 3-methyl-butanal, 2-methyl-butanal
- BC alcohol: 2-methyl-butan-1-ol
3.5. Identification of Polyphenol Oxidase Full-Length cDNA
3.6. OePPO Genes Cloning, Heterologous Protein Expression, Purification, and Functional Characterization
3.7. Total RNA Extraction and Gene Expression Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Commission Regulation No. (2568)/91 Characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Comm. L 1991, 248, 1–83.
- Olias, J.M.; Pérez, A.G.; Ríos, J.J.; Sanz, C. Aroma of virgin olive oil: Biogenesis of the green odor notes. J. Agric. Food Chem. 1993, 41, 2368–2373. [Google Scholar] [CrossRef]
- Morales, M.T.; Tsimidou, M. The Role of Volatile Compounds and Polyphenols in Olive Oil Sensory Quality. In Handbook of Olive Oil; Aspen Publishers: Gaithersburg, MD, USA, 2002; pp. 393–458. [Google Scholar]
- Lanza, B.; Ninfali, P. Antioxidants in extra virgin olive oil and table olives: Connections between agriculture and processing for health choices. Antioxidants 2020, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- El Yamaniab, M.; Sakar, E.H.; Boussakouran, H.; Rharrabti, Y. Effect of storage time and conditions on the quality characteristics of ‘Moroccan Picholine’ olive oil. Biocatalist Agric. Technol. 2022, 39, 103244. [Google Scholar] [CrossRef]
- El Yamaniab, M.; Sakar, E.H.; Mansouri, F.; Serghini-Caid, M.; Elamrani, A.; Rharrabti, Y. Effect of pigments and total phenols on oxidative stability of monovarietal virgin olive oil produced in Morocco. Riv. Ital. Sost. Grasse 2019, 96, 17–24. [Google Scholar]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Lozano-Castellón, J.; López-Yerena, A.; Rinaldi de Alvarenga, J.F.; Romero del Castillo-Alba, J.; Vallverdú-Queralta, A.; Escribano-Ferrer, E.; Lamuela-Raventósa, R.M. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit. Rev. Food Sci. Nutr. 2020, 60, 2532–2548. [Google Scholar] [CrossRef]
- Cirilli, M.; Caruso, G.; Gennai, C.; Urbani, S.; Frioni, E.; Ruzzi, M.; Servili, M.; Gucci, R.; Poerio, E.; Muleo, R. The role of polyphenol oxidase, peroxidase, and β-glucosidase in phenolics accumulation in Olea europea L. fruits under different water regimes. Front. Plant Sci. 2017, 8, 717. [Google Scholar] [CrossRef] [Green Version]
- Alagna, F.; Kallenbach, M.; Pompa, A.; De Marchis, F.; Rao, R.; Baldwin, I.T.; Bonaventure, G.; Baldoni, L. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. J. Integr. Plant Biol. 2016, 58, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ortiz, A.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Synthesis of volatile compounds of virgin olive oil is limited by the lipoxygenase activity load during the oil extraction process. J. Agric. Food Chem. 2012, 60, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Angerosa, R.F.; Mostallino, C.; Basti, R.; Vito, R. Virgin olive oil odour notes: Their relationships with the volatile compound from the lipoxigenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Padilla, M.; Hernández, M.L.; Sanz, C.; Martínez-Rivas, J.M. Stress-dependent regulation of 13-lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp. Phytochemistry 2014, 102, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasternack, C.; Feussner, I. The Oxylipin Pathways: Biochemistry and Function. Annu. Rev. Plant Biol. 2018, 69, 363–386. [Google Scholar] [CrossRef]
- El Riachy, M.; Priego-Capote, F.; León, L.; Rallo, L.; Luque de Castro, M.D. Hydrophilic antioxidants of virgin olive oil. Part 2: Biosynthesis and biotransformation of phenolic compounds in virgin olive oil as affected by agronomic and processing factors. Eur. J. Lipid Sci. Technol. 2011, 113, 692–707. [Google Scholar] [CrossRef]
- Romero-Segura, C.; García-Rodríguez, R.; Sanz, C.; Pérez, A.G. Virgin olive phenolic profile as a result of the anabolic and catabolic enzymes status in the olive fruit. Acta Hortic. 2011, 924, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Romero-Segura, C.; García-Rodríguez, R.; Sánchez Ortiz, A.; Sanz, C.; Pérez, A.G. The role of olive beta-glucosidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2012, 45, 191–196. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Sánchez-Ortiz, A.; Pérez, A.G. Role of polyphenol oxidase and peroxidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2012, 44, 629–635. [Google Scholar] [CrossRef]
- Koudounas, K.; Banilas, G.; Michaelidis, C.; Demoliou, C.; Rigas, S.; Hatzopoulos, P. A defence-related Olea europaea b-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent. J. Exp. Bot. 2015, 66, 2093–2106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, X. Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry 2021, 181, 112588. [Google Scholar] [CrossRef]
- Jiménez-Díaz, R.M.; Cirulli, M.; Bubici, G.; Jiménez-Gasco, L.M.; Antoniou, P.P.; Tjamos, E.C. Verticillium wilt, a major threat to olive production: Current status and future prospects for its management. Plant Dis. 2012, 96, 304–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malheiro, R.; Casal, S.; Baptista, P.; Pereira, J.A. A review of Bactrocera oleae (Rossi) impact in olive products: From the tree to the table. Trend. Food Sci. Technol. 2015, 44, 226–242. [Google Scholar] [CrossRef]
- Grasso, F.; Coppola, M.; Carbone, F.; Baldoni, L.; Alagna, F.; Perrotta, G.; Perez-Pulido, A.J.; Garonna, A.; Facella, P.; Daddiego, L.; et al. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. PLoS ONE 2017, 12, e0183050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landa, B.B.; Pérez, A.G.; Luaces, P.; Montes-Borrego, M.; Navas-Cortés, J.A.; Sanz, C. Insights into the effect of Verticillium dahliae defoliating-pathotype infection on the content of phenolic and volatile compounds related to the sensory properties of virgin olive oil. Front. Plant Sci. 2019, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- García-Vico, L.; Belag, A.; Sanchez Ortiz, A.; Martinez Rivas, J.M.; Pérez, A.G.; Sanz, C. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil. Molecules 2017, 22, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal Behav. 2011, 6, 369–371. [Google Scholar] [CrossRef] [Green Version]
- Tamendjari, A.; Angerosa, F.; Bellal, M.M. Influence of Bactrocera oleae infestation on olive oil quality during ripening of Chemlal olives. Ital. J. Food Sci. 2004, 16, e343–e354. [Google Scholar]
- Bendini, A.; Cerretani, L.; Cichelli, A.; Lercker, G. Come l’infestazione da Bactrocera oleae puo causare variazioni nel profilo aromatico di oli vergini da olive. Riv. Ital. Sostanze Grasse 2008, 86, e167–e177. [Google Scholar]
- Malheiro, R.; Casa, S.; Cunha, S.C.; Baptista, P.; Pereira, J.A. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Phytochemistry 2016, 121, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Giunti, G.; Campolo, O.; Laudani, F.; Algeri, G.M.; Palmeri, V. Olive fruit volatiles route intraspecific interactions and chemotaxis in Bactrocera oleae (Rossi) (Diptera: Tephritidae) females. Sci. Rep. 2020, 10, 1666. [Google Scholar] [CrossRef] [Green Version]
- García-Vico, L.; Belaj, A.; Leon, L.; de la Rosa, R.; Sanz, C.; Perez, A.G. A survey of ethanol content in virgin olive oil. Food Control 2018, 91, 248e253. [Google Scholar] [CrossRef] [Green Version]
- Koprivnjak, O.; Dminic, I.; Kosic, U.; Majet, V.; Godena, S.; Valencic, V. Dynamics of oil quality parameters changes related to olive fruit fly attack. Eur. J. Lipid Sci. Technol. 2010, 112, e1033–e1040. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Belaj, A.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Exploration of genetic resources to improve the functional quality of virgin olive oil. J. Funct. Foods 2017, 3, 81–88. [Google Scholar] [CrossRef]
- Mateos, R.; Cert, A.; Pérez-Camino, M.C.; and García, J.M. Evaluation of virgin olive oil bitterness by quantification of secoiridoid derivatives. J. Am. Oil Chem. Soc. 2004, 81, 71–75. [Google Scholar] [CrossRef]
- Gomez-Caravaca, A.M.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Del Carlo, M.; Del Carlo, M.; Compagnone, D.; Cichelli, A. Effects of fly attack (Bactrocera oleae) on the phenolic profile and selected chemical parameters of olive oil. J. Agric. Food Chem. 2008, 56, e4577–e4583. [Google Scholar] [CrossRef]
- Tamendjari, A.; Angerosa, F.; Mettouchi, S.; Bellal, M.M. The effect of fly attack (Bactrocera oleae) on the quality and phenolic content of Chemlaly olive oil. Grasas y Aceites 2009, 60, e507–e513. [Google Scholar] [CrossRef] [Green Version]
- Valencic, V.; Butinar, B.; Podgornik, M.; Bucar-Miklavcc, M. The Effect of Olive Fruit Fly Bactrocera oleae (Rossi) Infestation on Certain Chemical Parameters of Produced Olive Oils. Molecules 2021, 26, 95. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Canale, A.; Loni, A.; Raspi, A.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M. Qualitative changes of olive oils obtained from fruits damaged by Bactrocera oleae (Rossi). HortScience 2012, 47, e301–e306. [Google Scholar] [CrossRef] [Green Version]
- Corrado, G.; Alagna, F.; Rocco, M.; Renzone, G.; Varricchio, P.; Coppola, V.; Coppola, M.; Garonna, A.; Baldoni, L.; Scaloni, A.; et al. Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biol. 2012, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Pavlidi, N.; Gioti, A.; Wybouw, N.; Dermauw, W.; Ben-Yosef, M.; Yuval, B.; Jurkevich, E.; Kampouraki, A.; Van Leeuwen, T.; Vontas, J. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci. Rep. 2017, 7, srep42633. [Google Scholar] [CrossRef]
- Velázquez-Palmero, D.; Romero-Segura, C.; García-Rodríguez, R.; Hernández, M.L.; Vaistij, F.E.; Graham, I.A.; Pérez, A.G.; Martínez-Rivas, J.M. An oleuropein β-glucosidase from olive fruit is involved in determining the phenolic composition of virgin olive oil. Front. Plant Sci. 2017, 8, 1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Vico, L.; Sánchez, R.; Rodríguez, R.; Sanz, C.; Pérez, A. Study of the olive β-glucosidase gene family putatively involved in the synthesis of phenolic compounds of virgin olive oil. J. Sci Food Agric. 2021, 101, 5409–5418. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; García-Vico, L.; Sanz, C.; Pérez, A. An Aromatic Aldehyde Synthase Controls the Synthesis of Hydroxytyrosol Derivatives Present in Virgin Olive Oil. Antioxidants 2019, 8, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, G.; García-Vico, L.; Sanz, C.; Pérez, A.G. Optimization of a simplified method for fruit phenolic extraction and analysis to be used in olive breeding. Acta Hortic. 2020, 1292, 357–363. [Google Scholar] [CrossRef]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils by SPE and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef]
- Pérez, A.G.; León, L.; Pascual, M.; Romero-Segura, C.; Sánchez-Ortiz, A.; de la Rosa, R. Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS ONE 2014, 9, e92898. [Google Scholar] [CrossRef] [Green Version]
- Pérez, A.G.; de la Rosa, R.; Pascual, M.; Sánchez-Ortiz, A.; Romero-Segura, C.; León, L.; Sanz, C. Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of “Picual” × Arbequina cultivars. J. Chromatogr. A 2016, 1428, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Kampatsikas, I.; Bijelic, A.; Pretzler, M.; Rompel, A. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Sci. Rep. 2017, 7, 8860. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Compounds (mg/g Oil) | - | |||||
---|---|---|---|---|---|---|
Picual-C | Picual-I | Manz-C | Manz-I | Hojib-C | Hojib-I | |
Hydroxytyrosol | 0.6b * | 0.2a | 1.6b | 0.3b | 1.9b | 0.4a |
Tyrosoll | 1.9b | 0.4a | 4.3b | 0.8b | 3.0b | 0.7a |
Vanillic acid | 0.2b | 0.1a | 0.2b | 0.1b | 0.4b | 0.1a |
vanillin | 0.1a | 0.1a | 0.1a | 0.1b | 0.2b | 0.1a |
p-coumaric acid | 0.3a | 0.5b | 0.2a | 0.1b | 0.6b | 0.2a |
Hydroxytyrosol ac. | 2.7a | 5.9b | 7.3a | 13.7b | 1.8a | 2.6b |
3,4-DHPEA-EDA | 24.8a | 28.7a | 121.0b | 96.7a | 24.3a | 24.9a |
p-HPEA-EDA | 22.7a | 41.9b | 44.5a | 64.2b | 3.6a | 3.5a |
Pinoresinol | 3.2b | 1.1a | 2.2b | 1.2b | 1.6b | 1.5a |
Cinnamic acid | 1.1b | 0.1a | 0.9b | 0.1b | 0.4b | 0.2a |
Acetoxipinoresinol | 11.0b | 1.5a | 12.3b | 3.3b | 17.7b | 4.9a |
3,4-DHPEA-EA | 135.6b | 14.7a | 196.3b | 48.1b | 31.8b | 9.7a |
p-HPEA-EA | 13.3b | 9.9a | 16.9b | 12.6b | 12.9b | 10.6a |
Ferulic acid | 0.2b | 0.1a | 0.2b | 0.1b | 0.0 | 0.0a |
Luteolin | 4.8b | 0.7a | 5.4b | 0.6b | 12.7b | 1.4a |
Apigenin | 0.9b | 0.1a | 0.9b | 0.2b | 2.2b | 0.3a |
Total phenolics | 223.3b | 106.1a | 414.4b | 242.1b | 115.2b | 61.2a |
o-diphenolics | 168.5b | 50.2a | 331.6b | 159.5b | 72.5b | 39.0a |
Secoiridoids | 196.3b | 95.2a | 378.7b | 221.6b | 72.7b | 48.8a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notario, A.; Sánchez, R.; Luaces, P.; Sanz, C.; Pérez, A.G. The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil. Molecules 2022, 27, 1650. https://doi.org/10.3390/molecules27051650
Notario A, Sánchez R, Luaces P, Sanz C, Pérez AG. The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil. Molecules. 2022; 27(5):1650. https://doi.org/10.3390/molecules27051650
Chicago/Turabian StyleNotario, Andrés, Rosario Sánchez, Pilar Luaces, Carlos Sanz, and Ana G. Pérez. 2022. "The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil" Molecules 27, no. 5: 1650. https://doi.org/10.3390/molecules27051650
APA StyleNotario, A., Sánchez, R., Luaces, P., Sanz, C., & Pérez, A. G. (2022). The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil. Molecules, 27(5), 1650. https://doi.org/10.3390/molecules27051650